doi: 10.12097/gbc.2023.12.004

柴北缘查干哈克花岗伟晶岩年代学、地球化学及其 成因和构造环境

张勇¹,张爱奎^{1*},袁万明²,刘光莲¹,湛守智³,王宗胜¹,张大明¹ ZHANG Yong¹, ZHANG Aikui^{1*}, YUAN Wanming², LIU Guanglian¹, ZHAN Shouzhi³, WANG Zongsheng¹, ZHANG Daming¹

1. 青海省第三地质勘查院, 青海 西宁 810029;

2. 中国地质大学(北京),北京100083;

3. 青海省第五地质勘查院, 青海 西宁 810000

1. The Third Geological Exploration Institute of Qinghai Province, Xining 810029, Qinghai, China;

2. China University of Geosciences (Beijing), Beijing 100083, China;

3. The Fifth Geological Exploration Institute of Qinghai Province, Xining 810000, Qinghai, China

摘要:【研究目的】 厘定查干哈克花岗伟晶岩的形成时代、成因和构造环境对于青藏高原北缘古特提斯洋演化与稀有金属成矿 作用研究具有重要意义。【研究方法】对花岗伟晶岩及其围岩黑云正长花岗岩分别开展了独居石和锆石 U-Pb 定年,以及岩石 地球化学研究。【研究结果】花岗伟晶岩独居石 U-Pb 年龄为 250.4±0.7 Ma(MSWD=0.1, n=27), 黑云正长花岗岩锆石 U-Pb 年 龄为 374.3±8.5 Ma(MSWD=0.15, n=8)。花岗伟晶岩具有高硅、碱、铝、低钛的特征, A/CNK 值为 1.15~1.32,稀土元素含量很低, 呈现轻稀土元素弱富集的右倾配分模式, Eu 强烈亏损, δEu 为 0.07~0.18, 具有 M 型稀土元素四分组效应, 强烈富集 Rb、K、U、P, 强烈亏损 Ba、Sr 和 Ti, 中等富集高场强元素 Nb、Ta、Zr、Hf; 黑云母正长花岗岩富硅、钾, 贫钛, A/CNK 值为 1.13~1.32,稀土元素 含量中等, 呈现轻稀土元素强烈富集的右倾配分模式, Eu 亏损明显, δEu 为 0.19~0.32, 强烈富集 Rb、K、Th, 强烈亏损 Sr、P 和 Ti。【结论】年代学和地球化学结果表明,花岗伟晶岩与黑云正长花岗岩不具成因联系。结合区域地质背景认为,柴北缘西段 查干哈克花岗伟晶岩不同于宗务隆花岗伟晶岩, 宗务隆花岗伟晶岩是古特提斯洋大陆边缘增生造山和碰撞造山过程中形成的花 岗岩经高分异演化而成, 而查干哈克花岗伟晶岩形成于早三叠世古特提斯洋俯冲环境下的柴达木地块大陆内部, 是大陆内部挤 压混合岩化过程中达肯大坂岩群小比例部分熔融的产物, 具有铌钽矿成矿潜力。

关键词:年代学;地球化学;岩石成因;构造环境;花岗伟晶岩;黑云正长花岗岩;查干哈克;柴北缘

创新点:对柴北缘西段查干哈克花岗伟晶岩及其围岩黑云正长花岗岩开展了年代学、岩石地球化学研究,提出柴北缘西段存在 小比例部分熔融形成的 NYF 型花岗伟晶岩,具有铌钽成矿的前景。

中图分类号: P588.12; P597 文献标志码: A 文章编号: 1671-2552(2025)04-0552-22

Zhang Y, Zhang A K, Yuan W M, Liu G L, Zhan S Z, Wang Z S, Zhang D M. Chronology, geochemistry, petrogenesis and tectonic setting of Chaganhake granitic pegmatite in North Qaidam. *Geological Bulletin of China*, 2025, 44(4): 552–573

Abstract: [Objective] The determination of the formation age, petrogenesis, and tectonic environment of Chaganhake granite pegmatite is of great significance for the study of the evolution of the Paleo–Tethyan and the metallogenesis of rare metals in the

- **资助项目:**国家自然科学基金项目《柴北缘花岗伟晶岩型锂铍等关键金属超常富集成矿的可能机制》(批准号:9206220026)和青海省地质矿 产勘查开发局基金项目《柴周缘钴镍成矿规律及靶区优选》(批准号:青地矿科 [2023]79)
- 作者简介:张勇(1982-),男,硕士,高级工程师,从事地质矿产勘查与矿床研究。E-mail: qhskyzy@163.com

* 通信作者: 张爱奎 (1976-), 男, 博士, 正高级工程师, 从事矿产勘查和矿床地质研究。E-mail: 474921988@qq.com

收稿日期: 2023-12-03;修订日期: 2024-04-09

northern margin of the Tibetan Plateau. [Methods] In this paper, monazite U-Pb dating and zircon U-Pb dating have been carried out for granite pegmatite and its surrounding rocks, and their geochemistry has been studied. [Results] The results show that the monazite U-Pb age of granite pegmatite is 250.4±0.7 Ma(MSWD=0.1, n=27), while the zircon U-Pb age of biotitite syenogranite is 374.3±8.5 Ma(MSWD=0.15, n=8). The granite pegatite is characterized by high Si, alkali, Al and low Ti, with A/CNK value of 1.15 to 1.32 and low rare earth element contents, showing a right-leaning partition pattern with weak enrichment of light rare earth elements (LREE), strong Eu deficit, δ Eu of 0.07 to 0.18, showing a four-group effect of M-type rare earth elements, significant enrichment of Rb, K, U and P, strong depletion of Ba, Sr and Ti, moderate enrichment of high field strength elements(HFSE) Nb, Ta, Zr, Hf. Biotite synenite granite is rich in Si, K, and poor Ti, with A/CNK value of 1.13 to 1.32 and moderate rare earth element contents, showing a right-leaning partition pattern of strong enrichment of LREE, obvious Eu deficit, δEu of 0.19 to 0.32, strong enrichment of Rb, K, Th, and strong depletion of Sr, P and Ti. [Conclusions] Combined with the regional geological background, it is believed that the Chaganhake granite pegmatite in the western part of the North Qaidam margin is different from the Zongwulong granite pegmatite. The Zongwulong granite pegmatite evolved from the granite formed in the process of accretionary orogeny and collision orogeny of the Paleo-Tethys Ocean continental margin through high differentiation, while the Chaganhake granite pegmatite was formed in the continental interior of the Qaidam block under the Paleo-Tethys Ocean subduction environment of the Early Triassic. It is the product of small proportion partial melting of the Dakendaban rock group during the process of extrusion migmatization within the continent, and has the metallogenic potential of niobium-tantalum deposit.

Key words: chronology; geochemistry; petrogenesis; tectonic setting; granite-pegmatite; biotitite syenogranite; Chaganhake; North Qaidam

Highlights: This study investigates the chronology and petrogeochemistry of the Chaganhake granite pegmatite and its surrounding biotite syenite-granite in the western North Qaidam region. It is proposed that the presence of NYF-type granite-pegmatite formed through low-degree partial melting, which exhibits potential for Nb-Ta mineralization.

铌钽矿是当今世界发展的战略性稀有金属矿 产,被广泛应用于各种"高精尖"领域(沈莽庭等, 2021;赵东杰等, 2021)。铌钽矿床以内生成因为主, 主要有花岗岩型、花岗伟晶岩型、碳酸岩型和碱性岩 型,花岗岩型和花岗伟晶岩型主要富钽,碳酸岩型和 碱性岩型则主要富铌(沈莽庭等,2021;孙宏伟等, 2021;赵东杰等, 2021;唐文龙等, 2022;姚玉增等, 2023)。青藏高原北缘"马尔康-雅江-喀喇昆仑巨型 锂矿带"形成于古特提斯大洋闭合、地体汇聚碰撞形 成的巨型印支碰撞造山带内(许志琴等, 2018),发现 有大红柳滩超大型伟晶岩型锂铍矿床(燕洲泉等, 2018)、白龙山超大型锂铷矿床(王核等, 2017)、甲基 卡超大型伟晶岩型锂铍矿床(王登红等, 2015)、可尔 因超大型伟晶岩型锂矿床(Yue et al., 2018)等一批伟 晶岩型稀有金属矿床。青藏高原北缘柴北缘-宗务隆 山构造带是青藏高原继"马尔康-雅江-喀喇昆仑巨型 锂矿带"之后又一重要的稀有金属成矿带(王秉璋 等,2020;刘承先等,2021)。宗务隆山构造带发现茶 卡北山伟晶岩型锂-铍矿、锲墨格山锂-铍矿和石乃亥 铌-钽矿(李善平等,2016,2021;王秉璋等,2020, 2023; 潘彤等, 2022; 郑英等, 2024)(图 1-a)。 宗务隆 构造带南部的全吉地块亦发现有生格伟晶岩型铌-钽

矿(吕晓强, 2012)、红岭北锂-铍矿和沙柳泉铌-钽矿 (王秉璋等, 2020, 2023)等一系列稀有金属矿产地。 柴北缘稀有金属勘查工作起步晚, 近来笔者在其西 段查干哈克发现花岗伟晶岩脉群, 对部分花岗伟晶 岩脉采集样品测试发现有铌-钽矿化。查干哈克花岗 伟晶岩形成背景及稀有金属成矿作用能否与宗务隆 构造带对比尚不清楚, 制约了柴北缘古特提斯洋演 化及稀有金属成矿作用的认识。为此, 笔者对查干 哈克花岗伟晶岩和围岩 (黑云正长花岗岩)分别开展 独居石和锆石 U-Pb 定年, 结合岩石学与地球化学研 究, 探讨其岩石成因和构造环境, 为促进柴北缘稀有 金属矿勘查提供帮助。

1 区域地质背景

查干哈克位于秦--祁--昆结合部北端全吉地块与 柴北缘结合带的交汇部位,北邻宗务隆山构造带,南 邻柴达木地块。研究区断裂构造发育,主构造线方 向为 NW--SE向,区域性断裂宗务隆山南缘断裂 (F4)自研究区北侧穿过(图1-a)。区内出露的地层 主要为古元古界达肯大坂岩群、寒武系--奥陶系滩 间山群和中---上奥陶统盐池湾组(图1-b)。达肯大 坂岩群大面积出露,总体呈 NW--SE 向展布,下部岩

图 1 青藏高原东北缘地质构造分区简图(a, 据潘桂棠等, 2009; 王秉璋等, 2020 修改)与查干哈克区域地质图(b)

Fig. 1 Sketch map of geological structure subdivision of the northeastern margin of the Tibetan Plateau (a) and regional geology map of Chaganhake (b)

1一第四系;2一古新统-始新统路乐河组;3一上侏罗统红水沟组;4一中-上奥陶统盐池湾组;5-寒武系-奥陶系滩间山群;6-古元古界达肯 大坂岩群;7-晚泥盆世石英闪长岩;8-晚泥盆世黑云正长花岗岩;9-晚泥盆世角闪二长花岗岩;10-晚泥盆世石英二长闪长岩; 11-晚泥盆世角闪辉长岩;12-断层;13-地质界线

性主要有含石榴子石黑云斜长片岩、含石榴砂线黑 云二长片岩、含石榴砂线二云二长片岩;上部岩性主 要有黑云斜长变粒岩、含石榴黑云角闪石英变粒岩 等,夹斜长片岩。滩间山群仅在研究区西侧小面积 出露,呈NW-SE向透镜体产出,岩性主要为灰绿色 变质硅质粉砂岩夹少量变质细砂岩。盐池湾组分布 在研究区北侧,呈 NW—SE 向展布,出露面积较小, 岩性以碎裂状片理化大理岩为主,夹石英砂岩和长 石石英砂岩。区内岩浆活动强烈,中部主要是晚泥 盆世黑云正长花岗岩和晚泥盆世角闪二长花岗岩, 侵入于达肯大坂岩群中;北东部发育晚泥盆世石英 二长闪长岩和晚泥盆世角闪辉长岩,亦侵入于达肯 大坂岩群中;西部发育晚泥盆世石英闪长岩及少量 晚泥盆世角闪辉长岩。伟晶岩脉和石英脉十分发 育,前者主要分布于晚泥盆世黑云正长花岗岩中,少 量分布于达肯大坂岩群内;后者主要分布于达肯大 坂岩群内。

2 矿区地质特征

查干哈克矿区共圈出 87 条伟晶岩脉,主要沿 黑云正长花岗岩及达肯大坂岩群节理和裂隙产出。 伟晶岩脉规模不等,脉宽 0.3~20 m,延伸长度为 5~ 100 m,走向 NW—SE 向,多呈脉群密集产出,形态以 脉状、透镜状、豆荚状为主(图 2)。伟晶岩多具铌钽 矿化,在黑云母正长花岗岩与达肯大坂群接触带偏 岩体一侧的伟晶岩中矿化较为发育,Ta₂O₅含量在 2.2×10⁻⁶~474×10⁻⁶之间,平均值为75.45×10⁻⁶,Nb₂O₅ 含量最高可达1000×10⁻⁶。

花岗伟晶岩呈浅灰白色,花岗伟晶结构,局部 为碎裂结构,块状构造,矿物成分主要由钾长石 (33%~40%)、斜长石(约30%)、石英(20%~25%)、白 云母 (5%~10%)、电气石 (1%~5%)、石榴子石 (约 5%),以及少量绿柱石、磷灰石等组成,随伟晶岩赋存 状态不同,矿物成分略有差异,白云母、电气石、石榴 子石不一定全部出现,蚀变以白云母化及硅化为主 (图 3-a, b)。钾长石呈他形一半自形粒状晶, 粒径多 在 0.2~0.7 mm 之间, 为微斜长石(具格子双晶; 图 3-g)与条纹长石(具格子双晶;图 3-g,h),具轻微 的粘土化蚀变,晶内见有石英被包裹(图 3-h)。斜长 石呈半自形板状晶,大小为 0.2~0.5 mm,晶内裂纹发 育,为更钠长石(图 3-d,g)。石英呈他形粒状晶,粒 径多在 0.23~2.16 mm 之间, 晶内裂纹发育, 具波状消光 (图 3-d,g)。白云母呈片状晶,粒径为 0.4~1.5 mm (图 3-f)。电气石为铁电气石,呈柱状,粒径为 0.16~0.71 mm,局部定向排列(图 3-e)。石榴子石呈 不规则粒状晶,粒径多在 0.2~1.8 mm 之间,晶内不规

图 3 查干哈克花岗伟晶岩与黑云正长花岗岩野外(a~c)及镜下(d~i)照片

Fig. 3 The field (a-c) and microscopic (d-i) photographs of granitic pegmatite and biotitite syenogranite in Chaganhake a一含电气石白云母花岗伟晶岩,电气石呈柱状星散分布,白云母呈片状分布;b一白云母花岗伟晶岩,白云母呈片状集合体不均匀,岩石具硅 化;c一黑云正长花岗岩与花岗伟晶岩呈侵入接触关系,接触界线清晰;d一含电气石白云母花岗伟晶岩正交偏光镜下照片,主要由微斜长石、 斜长石、石英、白云母等矿物组成,可见萤石;e一伟晶岩局部电气石呈柱状定向排列;f一白云母干射色;g一白云母花岗伟晶岩正交 偏光镜下照片;h一条纹长石及其包裹的石英颗粒;i一黑云正长花岗岩正交偏光镜下照片,钾长石为格子状微斜长石与 条带状条纹长石,斜长石具粘土化;Qz一石英;PI一斜长石;Mc一微斜长石;Ph一条纹长石; Mu一白云母;Tur一电气石;Bit一黑云母;FI一萤石

则状裂纹发育。磷灰石呈细小针柱状晶,以包裹体 赋存于长石和石英晶内。

黑云正长花岗岩呈 NW—SE 向椭圆形岩株状出 露于矿区中部,长 1200 m,宽 600 m,侵入于达肯大 坂岩群,二者接触部位局部发育角岩化。黑云正长 花岗岩是花岗伟晶岩的主要围岩,二者接触界线清 晰,多呈不规则状 (图 3-c),接触部位黑云正长花岗 岩局部具糜棱岩化,岩石中发育中细粒电气石。黑 云正长花岗岩呈灰白色,中细粒花岗结构,块状构 造。主要由石英(20%)、钾长石(60%~65%)、斜长石 (约 10%)、黑云母(5%~8%),以及少量白云母等组 成。钾长石主要为微斜长石和少量条纹长石(图 3i),呈他形不规则柱状、柱粒状,见清晰的格子双晶 及条纹结构,彼此紧密镶嵌,分布较均匀;石英呈他 形不规则粒状不均匀杂乱分布;黑云母呈细小鳞片 状,零星分布于钾长石和石英之间的缝隙中,后期被 绿泥石交代置换(图 3-i)。

- 3 样品采集与测试
- 3.1 样品采集

考虑到伟晶岩中的锆石通常具有较高的 U 含量,容易发生蜕晶质作用和 Pb 丢失,难以获得可靠的锆石 U-Pb 年龄,故本次研究针对含石榴子石电气石白云母花岗伟晶岩采集了 1 件独居石 U-Pb 测年样品 (编号 CGD104N1,样品位置:北纬 38°10'45"、东经 94°49'40"),同时配套采集了 5 件主量、微量元素测试样品;针对黑云正长花岗岩采集了 1 件锆石U-Pb 测年样品 (编号 CGD109N2,样品位置:北纬 38°10'29"、东经 94°49'05"),同时配套采集了 4 件主量、微量元素测试样品 (图 2)。

2025年

第44卷第4期

3.2 样品测试

3.2.1 主量和微量元素

岩石主量和微量元素测试均在北京燕都中实测 试技术有限公司实验室完成。主量元素测试,首先 将 200 目粉末样品称量后加 Li₂B₄O₇ (1:8) 助熔剂 混合,并使用融样机加热至 1150℃ 使其在金铂坩埚 中熔融成均一玻璃片体,后采用 X-射线荧光光谱法 (XRF)测定,主量元素分析误差小于 1%。微量元素 测试:将 200 目粉末样品称量并置放入聚四氟乙烯 溶样罐,加入 HF+HNO₃,在干燥箱中将高压消解罐 保持在 190℃ 温度 72 h,后取出经过赶酸操作,并将 溶液定容为稀溶液上机测试。测试使用 ICP-MS(M90, Analytikjena)完成,所测数据根据监控标 样 GSR-2 显示误差小于 5%,部分含量小于 10×10⁻⁶ 的元素误差小于 10%。

3.2.2 独居石 U-Pb 同位素年龄

独居石挑选在廊坊市宏信地质勘查技术服务有 限公司完成。首先将样品粉碎至 80 目,经粗选后, 在双目镜下手工挑选晶形好且色泽透明度好的独居 石;然后用环氧树脂固定在样品靶上,并对其进行打 磨、抛光制靶;最后对独居石进行透射光、反射光和 BSE 照相。

独居石 U-Pb 同位素定年在北京燕都中实测试 技术有限公司实验室采用 LA-ICP-MS 分析完成。 激光剥蚀系统为 New Wave UP213, ICP-MS 为布鲁 克 M90。激光剥蚀过程中采用氦气作载气,由一个 T 型接头将氦气和氩气混合后进入 ICP-MS 中。每 个样品点分辨包括约 20 s 的空白信号和 50 s 的样品 信号。独居石 U-Pb 同位素定年采用独居石 Harvard 117531 标样作外标进行同位素分馏校正,并利用独 居石标样 RW-1 做监控标样。测试时激光束直径为 20 μm,剥蚀深度 20~40 μm,分析误差小于 5×10⁻⁶,具 体测试方法见王倩和侯可军(2015)。

3.2.3 锆石 U-Pb 同位素年龄

锆石挑选在廊坊市宏信地质勘查技术服务有限 公司完成。首先将样品清洗干净并晾干,粉碎至 80目;经水粗淘、强磁分选、电磁分选和用酒精细淘 之后,在双目镜下手工挑选晶形好且色泽透明度好 的锆石约 200粒,用环氧树脂固定在样品靶上,并对 其进行打磨和抛光,直到锆石中心暴露出来;最后对 锆石进行镜下透射光和阴极发光显微照相。

锆石 U-Pb 测年工作在天津地质矿产研究所完

成,测试方法为LA-MC-ICP-MS。使用仪器为 Neptune型MC-ICP-MS及Newwave193FXArF准 分子激光器。激光束斑直径为35µm,脉冲频率为 10Hz,激光输出功率为13J/cm²。采用²⁰⁸Pb校正法 对普通铅进行校正,NIST612玻璃标样作为外标计 算锆石样品的Pb、U、Th含量,具体测试方法见文献 (侯可军等,2009; Zhang et al., 2023;梁肖肖, 2023)。 数据处理采用ICPMSDataCal程序(Liu et al., 2008, 2010),锆石年龄谐和图用Isoplot程序获得(Ludwig, 2003)。

4 测试结果

4.1 主量元素

花岗伟晶岩具有高 SiO₂(72.37%~74.59%)、 Al₂O₃(14.90%~16.51%)、Na₂O(3.44%~4.82%)、 K₂O(2.04%~5.25%),低 TiO₂(0.01%~0.02%)的特征 (表 1)。全碱含量高,(Na₂O+K₂O)含量为 7.88%~ 8.70%,平均值为 8.19%; Na₂O 含量普遍大于 K₂O, K₂O/Na₂O 值介于 0.34~1.51 之间,平均值为 0.78。 A/CNK 值为 1.15~1.32。在 SiO₂-(Na₂O+K₂O) 图解 (图 4-a)中,样品点落入亚碱性系列;在 A/CNK-A/NK 图解(图 4-b)中,样品点落入强过铝质区内。 岩石总体属于亚碱性强过铝质岩石。

黑云正长花岗岩具有高 SiO₂(69.86%~72.75%)、 Al₂O₃(14.47%~16.20%)、Na₂O(2.51%~3.10%)、 K₂O(5.25%~5.97%),低 TiO₂(0.18%~0.24%)的特征 (表 1)。全碱含量高,(Na₂O+K₂O)含量为 8.15%~ 8.96%,平均值为 8.44%;与花岗伟晶岩不同的是 Na₂O含量普遍低于 K₂O, K₂O/Na₂O 比值介于 1.73~ 2.26之间,平均值为 1.95。A/CNK 值为 1.13~1.32。 在 SiO₂-(Na₂O+K₂O) 图解 (图 4-a)中,样品点落入亚 碱性系列;在 A/CNK-A/NK 图解 (图 4-b)中,样品点 落入强过铝质区内。岩石总体属于亚碱性强过铝质 岩石。

4.2 微量元素

花岗伟晶岩稀土元素含量很低,稀土元素总量 (ΣREE)为10.04×10⁻⁶~14.09×10⁻⁶,轻稀土元素富 集,LREE/HREE 值为2.90~6.12,(La/Yb)_N值为 2.54~9.33,Eu强烈亏损,δEu为0.07~0.18,平均为 0.12,球粒陨石标准化稀土元素配分模式图呈现轻稀 土元素弱富集的右倾配分模式,具有 M型稀土元素 四分组效应(赵振华等,2010)(图 5-a)。稀土元素四

表 1 查干哈克花岗伟晶岩与黑云正长花岗岩主量、微量元素含量及有关参数

Table 1 Major, trace elements and parameter of the granitic pegmatites and biotite syenogranites in Chaganhake

			花岗伟晶岩			黑云正长花岗岩							
元素	21CGD												
	104N1-1	104N1-2	104N1-3	104N1-4	104N1-5	109N2-2	109N2-3	109N2-4	109N2-5				
SiO ₂	73.65	74.59	73.34	72.37	74.49	72.75	71.83	71.55	69.86				
TiO ₂	0.02	0.02	0.02	0.02	0.01	0.22	0.18	0.18	0.24				
Al_2O_3	15.70	15.18	16.07	16.51	14.90	14.47	15.20	15.38	16.20				
Fe_2O_3	0.21	0.33	0.22	0.71	0.29	0.40	0.40	0.37	0.57				
FeO	0.65	0.46	0.56	0.56	0.27	1.42	1.15	1.25	1.44				
MnO	0.10	0.07	0.09	0.03	0.01	0.02	0.02	0.03	0.04				
MgO	0.10	0.10	0.04	0.20	0.37	0.48	0.40	0.49	1.06				
CaO	1.04	0.65	1.01	0.55	0.41	1.28	1.41	1.08	1.12				
Na ₂ O	5.81	4.56	5.95	4.36	3.44	2.90	3.10	2.99	2.51				
K ₂ O	2.07	3.44	2.04	4.01	5.25	5.25	5.36	5.97	5.68				
P_2O_5	0.08	0.08	0.08	0.10	0.11	0.08	0.13	0.05	0.22				
烧失量	0.49	0.47	0.50	0.50	0.38	0.53	0.65	0.50	0.85				
总计	99.91	99.93	99.93	99.92	99.95	99.79	99.82	99.82	99.79				
Q	29.41	33.45	28.64	30.36	33.28	31.84	29.52	27.73	29.58				
An	4.67	2.72	4.52	2.1	1.32	5.95	6.29	5.16	4.23				
Ab	49.44	38.79	50.64	37.16	29.25	24.72	26.45	25.47	21.46				
Or	12.3	20.44	12.13	23.87	31.17	31.25	31.93	35.51	33.92				
R_1	2347	2536	2286	2314	2509	2552	2403	2275	2399				
R_2	427	374	428	395	356	448	473	444	495				
σ	2.02	2.02	2.10	2.38	2.39	2.23	2.47	2.8	2.48				
K ₂ O+Na ₂ O	7.88	8.00	7.99	8.37	8.69	8.15	8.46	8.96	8.19				
K ₂ O/Na ₂ O	0.36	0.75	0.34	0.92	1.53	1.81	1.73	2.00	2.26				
A/NK	1.33	1.35	1.34	1.43	1.31	1.38	1.39	1.35	1.58				
A/CNK	1.15	1.22	1.16	1.32	1.23	1.13	1.13	1.15	1.32				
La	2.07	1.99	2.75	2.55	1.96	46.0	40.6	51.0	58.5				
Ce	3.89	3.45	4.48	5.27	3.83	88.8	78.9	98.8	113				
Pr	0.43	0.46	0.61	0.65	0.49	10.0	9.00	11.2	13.0				
Nd	1.45	1.44	1.97	2.18	1.62	35.7	31.8	39.1	46.0				
Sm	0.56	0.55	0.76	0.90	0.70	7.26	6.29	7.74	9.20				
Eu	0.025	0.032	0.028	0.023	0.014	0.63	0.64	0.61	0.54				
Gd	0.57	0.49	0.64	0.75	0.53	6.47	5.72	6.56	8.11				
Tb	0.14	0.11	0.15	0.15	0.089	0.74	0.63	0.62	0.84				
Dy	0.89	0.67	0.91	0.81	0.42	3.09	2.70	1.98	3.30				
Но	0.15	0.10	0.14	0.11	0.05	0.45	0.39	0.25	0.48				
Er	0.44	0.27	0.45	0.29	0.13	1.09	1.01	0.57	1.18				
Tm	0.077	0.052	0.074	0.044	0.020	0.11	0.11	0.049	0.12				
Yb	0.58	0.43	0.58	0.33	0.15	0.67	0.65	0.33	0.82				
Lu	0.069	0.053	0.069	0.039	0.019	0.079	0.077	0.044	0.098				
Y	7.59	5.73	7.90	5.87	3.10	20.1	17.6	10.2	20.7				
ΣREE	11.34	10.10	13.61	14.10	10.02	201.1	178.5	218.9	255.1				

第44卷第4期

							续表1			
			花岗伟晶岩	黑云正长花岗岩						
元素	21CGD									
	104N1-1	104N1-2	104N1-3	104N1-4	104N1-5	109N2-2	109N2-3	109N2-4	109N2-5	
LREE/HREE	2.89	3.64	3.52	4.59	6.12	14.83	14.82	20.04	16.07	
(La/Yb) _N	2.56	3.32	3.40	5.54	9.37	49.24	44.83	110.92	51.13	
δEu	0.13	0.18	0.12	0.08	0.07	0.28	0.32	0.25	0.19	
δCe	0.96	0.85	0.81	0.98	0.93	0.97	0.97	0.97	0.96	
Rb	137	270	154	306	455	319	325	314	361	
Ba	10.9	9.62	8.82	47.9	6.26	257	330	312	215	
Th	0.79	0.71	0.95	0.89	0.65	15.5	13.0	16.9	20.3	
U	0.68	0.45	0.75	0.45	0.31	1.93	2.02	1.65	2.05	
Та	2.25	0.079	0.75	0.12	0.16	2.26	2.27	1.82	2.78	
Nb	21.6	0.74	7.14	1.09	1.51	21.8	21.8	17.5	26.7	
Sr	8.36	6.89	10.6	6.37	6.36	88.0	90.9	87.8	70.9	
Zr	26.6	31.9	26.6	14.4	11.3	162	139	170	192	
Hf	1.00	1.16	0.99	0.41	0.31	3.40	2.91	3.48	3.96	
Li	19.3	15.7	16.5	11.9	6.40	40.1	36.9	28.6	54.8	
Be	4.63	3.73	4.65	2.75	1.72	0.98	1.28	1.04	2.15	
Sc	17.0	16.8	20.0	16.5	14.7	18.1	20.6	19.5	18.3	
Cs	1.97	3.21	1.75	9.11	8.95	13.3	12.2	10.6	19.6	

注: 测试单位为北京燕都中实测试技术有限公司; 比值单位为1; A/NK=n(Al₂O₃)/n(Na₂O+K₂O)(mol); A/CNK=n(Al₂O₃)/n(CaO+Na₂O+K₂O)(mol); A/R=(Al₂O₃+CaO+Na₂O+K₂O)/ (Al₂O₃+ CaO-Na₂O-K₂O); δ Eu=(2*Eu_#/Eu_#)/(Sm_#+Gd_#/Sm_#+Gd_#/Gd_#); δ Ce=(2*Ce_#/Ce_#)/(La_#/La_#+Pr_#/Pr_#); R₁= 4Si-11(Na+K)-2(Fe+Ti); R₂=6Ca+2 Mg+Al; 主量元素含量单位为%, 微量元素含量单位为10⁻⁶

图 4 查干哈克花岗伟晶岩和黑云正长花岗岩 SiO₂-(Na₂O+K₂O) 图解 (a, 底图据 Le Maitre, 1989) 和 A/CNK-A/NK 图解 (b, 底图据 Richter, 1989)

分组效应花岗岩往往受到热液流体交代作用而产 生,通常是寻找超大型稀有金属矿床十分有利的线 索(王秉璋等,2020)。岩石强烈富集 Rb、K、U、P, 强烈亏损 Ba、Sr 和 Ti,中等富集高场强元素 Nb、 $Zr_{T}Hf(8 5-b)_{\circ}$

黑云正长花岗岩稀土元素含量较高,稀土元素 总量为178.54×10⁻⁶~255.14×10⁻⁶,轻稀土元素富集, LREE/HREE 值为14.82~20.04, (La/Yb)_N 值为

44.83~110.92, Eu 亏损较明显, δEu 为 0.19~0.32, 平 均为 0.26, 球粒陨石标准化稀土元素配分模式图呈 现轻稀土元素强烈富集的右倾配分模式 (图 5-a)。 岩石强烈富集 Rb、K、Th,强烈亏损 Sr、P 和 Ti, 中 等富集高场强元素 Nb、Zr、Hf(图 5-b)。

4.3 LA-ICP-MS 独居石 U-Pb 同位素年龄

花岗伟晶岩中独居石呈浅灰色,呈半自形—自 形晶,多为不规则粒状,少数呈长柱状,长 60~200 μm。从背散射图像(图 6-a)可看出,独居石内部结 构相对较均匀,局部有被其他矿物交代的痕迹。

本次共获得 30 个独居石 U-Pb 同位素数据 (表 2),独居石富 U(15900×10⁻⁶ ~ 58900×10⁻⁶)和 Th(43500×10⁻⁶ ~ 135000×10⁻⁶),Pb 含量相对较低 (1593×10⁻⁶ ~ 3475×10⁻⁶)。²⁰⁶Pb/²³⁸U 表面年龄介于 249~262 Ma 之间,有 27 个数据谐和度较高(图 6-b), 获得谐和年龄为 250.2±0.3 Ma(*n*=27, MSWD=1.8), 这 27 个点的²⁰⁶Pb/²³⁸U 年龄加权平均值为 250.4±0.7 Ma(*n*=27, MSWD=0.1)(图 6-c)。

4.4 LA-ICP-MS 锆石 U-Pb 同位素测年

黑云正长花岗岩锆石无色透明,自形程度较好, 多呈长柱状,长100~200 µm,宽50~100 µm。从锆石 阴极发光图像(图7-a)可看出,用于测试的锆石多受 到不同程度变质改造,锆石韵律环带总体不太发育, 边缘多呈圆弧状,并具增生边,Th、U含量较高,分别 为40×10⁻⁶~1499×10⁻⁶和271×10⁻⁶~4380×10⁻⁶, Th/U 值在 0.01~0.87 之间, 平均 0.31(>0.1 有 38 个数 据点), 具有岩浆锆石的特征, 同时又具一些变质锆石的特征, 可能暗示了黑云正长花岗岩发生了不同程度的变质作用。

黑云正长花岗岩共获得 50 个锆石 U-Pb 同位素 数据(表3),²⁰⁶Pb/²³⁸U表面年龄介于1700~282 Ma之 间,集中分布在 400~360 Ma 区间,该区间共有 16 个 测点,占总频数的 32%,其年龄为 378 Ma(图 7-b)。 对该区间谐和度较高,且Th/U值大于0.1的岩浆锆 石 (3、11、13、14、19、31、41、43 测点) 进行了加权 年龄计算,获得黑云正长花岗岩年龄加权平均值为 374.3±8.5 Ma (MSWD=0.15, n=8; 图 7-c)。另外,黑 云正长花岗岩在 675~635 Ma、350~340 Ma 及 331~322 Ma 三个区间测点数据相对较集中,其中 675~635 Ma 区间共出现了 6 个数据点,考虑到研究 区周围无新元古代岩浆岩分布,亦无新元古界地层, 可能为岩浆侵入时捕获的达肯大坂岩群变质复合锆 石, 为混合年龄; 350~340 Ma 及 331~322 Ma 分别出 现了5个和3个测点数据,可能是区域上华力西期 岩浆活动的反映。

5 讨 论

5.1 花岗伟晶岩类型及成因

由于花岗伟晶岩与稀有、稀土矿成矿关系密切, 花岗伟晶岩分类研究一直是花岗伟晶岩研究的重要

²⁰⁶Pb/²³⁸U ages (c) of granitic pegmatites

内容之一(赵振华和严爽, 2023),目前常见的花岗伟 晶岩分类多是根据伟晶岩典型矿物组合(郭承基, 1957; 栾世伟等, 1996; Černý and Ercit, 2005)、典型 成矿元素(Černý, 1991; 栾世伟等, 1996; Černý and Ercit, 2005)或成矿机理(邹天人, 1985; Černý and Ercit, 2005; Dill, 2016)。目前,最流行的划分方案为 Černý(1991) 和Černý and Ercit(2005) 提出的伟晶岩 分类方案(秦克章等, 2019; 张辉等, 2019; 赵振华和 严爽, 2023),根据岩石成因把伟晶岩划分成 LCT 型、NYF 型和 LCT+NYF 混合型三大族(Černý and Ercit, 2005)。

通常 LCT 型富集 Li、Cs、Ta(还有 Rb、Be、Sn、 B、P、F) 元素, Ta>Nb(极小的 Nb/Ta 值, <5), 过铝质; NYF 型富集 Nb、Y 和 F(还有 Be、REE、Sc、Ti、Zr、 Th、U) 元素, Nb>Ta(较高的 Nb/Ta 值), 次铝质一准 铝质属性; LCT+NYF 混合型伟晶岩地球化学具有混 合特征, 显示准铝质 – 中等过铝质特性(Černý and Ercit, 2005; 张辉等, 2021; 赵振华和严爽, 2023)。查 干哈克花岗伟晶岩相对富集 Rb、Nb、Ta、Y、U、Zr、 Hf, 亏损 Ba、Sr、Ti(表 1; 图 5), 且 Nb>Ta, Nb/Ta 值 介于 9.36~9.60 之间, 总体上与 NYF 型伟晶岩岩石 地球化学特征更相似。NYF 型花岗伟晶岩以富集 Nb、Y、F等元素为特征, 因此该类岩石除常见的造 岩矿物(钾长石、斜长石、石英等)外, 副矿物可能出 现铌钽铁矿、含稀土磷酸盐、钇褐帘石、萤石等; LCT 型花岗伟晶岩以富集 Li、Cs、Ta 等元素为特 征, 副矿物通常出现富 Li 矿物, 如锂云母、锂辉石 (Černý and Ercit, 2005; 张辉等, 2021)。查干哈克花 岗伟晶副矿物有白云母、独居石、萤石、褐帘石等, 具有 NYF 型伟晶岩副矿物, 未出现锂辉石、锂云母 等含锂矿物。从上述矿物学特征及岩石地球化学特 征综合判断认为, 查干哈克花岗伟晶岩为 NYF 型。

伟晶岩一般来源于过铝质花岗岩浆的结晶分异 或直接来源于变质岩的低程度部分熔融(London, 2005; Melleton et al., 2012),花岗岩结晶分异产生的 伟晶岩多分布于花岗岩的顶部及其内外接触带

表 2 查干哈克花岗伟晶岩独居石 LA-ICP-MS U-Th-Pb 同位素数据

Table 2 LA-ICP-MS U-Th-Pb isotopic analyses of monazite from the granitic pegmatite in Chaganhake

测占	元	素含量/10) ⁻⁶	同位素比值						表面年龄/Ma						
侧点	U	Th	Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	
1	48000	56300	2327	0.05101	0.00035	0.28025	0.00272	0.03975	0.00034	242	16	251	2	251	2	
2	58900	57500	2801	0.05120	0.00023	0.28109	0.00200	0.03974	0.00028	250	10	252	2	251	2	
3	19800	127000	2021	0.05126	0.00027	0.27938	0.00196	0.03947	0.00026	253	12	250	2	250	2	
4	48900	63200	2467	0.05104	0.00021	0.27777	0.00158	0.03942	0.00021	243	10	249	1	249	1	
5	30400	130000	2455	0.05085	0.00019	0.27860	0.00167	0.03968	0.00023	234	9	250	1	251	1	
6	24400	113000	2054	0.05136	0.00021	0.28018	0.00177	0.03952	0.00023	257	10	251	1	250	1	
7	18600	108000	1798	0.05111	0.00032	0.28091	0.00218	0.03979	0.00027	246	14	251	2	252	2	
8	18200	125000	1940	0.05103	0.00027	0.27872	0.00223	0.03952	0.00027	242	12	250	2	250	2	
9	22500	107000	1928	0.05100	0.00020	0.27869	0.00181	0.03957	0.00023	241	9	250	1	250	1	
10	29100	112000	2233	0.05102	0.00022	0.27844	0.00179	0.03953	0.00025	242	10	249	1	250	2	
11	17300	131000	1986	0.05122	0.00025	0.28029	0.00201	0.03965	0.00026	251	11	251	2	251	2	
12	46400	92600	2652	0.05051	0.00026	0.27668	0.00232	0.03965	0.00030	219	12	248	2	251	2	
13	15900	110000	1718	0.05582	0.00055	0.32052	0.00456	0.04147	0.00043	445	22	282	4	262	3	
14	27200	133000	2350	0.05090	0.00028	0.27788	0.00198	0.03956	0.00026	236	13	249	2	250	2	
15	28600	125000	2332	0.05123	0.00022	0.28047	0.00201	0.03968	0.00028	251	10	251	2	251	2	
16	31100	76300	1923	0.05083	0.00030	0.27781	0.00249	0.03958	0.00030	233	14	249	2	250	2	
17	35900	101000	2355	0.05095	0.00021	0.27914	0.00201	0.03970	0.00026	238	9	250	2	251	2	
18	19700	127000	2019	0.05105	0.00024	0.27909	0.00225	0.03961	0.00029	243	11	250	2	250	2	
19	19000	102000	1730	0.05119	0.00020	0.27955	0.00244	0.03956	0.00031	249	9	250	2	250	2	
20	39500	101000	2492	0.05096	0.00020	0.27869	0.00214	0.03961	0.00026	239	9	250	2	250	2	
21	58400	135000	3475	0.05085	0.00027	0.27823	0.00307	0.03964	0.00037	234	12	249	2	251	2	
22	16100	123000	1855	0.05146	0.00027	0.28146	0.00258	0.03967	0.00033	262	12	252	2	251	2	
23	27100	116000	2176	0.05112	0.00025	0.27952	0.00243	0.03963	0.00030	246	11	250	2	251	2	
24	31300	43500	1593	0.05064	0.00026	0.27693	0.00297	0.03962	0.00035	225	12	248	2	251	2	
25	22300	100000	1884	0.05068	0.00023	0.27677	0.00251	0.03962	0.00035	226	10	248	2	251	2	
26	18400	122000	1893	0.05125	0.00024	0.27957	0.00280	0.03957	0.00037	252	11	250	2	250	2	
27	22000	104000	1794	0.05189	0.00045	0.28387	0.00414	0.03968	0.00054	281	20	254	3	251	3	
28	23400	106000	1961	0.05123	0.00023	0.27957	0.00277	0.03961	0.00039	251	10	250	2	250	2	
29	19900	92300	1682	0.05290	0.00035	0.29111	0.00348	0.03990	0.00040	324	15	259	3	252	3	
30	18300	119000	1921	0.05280	0.00026	0.29355	0.00319	0.04033	0.00042	320	11	261	3	255	3	

(Černý, 1991; Černý and Ercit, 2005; 秦克章等, 2019; 赵振华和严爽, 2023), 而由变质岩低程度部分熔融 形成的伟晶岩周围缺少同时代花岗岩(张辉等, 2019; Lv et al., 2018, 2021)。本次研究获得查干哈克 花岗伟晶岩独居石 U-Pb 年龄为 250.4±0.7 Ma, 为早 三叠世的产物, 但查干哈克矿区周围 100 km² 范围内 均无三叠纪岩浆岩分布。矿区周围发育的岩浆岩主 要为晚泥盆世侵入岩(角闪辉长岩、石英闪长岩、石 英二长闪长岩、角闪二长花岗岩、黑云正长花岗岩), 其黑云正长花岗岩锆石 U-Pb 年龄为 374.3±8.5 Ma, 明显早于花岗伟晶岩的形成年龄。即使在矿区所在的整个柴北缘西段花岗质岩体主要形成于奥陶纪、泥盆纪和二叠纪,以赛什腾岩体 (465.4±3.5 Ma)、团鱼山岩体 (469.7±4.6 Ma 和 443.5±3.6 Ma)、嗷唠河岩体 (372.1±2.6 Ma)、三岔沟岩体 (271.2±1.5 Ma 和 260.4±2.3 Ma)等岩体为主(吴才来等, 2008)。三叠纪花岗岩在柴北缘地区很少出露,目前有报到的三叠纪花岗岩主要分布于全吉地块和宗务隆构造带,如乌兰地区花岗岩 (251~240 Ma,吴才来等, 2016;张金鹏等, 2022)、双口山石英正长岩 (243.5±1.6 Ma, 蔡

表 3 查干哈克黑云正长花岗岩锆石 LA-ICP-MS U-Th-Pb 同位素数据

Table 3 LA-ICP-MS U-Th-Pb isotopic analyses of zircon from the biotite syenogranite in Chaganhake

测止	元素含量/10-6		同位素比值						表面年龄/Ma						
测点	U	Th	Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ
1	457	223	121	0.0816	0.0008	2.3476	0.0303	0.2083	0.0019	1235	19	1227	9	1220	10
2	2176	525	133	0.0533	0.0015	0.3914	0.0045	0.0526	0.0004	343	65	335	3	331	2
3	1440	668	108	0.0542	0.0013	0.4595	0.0100	0.0607	0.0007	389	52	384	7	380	5
4	487	260	179	0.1596	0.0017	6.7465	0.2175	0.3017	0.0082	2452	17	2079	29	1700	41
5	2830	47	171	0.0533	0.0012	0.4012	0.0045	0.0545	0.0004	343	45	343	3	342	2
6	680	222	47	0.0568	0.0026	0.4195	0.0128	0.0551	0.0013	483	100	356	9	346	8
7	3150	40	203	0.0568	0.0006	0.4629	0.0076	0.0591	0.0005	485	25	386	5	370	3
8	1464	355	174	0.0610	0.0007	0.8714	0.0157	0.1037	0.0013	638	26	636	8	636	7
9	2736	131	183	0.0550	0.0006	0.4655	0.0063	0.0612	0.0005	413	24	388	4	383	3
10	1174	440	147	0.0624	0.0012	0.8677	0.0106	0.1003	0.0007	687	36	634	6	616	4
11	2453	918	171	0.0554	0.0006	0.4544	0.0051	0.0593	0.0003	432	24	380	4	371	2
12	437	140	93	0.0984	0.0010	2.6140	0.0542	0.1914	0.0033	1594	19	1305	15	1129	18
13	1796	976	144	0.0556	0.0006	0.4566	0.0056	0.0594	0.0005	435	24	382	4	372	3
14	2017	527	133	0.0517	0.0022	0.4588	0.0093	0.0614	0.0010	333	98	383	6	384	6
15	492	360	73	0.0673	0.0009	1.2890	0.0348	0.1377	0.0031	856	27	841	15	832	18
16	2720	85	179	0.0551	0.0007	0.4588	0.0062	0.0602	0.0005	417	28	383	4	377	3
17	3360	115	207	0.0548	0.0006	0.4249	0.0052	0.0560	0.0004	467	19	360	4	351	2
18	473	235	41	0.0555	0.0020	0.5256	0.0122	0.0680	0.0005	432	80	429	8	424	3
19	1323	288	91	0.0548	0.0014	0.4609	0.0057	0.0608	0.0005	406	59	385	4	380	3
20	541	193	147	0.1004	0.0010	3.0455	0.0666	0.2180	0.0038	1631	19	1419	17	1271	20
21	3663	974	197	0.0539	0.0011	0.3549	0.0043	0.0478	0.0003	365	45	308	3	301	2
22	1003	184	70	0.0552	0.0006	0.4774	0.0091	0.0624	0.0010	420	31	396	6	390	6
23	2351	150	159	0.0556	0.0006	0.4634	0.0056	0.0602	0.0005	435	24	387	4	377	3
24	1220	86	98	0.0562	0.0018	0.5526	0.0074	0.0708	0.0006	461	72	447	5	441	4
25	4380	1289	218	0.0519	0.0017	0.3464	0.0048	0.0474	0.0006	283	78	302	4	299	4
26	1288	307	165	0.0621	0.0015	0.9171	0.0109	0.1064	0.0009	680	49	661	6	652	5
27	280	144	48	0.0659	0.0008	1.2317	0.0151	0.1351	0.0008	803	19	815	7	817	5
28	1151	96	120	0.0774	0.0018	1.5607	0.1043	0.1342	0.0071	1131	46	955	41	812	40
29	1726	128	122	0.0550	0.0009	0.4639	0.0081	0.0612	0.0004	411	35	387	5	383	2
30	3020	120	196	0.0552	0.0007	0.4454	0.0052	0.0584	0.0004	420	31	374	4	366	3
31	1280	204	89	0.0534	0.0014	0.4456	0.0062	0.0602	0.0005	346	90	374	4	377	3
32	1582	98	108	0.0554	0.0007	0.4612	0.0058	0.0601	0.0005	432	-5	385	4	376	3
33	1351	378	147	0.0586	0.0011	0.7148	0.0138	0.0884	0.0012	553	39	548	8	546	7
34	3473	348	198	0.0546	0.0006	0.3856	0.0048	0.0512	0.0004	396	24	331	3	322	3
35	1727	1499	89	0.0531	0.0019	0.3217	0.0056	0.0447	0.0007	332	79	283	4	282	4
36	1043	414	94	0.0923	0.0015	1.0248	0.0247	0.0797	0.0013	1473	30	716	12	494	8
37	1385	607	135	0.0573	0.0007	0.6212	0.0080	0.0786	0.0005	505	27	491	5	488	3
38	3205	396	183	0.0535	0.0021	0.3823	0.0050	0.0518	0.0007	349	87	329	4	326	5
39	271	104	25	0.0554	0.0009	0.5673	0.0108	0.0741	0.0007	428	37	456	7	461	4
40	432	71	34	0.0556	0.0011	0.5216	0.0081	0.0678	0.0006	435	43	426	5	423	4
41	1075	322	77	0.0554	0.0006	0.4498	0.0065	0.0588	0.0007	428	-6	377	5	368	4
42	3657	69	228	0.0544	0.0012	0.4180	0.0050	0.0556	0.0005	391	50	355	4	349	3

														续	;表 3			
测点	元素含量/10-6				同位素比值							表面年龄/Ma						
	U	Th	Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	lσ			
43	1818	1398	136	0.0542	0.0006	0.4505	0.0077	0.0602	0.0008	381	25	378	5	377	5			
44	435	244	103	0.0795	0.0007	2.1409	0.0284	0.1947	0.0021	1187	19	1162	9	1147	11			
45	707	537	99	0.0619	0.0007	0.9321	0.0127	0.1093	0.0010	670	23	669	6	668	6			
46	716	526	108	0.0641	0.0014	1.0783	0.0196	0.1205	0.0018	746	46	743	10	734	10			
47	795	670	110	0.0625	0.0017	0.9585	0.0184	0.1104	0.0016	700	57	683	10	675	10			
48	1060	399	143	0.0611	0.0006	0.8812	0.0125	0.1045	0.0009	644	23	642	7	641	5			
49	850	129	90	0.0594	0.0016	0.9102	0.0325	0.1059	0.0030	589	57	657	17	649	18			
50	1914	255	115	0.0539	0.0011	0.4034	0.0072	0.0542	0.0008	365	44	344	5	340	5			

Fig. 7 Zircon cathodoluminescence images (a) and concordia diagrams (b,c) of biotite syenogranite

鹏捷等,2019)和阿斯哈塔花岗岩 (243.0±1.1 Ma和246.3±1.0 Ma; 王秉璋等,2023)。查干哈克花岗伟晶岩与区域花岗岩在成岩时代和空间上具有解耦性,同时黑云正长花岗岩较花岗伟晶岩具有低的重稀土元素含量特点,充分表明查干哈克花岗伟晶岩不是黑云正长花岗岩分异的产物,很可能是形成于变质岩低程度部分熔融。在 Ce-Ce/Sm 和 La-La/Sm 岩浆作用判别图中,花岗伟晶岩几乎没有分离结晶作用的岩浆演化过程 (图 8),同样暗示花岗伟晶岩来源于

变质岩的低程度部分熔融。

Nb、Ta 主要贮存于角闪石、黑云母、铌钽铁矿、 铌锰矿等矿物中,在富挥发分的过铝质岩浆中,矿物/ 熔体间分配系数 D_{Nb}/D_{Ta} 约为 10(Wang et al., 1997), 分离结晶过程中 Nb 比 Ta 优先进入晶体,造成熔体 中 Nb/Ta 值降低(Stepanov and Hermann, 2013; 曾威 等, 2021; 王秉璋等, 2022),因此高分异花岗伟晶岩 具有低的 Nb/Ta 值。与 Nb/Ta 相似, K/Rb、Zr/Hf、 Y/Ho 等地球化学行为一致元素 (简称双胞胎元素)

2025年

图 8 查干哈克花岗伟晶岩和黑云正长花岗岩 Ce-Ce/Sm 图解 (a) 和 La-La/Sm 图解 (b)(底图据王秉璋等, 2022)

Fig. 8 Ce-Ce/Sm diagram (a) and La-La/Sm diagram (b) from the granitic pegmatites and biotite syenogrunites in Chaganhake area

比值在一般的岩浆体系中并不发生数值的变化 (Green, 1995),这些比值可以作为高分异花岗岩的地 球化学判别指标(Ballouard et al., 2016; 吴福元等, 2017)。高分异花岗伟晶岩演化过程中 Nb/Ta、 K/Rb、Zr/Hf和Y/Ho值迅速降低,而低程度部分熔 融形成的伟晶岩比值变化不明显。查干哈克花岗伟 晶岩与茶卡地区高分异花岗伟晶岩相比, Nb/Ta、 K/Rb、Zr/Hf 和 Y/Ho 值明显高得多 (图 9), 暗示查干 哈克花岗伟晶岩与茶卡地区花岗伟晶岩具有不同的 岩石成因,并非来自于花岗岩浆的高度分异。查干 哈克花岗伟晶岩 TiO,含量明显低于茶卡地区花岗伟 晶岩,暗示源区温度较低,因为在岩浆形成过程中, 温度升高会使含钛矿物更容易分解,更多的 TiO,进 入熔浆,温度低则不利于含磷、钛矿物的分解(Hofmann et al., 1986; 邓晋福等, 2004; 张爱奎等, 2016), 这也 暗示查干哈克花岗伟晶岩很可能是相对低温条件下 低程度部分熔融的产物。由于 Sr、Ba 元素是斜长石 的相容元素, 而 Rb 为不相容元素, 所以低压环境斜 长石的残留或斜长石的分离结晶必然导致 Rb/Sr 和 Rb/Ba 值增加(邓晋福等, 2004; 张爱奎等, 2016)。查 干哈克花岗伟晶岩 Rb/Sr 和 Rb/Ba 值很高 (分别为 6.39~72.68, 平均 27.43 和 14.53~71.54, 平均 37.94), 高出黑云正长花岗岩(分别为0.98~1.68,平均 1.23 和 3.58~5.09, 平均 3.97) 一个数量级, 也远远高 于茶卡地区花岗伟晶岩(分别为 2.97~8.41, 平均 6.33 和 1.41~7.52, 平均 4.27; 王秉璋等, 2020), 同样暗示 查干哈克花岗伟晶岩是低程度部分熔融的产物。

查干哈克花岗伟晶岩稀土元素含量低, 球粒陨 石标准化稀土元素配分曲线 (图 5-a) 具有 M 型稀土 元素四分组效应, 可能经历了热液流体的交代作用

(王秉璋等,2020)。根据微量元素特征可以判断岩 浆在侵入过程中是否受到地壳成分的混染, Nb-U具 有相同的元素行为,在部分熔融和岩浆分异过程中 它们的比值趋于均匀,这一性质可以用来判断地壳 混染对封闭的岩浆系统是否有影响(Hofmann et al., 1986; 王秉璋等, 2020)。查干哈克花岗伟晶岩 Nb/U 值普遍较小但变化大 (1.64~31.76, 平均为 10.04), 远低于原始地幔的 Nb/U 值 (34; Sun and McDonough, 1989), 且与 SiO, 含量没有相关关系, 表明岩浆受到 了地壳的强烈混染。岩石地球化学结果显示(表1), 查干哈克花岗伟晶岩随着 SiO,含量的增高, Al₂O,含 量降低, CaO含量、Na2O含量及CaO/Al2O, 值先增 高后降低, 而 K, O 含量先降低后增高, 可能是热液流 体交代和强烈地壳混染的结果。根据上述推断,查 干哈克花岗伟晶岩很可能来源于变质岩的低程度部 分熔融,并经历了热液流体的交代和强烈的地壳混 染。通过 CIPW 计算 (GeokitPro)发现, 查干哈克花 岗伟晶岩 Q 含量为 28.64%~33.45%, 平均值为 31.03%, Ab 含量 29.25%~50.64%, 平均值为 41.06%, Or 含量 12.13%~31.17%, 平均值为 19.98%, 这些矿 物含量与压力 0.1 GPa, 加入 4.5%B₂O₃ 后的 Q-Ab-Or系统中最低共结点的矿物组成(Q:31%、Ab:41%、 Or:23%; Johannes and Holtz, 1996) 接近, 这反映出查 干哈克花岗伟晶岩深熔程度不高。

一些学者(Lv et al., 2018, 2021;张辉等, 2019)认 为,与周边花岗岩具有空间分布、成岩时代、物源联 系解耦性的花岗伟晶岩是变质岩小比例部分熔融 (深熔)形成的。这种深熔模型认为,在接近花岗岩低 共熔的温度条件下,变质岩经小比例部分熔融形成 的长英质岩浆经聚集、迁移后侵入到浅部的岩石节 理、层理或裂隙中,最后形成伟晶岩(张辉等, 2019)。这种深熔伟晶岩在阿尔泰地区被大量学者 认可(Lv et al., 2018, 2021;张辉等, 2019;赵振华等, 2022;赵振华和严爽, 2023)。查干哈克部分花岗伟 晶岩分布在古元古界达肯大坂岩群的斜长片麻岩 (图 10-a)与黑云石英片岩(图 10-b)中,甚至在斜长 片麻岩内部出现与S面理近于平行的伟晶岩岩脉 (图 10-a),在花岗伟晶岩与围岩(斜长片麻岩)中均 具粒度较粗大的电气石,暗示查干哈克花岗伟晶岩 物质来源于达肯大坂岩群,其形成与围岩关系密切。

综上所述,查干哈克伟晶岩为达肯大坂岩群小 比例部分熔融(深熔),由于花岗质熔体及携带的热源 均有限,随着岩浆侵入就位,温度快速降低,导致岩 浆未能有效分异就快速结晶,形成了查干哈式这样 粒度不大,且与花岗岩在空间分布、形成时代、物源 上具有解耦性的花岗伟晶岩。这与茶卡北山地区伟 晶岩形成不同,后者是达肯大坂岩群部分重熔形成 的高分异花岗岩演化而成的(王秉璋等,2020,2023; 李善平等,2021;潘彤等,2022)。

5.2 构造环境探讨

花岗伟晶岩富碱, Na,O+K,O 含量为 7.88%~ 8.70%, K,O 含量含量较高,为 2.04%~5.25%, A/CNK 值为 1.15~1.32, A/NK 值为 1.31~1.43, 里特曼指数 为 2.02~2.39, 属于亚碱性强过铝质钙碱型岩石系列, 通常过铝质岩石多出现在碰撞造山带,而高钾钙碱 性岩石出现一般代表了碰撞造山的结束(韩宝福, 2007)。岩石明显富集大离子亲石元素(Rb、K)和活 泼不相容元素(Th、U),强烈亏损高场强元素(Ti), 但 Nb、Zr、Hf 等高场强元素中等富集,这与板内花 岗岩(WPB)同时富集大离子亲石元素和高场强元素 的右倾型曲线相似,有别于洋脊花岗岩相对亏损大 离子亲石元素(Rb、K)和富集高场强元素(Hf、Zr、 Sm、Y、Yb),以及火山弧花岗岩(VAG)相对富集大 离子亲石元素和亏损高场强元素(Pearce et al., 1984)。在 Y-Nb 图解(图 11-a)中,花岗伟晶岩样品 全部落入火山弧与同碰撞花岗岩区;在 Yb-Ta 图解 (图 11-b)中,3个样品落入火山弧花岗岩区,1个样 品落入同碰撞花岗岩区,1个样品位于同碰撞花岗岩 区与火山弧花岗岩区交界处;在 Rb/30-Hf-3*Ta 图解 (图 11-c)中,3个样品落入火山弧区,2个样品落入 同碰撞区;在R1-R,图解(图 11-d)中,3个样品落入 同碰撞花岗岩区,2个样品落入晚造山期花岗岩。从 花岗岩岩石地球化学特征看,查干哈克花岗伟晶岩 既有造山带花岗岩特征,又有板内花岗岩的特征,但 总体上来说火山弧型花岗岩特征更明显。地球化学 成分与构造背景也不是直接挂钩的,单纯利用岩石 学进行构造环境的判断可能不可靠(吴福元等, 2007),对高分异或是低程度部分熔融形成的花岗伟 晶岩,因其矿物组成和化学成分都趋近于低共结的 花岗岩,使得岩石成因及构造环境的鉴定更困难,甚 至不可能(吴福元等,2007),因此对查干哈克花岗伟 晶岩的形成环境,利用年代学限定,并结合区域构造 演化背景综合考虑很有必要。

柴北缘经历了原特提斯洋构造演化,前人研究 认为主要经历了从大洋形成和扩张 (710~520 Ma)-大洋俯冲 (520~490 Ma)-闭合 (490~435 Ma) 到大陆 俯冲/碰撞造山 (435~420 Ma) 和造山带垮塌 (420~360 Ma) 6 个阶段的构造演化(宋述光等, 2013; 王秉璋等, 2022; 张爱奎等, 2024)。原特提斯洋构造 演化碰撞造山使柴达木地块与全吉地块及其北部的 华北板块拼合为一体。古特提斯洋演化逐渐向南过 渡到康西瓦-昆南洋(吴福元等, 2020), 布青山-阿尼 玛卿俯冲增生楔代表了古特提斯大洋消失的残迹, 蛇绿岩的形成时代为石炭纪—中二叠世(潘彤, 2019), 中二叠世—中三叠世 (270~240 Ma) 布青山-阿尼玛 卿洋板块向北俯冲于东昆仑之下,晚三叠世进入碰 撞-后碰撞阶段(郭正府等, 1998; 莫宣学等, 2007; 张 爱奎等, 2016, 2024; 胡阳鸣, 2023)。古特提斯洋演 化期间,宗务隆构造带早期为柴达木-华北板块内部 的一个陆缘裂谷,石炭纪扩张形成了初始洋壳,中二 叠世结束裂谷演化,晚二叠世—中三叠世宗务隆洋 壳向南俯冲,晚三叠世洋壳闭合进入陆内碰撞造山 期(郭安林等,2009;彭渊等,2016;潘彤,2019)。近 年来,在柴北缘东部和宗务隆构造带内发现了晚二 叠世一早三叠世花岗岩 (258~240 Ma), 其成因与宗 务隆洋壳俯冲于全吉地块之下有关,为大陆边缘弧 型花岗岩(彭渊等,2016;吴才来等,2016;陈敏等, 2020; 张金鹏等, 2022; 王秉璋等, 2023), 阿斯合塔花 岗岩 (246~243 Ma) 高度分异产生了茶卡北山和锲墨 格山稀有金属矿床(王秉璋等, 2023)。宗务隆构造 带含矿伟晶岩主要形成于 246~241 Ma 和 230~212 Ma(王秉璋等, 2020, 2023; Pan et al., 2021; 李善平 等, 2021; Liu et al., 2022; Sun et al., 2023), 分别响应

图 9 花岗伟晶岩和花岗岩地球化学图解 (乌兰花岗闪长岩数据据吴才来等, 2016;茶卡北山含锂辉石伟晶岩数据据王秉璋等, 2020;茶 卡北山含石榴子石花岗岩数据据王秉璋等, 2023;缘锲墨格山含绿柱石花岗伟晶岩数据据李善平等, 2021)

Fig. 9 Geochemical diagrams of the granitic pegmatites and granites

图 10 古元古界达肯大坂岩群中花岗伟晶岩

Fig. 10 Granite-pegmatite in the Paleoproterozoic Dakendaban Group

a-含电气石黑云斜长片麻岩中的透镜状含电气石花岗伟晶岩近平行排列,与黑云斜长片麻岩 S 型面理基本一致; b-黑云石英片岩中含电气石花岗伟晶岩。S-S 型面理; C-C 型面理

 Fig. 11 Y-Nb (a), Yb-Ta (b), Rb/ 30-Hf-3*Ta (c) and R₁-R₂ (d) diagrams of Chaganhake granite pegmatite

 ①一地幔斜长花岗岩; ②—破坏性活动板块边缘 (板块碰撞前) 花岗岩; ③—板块碰撞后隆起期花岗岩; ④—晚造山期花岗岩; ⑤—非造山区花岗岩; ⑥—同碰撞花岗岩; ⑦—造山后花岗岩

了宗务隆洋壳俯冲与碰撞造山事件(郭安林等, 2009;彭渊等,2016;潘彤,2019)。

柴北缘西段发现的查干哈克花岗伟晶岩,其独 居石 U-Pb 同位素年龄加权平均值为 250.4±0.7 Ma, 属于早三叠世,该时期正处于古特提斯洋(昆南 洋)向北俯冲和宗务隆洋壳向南俯冲期,这与花岗伟 晶岩岩石地球化学显示火山弧型花岗岩的特征吻 合。高 Sr/Yb 值和高 Sr/Y 值与大洋板片或新生地壳 有关(Defant and Drummond, 1990;侯增谦等, 2003, 2007; Martin et al., 2005;张爱奎等, 2016),高 Sr/Nd 值一般与板片流体相关,而低 Th/Yb 值往往与俯冲沉 积物的加入有关(Davidson, 1987;邓晋福等, 2004; 王 秉璋等, 2022)。查干哈克花岗伟晶岩 Sr/Yb 值(14.41~ 42.40)和 Sr/Y 值(1.09~2.05)较低,与 N-MORB(正常 洋中脊玄武岩)的 Sr/Yb、Sr/Y 值相当(分别为 29.5、 3.21; Sun and McDonough, 1989),而 Sr/Nd 值为 2.92~ 5.77,远低于 N-MORB(12.33)(Sun and McDonough, 1989), Th/Yb 值为 1.36~4.33, 平均为 2.34,远高于 N-MORB(0.04)和 E-MORB(富集洋中脊玄武岩)(0.25) (Sun and McDonough, 1989),说明花岗伟晶岩母岩 浆源区具有有限的洋壳或新生地壳印记,亦未受到 俯冲沉积物和俯冲流体的影响。由于研究区距离昆 南洋较远,而宗务隆西段裂谷规模很小,因此昆南洋 和宗务隆洋壳俯冲可能仅仅是远程效应影响,这点 可从 Sr/Yb、Sr/Y、Sr/Nd、Th/Yb 值得到证实。区内 古特提斯洋演化阶段大陆弧花岗岩不发育,但挤压 强烈,造成古元古界达肯大坂岩群变质岩的低程度 部分熔融,形成花岗伟晶岩(图 12)。查干哈克花岗 伟晶岩具有 NYF 型伟晶岩的特点,通常 NYF 型伟 晶岩产于陆内或非造山环境(Černý and Ercit, 2005), 这与上述推断吻合。因此,柴北缘西段查干哈克花 岗伟晶岩不同于宗务隆花岗伟晶岩,宗务隆花岗伟 晶岩是古特提斯洋大陆边缘增生造山和碰撞造山过 程中形成的花岗岩经高分异演化而成的,而查干哈 克花岗伟晶岩形成于早三叠世古提斯洋俯冲环境下 的柴达木地块大陆内部,是大陆内部挤压混合岩化 过程中达肯大坂岩群小比例部分熔融的产物。

6 结 论

本文通过对查干哈克花岗伟晶岩及其围岩黑云 正长花岗岩开展年代学和地球化学研究, 厘定其形 成时代、成因和构造环境, 提升青藏高原东北缘古特 提斯洋演化和稀有金属成矿作用研究水平, 取得如 下主要成果。

(1)获得查干哈克花岗伟晶岩独居石 U-Pb 同位 素年龄加权平均值为 250.4±0.7 Ma(MSWD=0.1, n=27),属于早三叠世;获得黑云正长花岗岩锆石 U-Pb 同位素年龄加权平均值为 374.3±8.5 Ma(MSWD= 0.15, n=8)。

(2) 花岗伟晶岩具有高 SiO₂(72.37%~74.59%)、 Al₂O₃(14.90%~16.51%)、Na₂O(3.44%~4.82%)、 K₂O(2.04%~5.25%), 低 TiO₂(0.01%~0.02%) 的特征。 岩石 A/CNK 值为 1.15~1.32, 总体具有亚碱性强过铝

a. C-P₂

质岩石特点。稀土元素含量低, Eu 强烈亏损, δEu 值 为 0.07~0.18, 具有 M 型稀土元素四分组效应, 强烈 富集 Rb、K、U、P, 强烈亏损 Ba、Sr 和 Ti, 中等富集 高场强元素 Nb、Ta、Zr、Hf。地球化学结果显示, 花 岗伟晶岩与黑云正长花岗岩不具成因联系。

(3)查干哈克花岗伟晶岩形成于早三叠世古特提 斯洋俯冲环境下的柴达木地块大陆内部,是大陆内 部挤压混合岩化过程中达肯大坂岩群小比例部分熔 融的产物,不同于宗务隆花岗伟晶岩的形成方式,后 者是古特提斯洋大陆边缘增生造山和碰撞造山过程 中形成的花岗岩经高分异演化的产物。

(4) 查干哈克花岗伟晶岩和铌钽矿化的发现, 表 明在古特提斯洋俯冲过程中, 远离俯冲带大陆内部 具有 NYF 型伟晶岩型铌钽矿的成矿事实, 丰富了青 藏高原东北缘伟晶岩型稀有金属矿的类型, 拓展了找 矿空间。目前矿产勘查主要集中于宗务隆构造带东 侧, 柴北缘伟晶岩型稀有金属矿勘查亦需引起关注。

致谢:北京燕都中实测试技术有限公司在主 量、微量元素分析和独居石定年,天津地质矿产研 究所在锆石定年方面给予了大量帮助;论文编写过 程中青海省第三地质勘查院提供了许多原始地质资 料; 审稿专家提出了许多宝贵意见和建议;在此一 并表示最诚挚的感谢。

图 12 查干哈克地区古特提斯洋演化与花岗伟晶岩形成示意图

Fig. 12 Schematic diagram of the Paleotethys Ocean evolution and granite pegmatite formation in Chaganhake

a—石炭纪-晚二叠世古特提斯洋扩张,在巴颜喀拉与东昆仑之间形成了阿尼玛卿洋,在柴北缘地区形成了宗务隆分支洋(或陆缘裂谷);b—晚 二叠世-早三叠世古特提斯洋进入俯冲阶段,阿尼玛卿洋、宗务隆洋分别向北、南俯冲,在东昆仑与全吉地块形成弧型花岗岩;与此同时,在远 离宗务隆洋俯冲带的柴北缘地区形成查干哈克式早三叠世花岗伟晶岩

References

- Ballouard C, Poujol M, Boulvais P, et al. 2016. Nb Ta fractionation in peraluminous granites: A marker of the magmatic hydrothermal transition[J]. Geology, 44(3): 231–234.
- Batchelor R A , Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4): 43–55.
- Cai P J, Zhang Y, Xu R K, et al. 2019. Zircon U–Pb geochronology, geochemistry, and Sr–Nd isotopes of Shuangkoushan quartz–syenite, Northern Qaidam, China[J]. Geotectonica et Metallogenia, 43(2): 322–338 (in Chinese with English abstract).
- Černý P. 1991. Rare element granitic pegmatites. Part I: Anatomy and internal evolution pegmatite deposits[J]. Geoscience Canada, 18(2): 49–67.
- Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited [J]. The Canadian Mineralogist, 43(6): 2005–2026.
- Chen M, Xue C J, Xue W W, et al. 2020. Discovery and geological significance of Xuji diorite in Zongwulong tectonic belt on the northern margin of Qaidam Basin[J]. Acta Petrologica et Mineralogica, 39(5): 552–568 (in Chinese with English abstract).
- Davidson J P. 1987. Crustal contamination versus subduction zone enrichment: Examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks[J]. Geochimica et Cosmochimica Acta, 51(8): 2185–2198.
- Defant M J, Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662–665.
- Deng J F, Luo Z H, Su S G. 2004. Petrogenesis, tectonic environment and mineralization [M]. Beijing: Geological Publishing House: 1–375 (in Chinese with English abstract).
- Dill H G. 2016. The CMS classification scheme (chemical composition mineral assemblage – structural geology) — linking geology to mineralogy of pegmatitic and aplitic rocks[J]. Journal of Mineral and Geochemistry, 193(3): 231–263.
- Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust mantle system[J]. Chemical Geology, 120(3/4): 347–359.
- Guo A L, Zhang G W, Qiang J, et al. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai–Tibet plateau[J]. Acta Petrologica Sinica, 25(1): 1–12 (in Chinese with English abstract).
- Guo C J. 1957. On the relationship between the classification of granite pegmatites and the search for rare element minerals[J]. Geological Knowledge, (1): 1–5 (in Chinese with English abstract).
- Guo Z F, Deng J F, Xu Z Q, et al. 1998. Late Palaeozoic–Mesozoic intracontinental orogenic process and intermedate–acidic igneous rocks from the Eastern Kunlun Mountains of northwestern China[J]. Geoscience, 12(3): 51–59 (in Chinese with English abstract).
- Han B F. 2007. Diverse post-collisional granitoids and their tectonic setting discrimination [J]. Earth Science Frontiers, 14(3): 64–72 (in Chinese with English abstract).
- Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics

of collision – zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67–81.

- Hofmann A W, Jochum K P, Seufert M et al. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution [J]. Earth and Planetary Science Letters, 79(1–2): 33–45.
- Hou K J, Li Y H, Tian Y R. 2009. In situ U–Pb zircon dating using laser ablation–multi ion Couting–ICP–MS[J]. Mineral Deposits, 28(4): 481–492 (in Chinese with English abstract).
- Hou Z Q, Lv Q T, Wang A J, et al. 2003. Continental Collision and Related Metallogeny: A Case Study of Mineralization in Tibetan Orogen[J]. Mineral Deposits, 22(4): 319–333 (in Chinese with English abstract).
- Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu–(Mo–Au) Deposits Related to Oceanic–Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings[J]. Geoscience, 21(2): 332–351 (in Chinese with English abstract).
- Hu Y M. 2023. Paleozoic Early Mesozoic continental crust growth, evolution and deep – seated dynamic processes in the eastern segment of the East Kunlun Mountains[D]. Doctor Thesis of China University of Geosciences (Beijing), 1–100 (in Chinese with English abstract).
- Johannes W, Holtz F. 1996. Petrogenesis and experimental petrology of granitic rocks[M]. Berlin: Springer – Verlag, 1–335.
- Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms [M]. Oxford, U K: Blackwell Scientific Publications: 1–224.
- Li S P, Zhan S Z, Jin T T, et al. 2016. Ree geochemical characteristics and provenance analysis of the Shaliuquan niobium tantalum pegmatite ore, Qinghai Province[J]. Chinese Rare Earths, 222(1): 39–46 (in Chinese with English abstract).
- Li S P, Pan T, Wang B Z, et al. 2021. Characteristics and tectonic significance of beryl-bearing pegmatites in Qiemoge mountain, northern margin of Qaidam basin[J]. Geotectonica et Metallogenia, 182(3): 608-619 (in Chinese with English abstract).
- Liang X X, Gao R, Liu H. 2023. Age and geochemical characteristics of Late Cretaceous leucogranites pluton and dykes in Xieqiong area, Tibet: constraints on the post-collisional setting of Bangong Co-Nujiang belt[J]. Geological Bulletin of China, 42(1): 92–106 (in Chinese with English abstract).
- Liu C X, Sun F Y, Qian Y, et al. 2021. Vertical zonation characteristics of Chakabeishan Li—Be rare-metal pegmatite deposit in northern margin of Qaidam Basin, Qinghai Province[J]. Global Geology, 40(4): 847–859, 880 (in Chinese with English abstract).
- Liu J H, Wang Q, Xu C B, et al. 2022. Geochronology of the Chakabeishan Li – (Be) rare – element pegmatite, Zongwulong orogenic belt, northwest China: Constraints from columbite – tantalite U – Pb and muscovite – lepidolite ⁴⁰Ar/³⁹Ar dating[J]. Ore Geology Reviews, 146: 104930.
- Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA – ICP – MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34–43.
- Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling – induced melt – peridotite interactions in the Trans – North China orogen: U – Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537–571.

- London D. 2005. Granitic Pegmatites: an Assessment of Current Concepts and Directions for the Future [J]. Lithos, 80(1/4): 281–303.
- Luan S W, Mao Y Y, Fan L M. 1996. Rare metal mineralization and prospecting in the Keketuohai area [M]. Chengdu: Chengdu University of Science and Technology Press: 63–148 (in Chinese with English abstract).
- Ludwig K R. 2003. User's manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[J]. Berkely Geochronology Center, (4): 71.
- Lv X Q. 2012. Genesis and an evaluation for granite-pegmatite typecolumbotantalite ore-forming potential in the northernmargin of the qaidam basin, qinghai, pr. china[D]. Master's thesis of Chang'an University: 1–62 (in Chinese with English abstract).
- Lv Z H, Zhang H, Tang Y, et al. 2018. Petrogenesis of syn orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U – Pb age and Hf isotope[J]. Ore Geology Reviews, 95(1): 161–181.
- Lv Z H, Zhang H, Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Alta[J]. Lithos, 380/381: 105865.
- Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite – trondhjemite – granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1–24.
- Melleton J, Gloaguen E, Frei D, et al. 2012. How are the emplacement of rare – element pegmatites, regional metamorphism and magmatism interrelated in the moldanubian domain of the variscan Bohemian Massif, Czech Republic?[J]. Canadian Mineralogist, 50(6): 1751–1773.
- Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and Crustal Growth in the East–Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403–414 (in Chinese with English abstract).
- Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1–28 (in Chinese with English abstract).
- Pan T. 2019. Discussion on the minerogenetic series of deposits in Qinghai, China[J]. Journal of Earth Sciences and Environment, 41(3): 297–315 (in Chinese with English abstract).
- Pan T, Ding Q F, Zhou X, et al. 2021. Columbite-tantalite group mineral U-Pb geochronology of Chaqiabeishan Li – rich granite pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Science, 8: 606951.
- Pan T, Li S P, Wang T, et al. 2022. Metallogenic characteristics and prospecting potentiaof lithium deposits in the Qinghai Province[J]. Acta Geologica Sinica, 96(5): 1827–1854 (in Chinese with English abstract).
- Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956–983.
- Peng Y, Ma Y S, Liu C L, et al. 2016. Geological characteristics and tectonic significance of the Indonesian granodiorites from the Zongwulong tectonic belt in North Qaidam[J]. Earth Science Frontiers, 118(2): 206–221 (in Chinese with English abstract).

- Qin K Z, Zhou Q F, Tang D M, et al. 2019. Types, internal structural patterns, mineralization and prospects of rareelement pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970–982 (in Chinese with English abstract).
- Richter F M. 1989. Simple models for trace element fractionation duringmelt segregateon[J]. Earth and Planetary Science Letters, 77(3/4): 333–344.
- Shen M T, Guo W M, Xu M, et al. 2021. Characteristics of typical niobium-tantalum deposits in Brazil and their resource distribution regularity and prospecting directions[J]. Mineral Deposits, 40(3): 603–624 (in Chinese with English abstract).
- Song S G, Zhang G B, Zhang C, et al. 2013. Dynamic process of oceanic subduction and continental collision: petrological constraints of HP–UHP belts in Qilian–Qaidam, the northern Tibetan Plateau[J]. Chinese Science Bulletin, (23): 2240–2245 (in Chinese with English abstract).
- Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox" [J]. Geology, 41(3): 303–306.
- Sun H W, Wang J, Ren J P, et al. 2021. Geological characteristics analysis of granite type and pegmatite type tantalum deposits in southern Africa[J]. Geological Review, 67(1): 265–278 (in Chinese with English abstract).
- Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 42(1): 313–345.
- Sun W L, Zhao Z D, Mo X X, et al. 2023. Age and composition of columbite – tantalite groupminerals in the spodumene pegmatite from the Chakabeishan deposit, northern Tibetan Plateau and their implications [J]. Minerals, 13(2): 201.
- Tang W L, Fu C, Wang J, et al. 2022. Metallogenic regularity and resources potential of Alto Ligonha Ta–Nb rare element metallogenic belt in Mozambique[J]. Geological Bulletin of China, 41(7): 1269–1281 (in Chinese with English abstract).
- Wang B Z, Han J, Xie X L, et al. 2020. Discovery of the indosinian (beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau: implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 174(1): 69–79 (in Chinese with English abstract).
- Wang B Z, Fu C L, Pan T, et al. 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution[J]. Acta Petrologica Sinica, 38(9): 2723–2742 (in Chinese with English abstract).
- Wang B Z, Pan T, Wang Q, et al. 2023. Discovery of Indosinian highliractionated granites in the Chagiabeishan area, NE Tibetan Plateau and its prospecting significance[J]. Acta Petrologica Sinica, 39(8): 2402–2428 (in Chinese with English abstract).
- Wang D H, Li J K, Fu X F. 2015. Dating for the Jiajika pegmatite-type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 36(6): 541–546 (in Chinese with English abstract).
- Wang H, Li P, Ma H D, et al. 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian,

Xinjiang, and its Prospecting Implication[J]. Geotectonica et Metallogenia, 41(6): 1053–1062 (in Chinese with English abstract).

- Wang Q, Hou K J. 2015. In situ U–Pb monazite dating by LA–ICP–Ms[J]. Acta Geological Sinica, 89(S1): 41–43 (in Chinese with English abstract).
- Wang R C, Fontan F, Xu S J, et al. 1997. The Association of Columbite, Tantalite and Tapiolite in the Suzhou Granite, China[J]. The Canadian Mineralogist, 35(3): 699–706.
- Wu C L, Gao Y H, Wu S P, et al. 2008. Zircon SHRIMP U–Pb dating and petrogeochemical characteristics of granites in the western member of the northern Margin of Qaidam Basin[J]. Science in China Series D: Earth Sciences, 38(8): 930–949 (in Chinese with English abstract).
- Wu C L, Lei M, Wu D, et al. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam[J]. Acta Geoscientica Sinica, 37(4): 493–516 (in Chinese with English abstract).
- Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745–765 (in Chinese with English abstract).
- Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites [J]. Acta Petrologica Sinica, 23(6): 1217–1238.
- Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627–1674 (in Chinese with English abstract).
- Xu Z Q, Wang R C, Zhao Z B, et al. 2018. On the structural backgrounds of the large-scale "Hard-rock Type" lithium ore belts in China[J]. Acta Geologica Sinica, 92(6): 1091–1106 (in Chinese with English abstract).
- Yan Z Q, Wang H T, Li Y M, et al. 2018. The potential evaluation of pegmatite-type lithium-beryllium mineral resources in Dahongliutan, west Kunlun[J]. Gansu Geology, 27(3/4): 42-48 (in Chinese with English abstract).
- Yao Y Z, Li L X, Fu J F, et al. 2023. Geochronological constraints on Early Precambrian granitic pegmatite type Nb–Ta mineralization of the Lijiapuzi deposit in North China craton[J]. Geological Bulletin of China, 42(6): 1047–1049 (in Chinese with English abstract).
- Yue X Y, Zhou X, Zhang Y, et al. 2018. Discovery of the pegmatite lithium veins with predicted super – large size resources in the Sizemuzu district of the Keeryin, China[J]. China Geology, 1(2): 310–311.
- Zeng W, Zhou H Y, Sun F Y, et al. 2021. Cassiterite U–Pb age of rare metal pegmatites in Guanpo area, North Qinling, China[J]. Geological Bulletin of China, 319(12): 2179–2182 (in Chinese with English abstract).
- Zhang A K, Mo X X, Yuan W M, et al. 2016. Petrogensis and tectonic setting of Yemaquan triassic granite from the west of the Eastern Kunlun mountain range, China[J]. Acta Mineralogica Sinica, 36(2): 157–173 (in Chinese with English abstract).
- Zhang A K, Yuan W M, Liu G L, et al. 2023. Metallogenic regularity and exploration direction of Strategic Metallic Minerals around Qaidam Basin[J/OL]. Earth Science Frontiers, 1–25 (in Chinese with English abstract).
- Zhang H, Lv Z H, Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore

deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792–814 (in Chinese with English abstract).

- Zhang H, Lv Z H, Tang Y. 2021. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 95(10): 2955–2970 (in Chinese with English abstract).
- Zhang J P, Niu M L, Li C, et al. 2022. Petrogenesis and geological significance of Late Permian–Middle Triassic granites in Wulan area, eastern segment of the northern margin of the Qaidam Basin[J]. Chinese Journal of Geology, 57(4): 1103–1129 (in Chinese with English abstract).
- Zhang Y, Pan T, Zhang A K, et al. 2023. Spatial Relationship between Eclogite and Copper – Nickel Mineralization in East Kunlun, China[J]. Minerals, 13(3): 330.
- Zhao D J, Chen Y M, Zhang W B, et al. 2021. Geological characteristics, genetic types, and exploration and development status of niobium – tantalum deposits in Africa[J]. Geology and Exploration, 57(6): 1243–1256 (in Chinese with English abstract).
- Zhao Z H, Yan S. 2023. Some issues relevant to rare metal metallogeny of granitic pegmatites [J]. Geotectonica et Metallogenia, 47(1): 1–41 (in Chinese with English abstract).
- Zhao Z H, Bao Z W, Qiao Y L. 2010. A peculiar composite M– and W–type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China[J]. Chinese Science Bulletin, 55(15): 1474–1488 (in Chinese with English abstract).
- Zhao Z H, Chen H Y, Han J S. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1): 1–26 (in Chinese with English abstract).
- Zheng Y, Li W F, Zhang X Y, et al. 2024. Age and protolith characteristics of metamorphic surrounding rock of Chakabeishan pegmatitic lithium-beryllium ore in the northern margin of Qaidam [J]. Geological Bulletin of China, 43(7): 1104–1119 (in Chinese with English abstract).
- Zou T R, Yang Y Q, Guo Y Q. 1985. Some problems related to pegmatite deposits[J]. Geological Science and Technology Information, 4(4): 100–107 (in Chinese with English abstract).

附中文参考文献

- 蔡鹏捷,张宇,许荣科,等. 2019. 柴北缘双口山石英正长岩锆石 U-Pb 定年、地球化学及 Sr-Nd 同位素特征[J]. 大地构造与成矿学, 42(2): 322-338.
- 曾威,周红英,孙丰月,等. 2021. 北秦岭官坡地区稀有金属伟晶岩锡石 U-Pb 年龄[J]. 地质通报, 39(12): 2179-2182.
- 陈敏, 薛春纪, 薛万文, 等. 2020. 柴北缘宗务隆构造带蓄集地区闪长岩的发现及其地质意义[J]. 岩石矿物学杂志, 39(5): 552-568.
- 邓晋福, 罗照华, 苏尚国. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社: 1-375.
- 郭安林, 张国伟, 强娟, 等. 2009. 青藏高原东北缘印支期宗务隆造山带 [J]. 岩石学报, 25(1): 1-12.
- 郭承基. 1957. 论花岗律晶岩的分类与寻找稀有元素矿物的关系[J]. 地质知识, (1): 1−5.
- 郭正府,邓晋福,许志琴,等. 1998. 青藏东昆仑晚古生代末 中生代

中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 51-59.

- 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂 性[J]. 地学前缘, 14(3): 64-72.
- 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS 锆石微区原位 U-Pb 定年技术[J]. 矿床地质, 28(4): 481-492.
- 侯增谦, 吕庆田, 王安建, 等. 2003. 初论陆 陆碰撞与成矿作用 —— 以青藏高原造山带为例[J]. 矿床地质, 22(4): 319-333.
- 侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, 21(2): 332-351.
- 胡阳鸣. 2023. 东昆仑东段早古生代 早中生代陆壳生长和演化及深 部动力学过程 [D]. 中国地质大学 (北京) 博士学位论文: 1-100.
- 李善平, 湛守智, 金婷婷, 等. 2016. 青海沙柳泉铌钽矿床伟晶岩稀土元 素地球化学特征及物源分析[J]. 稀土, 222(1): 39-46.
- 李善平, 潘彤, 王秉璋, 等. 2021. 柴达木盆地北缘锲墨格山含绿柱石花 岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 182(3): 608-619.
- 梁肖肖,高睿,刘函.2023.西藏谢穷地区晚白垩世淡色花岗岩体和岩脉年龄及地球化学特征:对班公湖-怒江带后碰撞背景的制约[J]. 地质通报,42(1):92-106.
- 刘承先, 孙丰月, 钱烨, 等. 2021. 青海柴北缘地区茶卡北山锂铍稀有金属伟晶岩型矿床垂向分带特征[J]. 世界地质, 40(4): 847-859, 880.
- 栾世伟,毛玉元,范良明.1996. 可可托海地区稀有金属成矿与找 矿[M].成都:成都科技大学出版社: 63-148.
- 吕晓强.2012. 柴北缘生格地区花岗伟晶岩型铌钽矿成因及成矿潜力 评价 [D]. 长安大学硕士学位论文: 1-62.
- 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生 长[J]. 高校地质学报, 13(3): 403-414.
- 潘桂棠,肖庆辉,陆松年,等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28.
- 潘彤. 2019. 青海矿床成矿系列探讨[J]. 地球科学与环境学报, 166(3): 297-315.
- 潘彤,李善平,王涛,等. 2022. 青海锂矿成矿特征及找矿潜力[J]. 地质 学报,96(5): 1827-1854.
- 彭渊,马寅生,刘成林,等. 2016. 柴北缘宗务隆构造带印支期花岗闪长 岩地质特征及其构造意义 [J]. 地学前缘, 118(2): 206-221.
- 秦克章,周起凤,唐冬梅,等.2019.东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景 —— 兼与阿尔泰地区对比[J].矿床地质, 38(5):970-982.
- 沈莽庭, 郭维民, 徐鸣, 等. 2021. 巴西铌钽矿典型矿床特征及其资源分 布规律和找矿方向[J]. 矿床地质, 40(3): 603-624.
- 宋述光,张贵宾,张聪,等. 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连 - 柴北缘高压 - 超高压变质带的岩石学制约[J]. 科学通报, (23): 2240-2245.
- 孙宏伟, 王杰, 任军平, 等. 2021. 南部非洲花岗岩型与伟晶岩型钽矿床 地质特征[J]. 地质论评, 67(1): 265-278.
- 唐文龙, 付超, 王杰, 等. 2022. 莫桑比克上利戈尼亚组--铌稀有元素成 矿带成矿规律及资源潜力[J]. 地质通报, 41(7): 1269-1281.
- 王秉璋, 韩杰, 谢祥镭, 等. 2020. 青藏高原东北缘茶卡北山印支期 (含 绿柱石) 锂辉石伟晶岩脉群的发现及 Li-Be 成矿意义[J]. 大地构造 与成矿学, 174(1): 69-79.
- 王秉璋, 付长垒, 潘彤, 等. 2022. 柴北缘赛什腾地区早古生代岩浆活动 与构造演化[J]. 岩石学报, 38(9): 2723-2742.

- 王秉璋, 潘彤, 王强, 等. 2023. 青藏高原东北缘茶卡北山地区印支期高 分异花岗岩的发现及找矿意义[J]. 岩石学报, 39(8): 2402-2428.
- 王登红, 李建康, 付小方. 2015. 四川甲基卡伟晶岩型稀有金属矿床的 成矿时代及其意义[J]. 地球化学, 36(6): 541-546.
- 王核,李沛,马华东,等. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷 多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053-1062.
- 王倩, 侯可军. 2015. 独居石 LA-ICP-MS 微区原位 U-Pb 同位素年龄 测定[J]. 地质学报, 89(S1): 41-43.
- 吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石 SHRIMP U-Pb 定年及其岩石地球化学特征[J]. 中国科学 (D 辑: 地球科学), 38(8): 930-949.
- 吴才来, 雷敏, 吴迪, 等. 2016. 柴北缘乌兰地区花岗岩锆石 SHRIMP 定年及其成因[J]. 地球学报, 37(4): 493-516.
- 吴福元,李献华,杨进辉,等. 2007. 花岗岩成因研究的若干问题[J]. 岩 石学报, 23(6): 1217-1238.
- 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中 国科学: 地球科学, 47(7): 745-765.
- 吴福元,万博,赵亮,等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674.
- 许志琴,王汝成,赵中宝,等. 2018. 试论中国大陆"硬岩型"大型锂矿 带的构造背景[J]. 地质学报, 92(6): 1091-1106.
- 燕洲泉, 王怀涛, 李元茂, 等. 2018. 西昆仑大红柳滩伟晶岩型锂铍矿产 资源潜力评价 [J]. 甘肃地质, 27(3/4): 42-48.
- 姚玉增,李立兴,付建飞,等.2023.华北克拉通辽宁李家堡子早前寒武 纪花岗伟晶岩型铌钽成矿的年龄证据[J].地质通报,42(6): 1671-2552.
- 张爱奎,莫宣学,袁万明,等.2016.东昆仑西部野马泉地区三叠纪花岗 岩成因与构造背景[J].矿物学报,36(2):157-173.
- 张爱奎, 袁万明, 刘光莲, 等. 2024. 柴达木盆地周缘战略性金属矿产成 矿规律与勘查方向[J]. 地学前缘, (3): 260-283.
- 张辉,吕正航,唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿 床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792-814.
- 张辉, 吕正航, 唐勇. 2021. LCT 型伟晶岩及其锂矿床成因概述[J]. 地 质学报, 95(10): 2955-2970.
- 张金鹏,牛漫兰,李晨,等.2022.柴北缘构造带东段乌兰地区晚二叠 世一中三叠世花岗岩成因及其地质意义[J].地质科学,57(4): 1103-1129.
- 赵东杰, 陈玉明, 张伟波, 等. 2021. 非洲铌钽矿地质特征、矿床类型及 勘查开发现状分析[J]. 地质与勘探, 57(6): 1243-1256.
- 赵振华,包志伟,乔玉楼.2010.一种特殊的"M"与"W"复合型稀土 元素四分组效应:以水泉沟碱性正长岩为例[J].科学通报,55(15): 1474-1488.
- 赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀 有金属成矿作用[J]. 中山大学学报 (自然科学版), 61(1): 1-26.
- 赵振华, 严爽. 2023. 花岗伟晶岩成矿有关的几个问题讨论[J]. 大地构 造与成矿学, 47(1): 1-41.
- 郑英,李五福,张小永,等. 2024. 柴北缘茶卡北山伟晶岩型锂铍矿变质 围岩时代及原岩特征[J]. 地质通报, 43(7): 1104-1119.
- 邹天人,杨岳清,郭永泉. 1985. 有关伟晶岩矿床的一些问题[J]. 地质 科技情报,4(4): 100-107.