doi:10.12097/j.issn.1671-2552.2022.11.008

海南岛北部晚新生代沉积物 Sr-Nd 同位素组成及 其物源示踪

张磊1,2,3,麦发海4,王超群1,贾丽云1,2,3,张耀玲1,2,3,孙东霞1,2,3,胡道功1,2,3 ZHANG Lei^{1,2,3}, MAI Fahai⁴, WANG Chaoqun¹, JIA Liyun^{1,2,3}, ZHANG Yaoling^{1,2,3}, SUN Dongxia^{1,2,3}, HU Daogong^{1,2,3}

- 1.中国地质科学院地质力学研究所,北京100081;
- 2.自然资源部活动构造与地质安全重点实验室,北京100081;
- 3.中国地质调查局新构造与地壳稳定性研究中心,北京100081;
- 4.海南省地质综合勘察院,海南海口570206
- 1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
- 2. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China;
- 3. Research Center of Neotectonism and Crustal Stability, China Geological Survey, Beijing 100081, China;
- 4. Hainan Geological Survey and Design Institute, Haikou 570206, Hainan, China

摘要:海南岛北部(琼北)巨厚的晚新生代沉积物记录了海南岛晚新生代气候与环境演化信息。但关于该沉积物 Sr-Nd 同位 素方法的物源示踪研究还比较缺乏。以琼北钻遇基岩的钻孔(ZK1-5)为研究对象,以Sr-Nd同位素组成为示踪手段,开展了 其物源示踪研究。结果表明:海南岛北部于晚新生代中新世--更新世经历了从滨浅海相沉积--海陆交互相沉积--陆相沉 积—火山喷发环境的转变,中新世海相沉积 Sr 同位素比值(平均值 0.727002)整体高于上新世海陆过渡相和更新世陆相沉积 的 Sr 同位素比值(平均值 0.714917),表明海相沉积比海陆过渡相和陆相沉积风化程度更高。海相、海陆过渡相及陆相沉积的 Nd 同位素组成没有发生明显变化,较一致,表明海陆环境变迁并没有引起该地区物源发生重大变化。而琼北晚新生代沉积 物 $oldsymbol{arepsilon}_{Nd}(0)$ 值分布范围(-14.0~-5.1)与岛内花岗质岩石的 $oldsymbol{arepsilon}_{Nd}(0)$ 值分布范围(-14.1~-5.2)基本一致,与岛内变质岩(1.2~ 8.5)和玄武岩类岩石(1.9~7.8)的 $\epsilon_{Na}(0)$ 值差别较大,表明其源岩主要来自海南岛花岗质岩石,变质岩和玄武岩贡献较小,这 可能与岛内花岗质岩石分布范围广有关。对琼北地区晚新生代沉积物 Sr-Nd 同位素组成特征的认识,有助于深入理解晚新 生代海南岛风化过程及环境变化,并对南海物源及古海陆环境重建具有重要意义。

关键词:海南岛;晚新生代;Sr-Nd 同位素;物源;沉积环境;地球化学;南海北部;地质调查工程 中图分类号:P534.6;P597 文献标志码:A 文章编号:1671-2552(2022)11-1996-11

Zhang L, Mai F H, Wang C Q, Jia L Y, Zhang Y L, Sun D X, Hu D G. Sr-Nd isotopic composition and provenance tracing of Late Cenozoic sediments in the northern Hainan Island. Geological Bulletin of China, 2022, 41(11):1996-2006

Abstract: The thick Late Cenozoic deposits of northern Hainan Island (Qiongbei) provide a record of paleoclimatic and paleoenvironmental changes in Hainan Island. However, there is a lack of source tracing studies on Sr-Nd isotopic methods in this sediment. In this paper, we carried provenance tracing using a borehole (ZK1-5) drilling encounter with bedrock in northern Hainan Island by Sr-Nd isotopic method. The results show that the Late Cenozoic of northern Hainan Island underwent a transition from coastal shallow marine sedimentation-marine and continental alternative deposition-terrestrial sedimentation-volcanic eruption environment

收稿日期:2022-05-05;修订日期:2022-08-31

资助项目:国家自然科学基金项目《淮北平原更新世沉积物中记录的黄河入淮事件研究》(批准号:41807421)、中国地质调查局项目《海南 岛及近海活动断裂与地壳稳定性调查评价》(编号:DD20190306)、《地表过程与系统演变地质调查》(编号:DD20221644)和中 国地质科学院地质力学研究所中央财政科研项目结余经费新开项目(编号:所科研62)

from the Miocene to the Pleistocene, and that the Sr isotopic ratio of the Miocene marine sediment (mean: 0.727002) is overall higher than that of the Pliocene marine and terrestrial transition and Pleistocene terrestrial deposits (mean: 0.714917), suggesting that marine deposits were more weathered than the marine and terrestrial transitional phases. The Nd isotopic compositions of the marine, marine—terrestrial transitional and terrestrial deposits do not change significantly and are relatively consistent, suggesting that provenance did not change obviously caused by environmental changes from marine to terrestrial in the area. The distribution of $\varepsilon_{Nd}(0)$ values in the Late Cenozoic sediments of Qiongbei($^{-1}4.0 \sim ^{-5}.1$) is generally consistent with the distribution of $\varepsilon_{Nd}(0)$ values in the granitic rocks of Hainan Island($^{-1}4.1 \sim ^{-5}.2$), and differs considerably from the $\varepsilon_{Nd}(0)$ values in the metamorphic rocks($^{1.2} \sim 8.5$) and basaltic rocks ($^{1.9} \sim 7.8$) of Hainan Island, indicating that the source rocks are mainly from the local granitic rocks in Hainan Island, and the contribution of metamorphic rocks and basalt is small. This is probably related to the wide distribution of granitic rocks in the island. The understanding of the Sr $^{-1}$ Nd isotopic characteristics of the Late Cenozoic sediments in the northern Hainan Island can help to deeply understand the weathering process and environmental changes on Hainan Island during the Late Cenozoic, and is of great significance for the reconstruction of the provenance and sea and land environment change in the northern South China Sea.

Key words: Hainan Island; Late Cenozoic; Sr-Nd isotopic; provenance; sediment environment; geochemistry; the northern of South China Sea; geological survey engineering

沉积物"源一汇"研究对深入理解表生地质过程、物质和能量循环,以及重建全球气候、环境演变历史均具有重要指示意义[1-5]。亚洲大陆边缘沉积物"源一汇",尤其是南海周边"源一汇"研究是近年来地学领域研究的热点[6-10]。南海周边沉积物"源一汇"研究主要集中在北部大陆、东北部和西南部地区,而来自海南岛的长尺度的"源一汇"研究程度较低[10-11]。海南岛物质风化、运移是南海沉积物"源一汇"过程的重要组成部分。前人对海南岛周边沿海沉积物物源主要通过磁化率[12]、粘土矿物[13-15]、辉石与角闪石[16]、碎屑锆石[17-19]、元素地球化学[20-22]等方法进行了研究。以往的研究主要是研究表层或全新世沉积物的物源,对于海南岛周边沿海长尺度晚新生代以来的物源研究较少,并且缺乏 Sr-Nd同位素方法的物源研究。

Sr-Nd 同位素地球化学组成目前已成为沉积物物源研究的主要示踪方法,尤其是¹⁴³ Nd/¹⁴⁴ Nd 同位素在地球表生物质循环过程中基本不受粒度分异、化学风化、搬运过程、沉积作用的影响,且不易受到后期变质作用影响,能稳定而可靠地记录物源信息,因而被广泛用于探讨碎屑沉积物物源^[23-30]。基于此,本文对海南岛北部一钻遇基岩的晚新生代沉积钻孔(ZK1-5)进行 Sr-Nd 同位素组成研究,并探讨其物源指示意义,以期为海南岛晚新生代风化过程及南海北部物源研究提供基础资料。

1 区域背景

海南岛位于南海北部,是中国第二大陆缘岛, 以琼州海峡与大陆隔海相望。前寒武系较少见,主 要分布在海南岛西部,由抱板群、石碌群和石灰顶组构成^[31-32]。古生界主要包括砂岩、粉砂岩、页岩和少量灰岩^[33-34]。中生界主要由花岗岩和湖相碎屑岩组成,花岗岩出露面积占全岛的 40% 左右^[35-38]。新生界主要分布在海南岛沿海周边,琼北发育大面积新生代玄武岩^[39-40]。北东向和东西向的2组断层控制着海南岛的构造格局,由西向东发育北东向戈枕断裂和白沙断裂;东西走向从南到北依次发育九所一陵水断裂、尖峰一吊罗断裂、昌江一琼海断裂和王五一文教断裂^[34,41](图 1)。

海南岛气候是典型的热带季风海洋性气候,年平均温度为 23.8℃,最高月平均温度为 28℃,最低月平均温度为 18℃。海南岛降雨量充沛,年平均降雨量约 1800 mm,年平均蒸发量约 1834 mm^[53]。雨季从 6 月到 10 月,且常发生暴雨,雨季降雨量占全年总降水量的 82%左右^[54]。

海南岛地形中间高、四周低,呈穹隆状^[55],水系以五指山为中心,呈放射状流入周边南海,同时为海南岛周边沿岸带来大量碎屑物质。以王五-文教断裂为界,断裂以南为中生代花岗岩,断裂以北为琼北沉降带,发育巨厚晚新生代海相、海陆过渡相、陆相沉积物和新生代玄武岩,其物源变化信息可以为海南岛环境变化、构造变动及南海北部的海陆变迁研究提供直接证据。

2 样品采集与分析

钻孔 ZK1-5(北纬 19°54′49.23862″、东经 110° 31′01.18568″)位于海南岛海口市美兰区北(图 1), 大地构造位置处于琼北沉降带,地面标高 9.1 m,孔

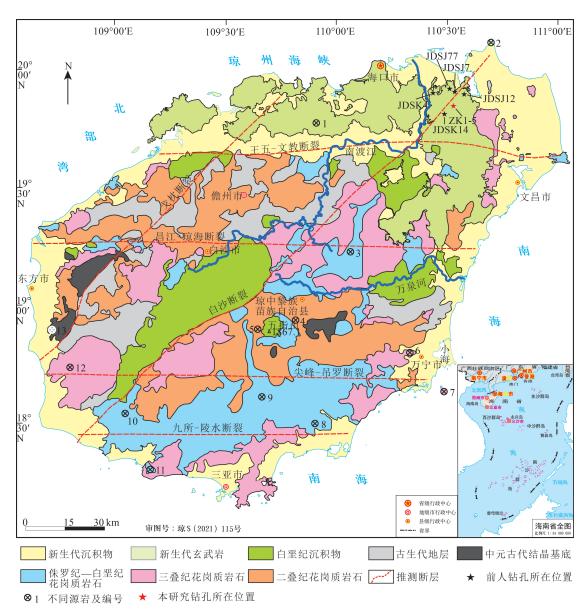


图 1 海南岛地质简图及钻孔位置(据参考文献[42-43]修改)

Fig. 1 Simplified geological map of Hainan Island and the location of the boreholes

图中数据:1—琼北新生代玄武岩^[44];2—木栏头石炭纪榴辉岩、麻粒岩^[42];3—屯昌高通岭及周边晚白垩纪花岗质岩石^[45-47];4—琼中顺作二叠纪花岗岩岩体^[35];5—五指山周边二叠纪花岗质岩石^[43];6—万宁麻山田及周边中三叠世花岗质岩石^[48];7—大洲岛中三叠世花岗质岩石^[48];8—陵水白垩纪花岗质岩石^[45];9—保亭白垩纪花岗质岩石^[45];10—乐东千家镇白垩纪花岗质岩石^[45];11—三亚白垩纪基性岩墙^[50];12—乐东尖峰岭三叠纪花岗质岩石^[51]:13—感城中元古代花岗质岩石结晶基底^[52]

深 141.20 m,钻孔钻遇基岩,包含了该地区全部的新生代地层。采用旋转机械钻进,岩心直径 108 mm,岩心采取率约 94%,整个岩心分为三大段,底部(130.5~141.2 m)为变质岩基岩,中部(9.8~130.5 m)为晚新生代沉积物,顶部(0~9.8 m)为第四纪玄武岩,蕴含丰富的环境变化信息,是进行琼北晚新生代气候环境演化研究的良好载体。笔者对钻孔中不同层段

代表性岩性采集 Sr-Nd 同位素样品共计 15 件,具体采样情况及钻孔岩性柱状图见图 2。

2.1 岩性

根据钻孔岩心的颜色、岩性、沉积结构、构造等特征,划分出7个地层单元。钻孔 ZK1-5 岩心的岩性描述具体如下(表1)。

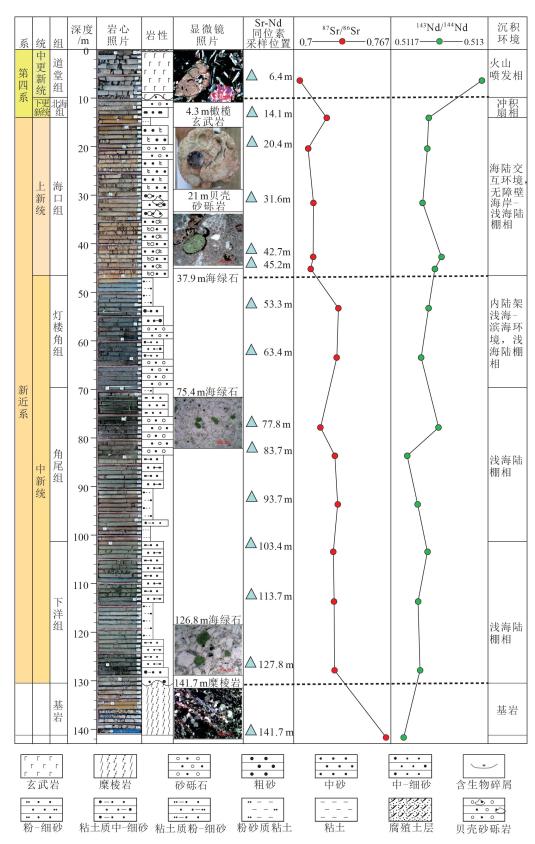
梁定勇等[56-57] 利用江东新区 264 个 200 m 以浅

表 1 琼北 ZK1-5 钻孔岩性描述及划分

Table 1 Lithofacies classification of the ZK1-5 core in the northern Hainan Island

岩性 划分	深度 范围/m	岩性描述
VII	0~9.80	浅灰色气孔状橄榄玄武岩、玄武岩风化壳,玄武岩为斑状结构,气孔状构造,斑晶成分为橄榄石,粒径大小 0.5~1 mm, 含量约为 5%。基质为隐晶质,气孔较发育,大小一般 0.5~1 mm。5.3~5.6 m 处气孔较大,大小 1.5~5 mm
VI	9.80~14.00	灰白色-灰黄色砂砾层,松散状,主要成分为砾石,含量 50%~60%,粒径一般 2~6 mm,最大可达 3 cm,次棱角状—次圆状;粗砂含量 20%~40%;中砂含量 10%~20%,该层总体上分选性中等、磨圆度中等
V	14.00~46.60	含砾生物碎屑砂岩-贝壳砂砾岩互层。含砾生物碎屑砂岩为浅灰白色、灰黄色,大多呈弱固结,生物碎屑含量约30%,主要为有孔虫、贝壳,砂、砾成分主要为石英,粒径0.3~2 mm,少部分2~4 mm,多呈次棱角—次圆状。贝壳砂砾岩为肉红色、黄褐色,生物碎屑结构,钙质胶结,半成岩,块状构造。含完整贝壳,直径1~5 cm,含量约30%。含少量海绿石(图2)
IV	46.60~71.00	灰绿色-浅灰含砾粘土质黑色中粗砂, 半松散状, 粘土含量约占 20%; 中砂含量约占 40%, 成分主要为石英, 多呈次棱角—次圆状, 粒径大小一般 0.2~0.5 mm; 粗砂矿物成分主要为石英, 次为长石, 多呈次棱角—次圆状, 粒径大小 0.5~2 mm, 含量约占 20%
Ш	71.00~101.25	深灰绿色粘土质粉细砂,半松散状,富含海绿石。矿物成分主要为粘土 25%,粉砂 35%和细砂 40%。砂的成分主要为石英,次为长石,多呈次棱角-次圆状。粒径大小一般为 0.06~0.2 mm。其中 81.1~81.6 m 处和 90.4~91.1 m 处夹灰红色泥岩
П	101.25~130.50	青灰色、灰绿色粉砂质粘土-粘土质粉细砂,可塑状,矿物成分主要为粘土,手搓有砂感,可搓成条状,含少量粉砂,约 15%。粘土质粉细砂,矿物成分主要为粘土 25%,粉砂 35% 和细砂 40%。砂的成分主要为石英,次为长石,多呈次棱角—次圆状,粒径大小 0.06~0.25 mm,含海绿石(图 2)
		度快用(共用) 大大大 度快快快 2000年版 III-0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1

I 130.50~141.20 糜棱岩(基岩),灰白色,糜棱结构,碎斑结构,眼球状构造,碎斑成分主要为钾长石,基质主要有石英、云母等,致密坚硬


钻孔建立了琼北江东新区新近纪—第四纪地层划分标准及江东新区新近纪—第四纪标准地层。该钻孔与江东新区位置接近,属于同一地层系统。将该钻孔岩心划分出的7个地层单元与该地层标准进行对比(图3), I 层属于基岩基底; II 层属于下中新统下洋组; III 层属于中中新统角尾组; IV 层属于上中新统灯楼角组,中新世沉积环境均为浅海陆棚相; V 层属于上新统海口组,为海陆交互相与无障壁海岸的沉积环境; VII 民属于下更新统北海组,为冲洪积环境; VII 段属于中更新统道堂组玄武岩,为火山喷发相(图2,图3)。

2.2 测试方法

本次研究采用全岩样品的 Sr-Nd 同位素测试分析,没有采用分粒级方法,主要是由于分粒级样品可能会产生有偏差的结果,并可能丢失某些源区信息^[58]。Sr-Nd 同位素测试在核工业北京地质研究院完成。准确称取 0.1~0.2 g 粉末样品于低压密闭溶样罐中,准确加入锶、钕同位素稀释剂,用混合酸(HF+HNO₃+HClO₄)溶解 24 h。待样品完全溶

解后,蒸干,加入6 mol/L 的盐酸转为氯化物,蒸干。 用 0.5 mol/L 的盐酸溶液溶解,离心分离,清液加入 阳离子交换柱,用 1.75 mol/L 的盐酸溶液和 2.5 mol/L 的盐酸溶液淋洗基体元素和其他元素,用 4 mol/L 的盐酸溶液淋洗稀土元素,蒸干。钕用 P507 萃淋树脂分离,蒸干后转为硝酸盐,质谱分析。同 位素分析采用 ISOPROBE-T 热电离质谱计。为监 测仪器的运行状态,每测定6个样品测定1次国际 标样。Sr 同位素分析采用国际标样 NBS987 进行监 控,Nd 同位素采用国际标样 IMC 进行监控。质量 分馏用 86 Sr/ 88 Sr = 0.1194 校正, 标准测量结果: NBS987 为 0.710250±7,实验室流程本底:Sr 小于2× 10⁻¹⁰g。 ¹⁴⁶Nd/¹⁴⁴Nd=0.7219 校正,标准测量结果: JMC 为¹⁴³Nd/¹⁴⁴Nd=0.512109±3。全流程本底 Nd 小于 50 pg。为使结果更加直观,常用 $\varepsilon_{Nd}(0)$ 值取 代,其换算公式为:

$$\varepsilon_{\rm Nd}(0) = \frac{{\binom{143}{\rm Nd}}^{144}{\rm Nd}}{{\binom{143}{\rm Nd}}^{144}{\rm Nd}}_{\rm CHUR} - 1) \times 10^4$$

GEOLOGICAL BULLETIN OF CHINA

图 2 海南岛北部 ZK1-5 钻孔综合柱状图

Fig. 2 Synthetical stratigraphic columns of the borehole ZK1-5 in the northern Hainan Island

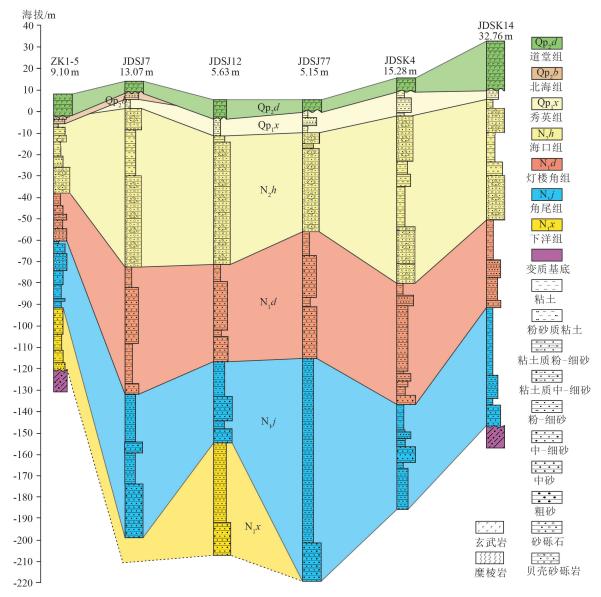


图 3 海南岛北部 ZK1-5 钻孔与邻区钻孔晚新生代地层对比(JDSJ7, JDSJ12, JDSJ77, JDSK4 和 JDSK14 据参考文献[56-57]) Fig. 3 Correlation of Late Cenozoic strata in ZK1-5 borehole and other boreholes in the northern Hainan Island

其中,(143 Nd/ 144 Nd) $_{Measured}$ 为实际样品的值,(143 Nd/ 144 Nd) $_{CHUR}$ 为球粒陨石的值,用球粒陨石(143 Nd/ 144 Nd) $_{CHUR}$ =0.512638 $^{[59]}$ 计算样品的 ε_{Nd} (0)值。

3 结 果

15 个样品的 Sr-Nd 同位素组成见表 2。ZK1-5 岩心的⁸⁷ Sr/⁸⁶ Sr 值在 0.704199~0.763657 之间,平均值为 0.724003; ¹⁴³ Nd/¹⁴⁴ Nd 值在 0.511871~0.512918之间,平均值为 0.512211, ε_{Nd} (0) 值在 $-15.5\sim5.5$ 之间,平均值为-8.3。根据岩心 Sr-Nd

同位素组成随深度变化曲线和岩心的岩性(图 2), 可以将岩心 Sr-Nd 同位素组成进一步划分为 4 段。

- (1)130.5~141.2 m:基岩, ⁸⁷Sr/⁸⁶Sr 值为 0.763657, ¹⁴³Nd/¹⁴⁴Nd值为 0.511871, ε_{Nd}(0)值为-15.0。
- (2) $46.6 \sim 130.5$ m: 中新世海相沉积,该 87 Sr/ 86 Sr 值为 0. $718396 \sim 0$. 730797, 平均值为 0.727002, Sr 同位素组成变化幅度较大,平均值与岩心平均值接近; 143 Nd/ 144 Nd 值在 0. $511919 \sim 0.512337$ 之间,平均值为 0. 512228, ε_{Nd} (0) 值为 $-14.0 \sim -5.9$, 平均值为 -10.0, Nd 同位素组成变化

样品编号	岩性	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$	$\pm 2\sigma$	¹⁴³ Nd/ ¹⁴⁴ Nd	$\pm 2\sigma$	$\boldsymbol{\varepsilon}_{Nd}(0)$	时代			
ZK1-5-6.4m	玄武岩	0.704199	0.000018	0.512918	0.000009	5.5	中更新世			
ZK1-5-14.1 m	陆相沉积物	0.722820	0.000014	0.512207	0.000006	-8.4	早更新世			
ZK1-5-20.4 m	海陆过渡相沉积物	0.710000	0.000020	0.512188	0.000007	-8.8	上新世			
ZK1-5-31.6 m	海陆过渡相沉积物	0.713605	0.000012	0.512124	0.000006	-10.0	上新世			
ZK1-5-42.7 m	海陆过渡相沉积物	0.713421	0.000017	0.512378	0.000007	-5.1	上新世			
ZK1-5-45.2 m	海陆过渡相沉积物	0.711756	0.000016	0.512289	0.000008	-6.8	上新世			
ZK1-5-53.3 m	海相沉积物	0.730797	0.000018	0.512205	0.000011	-8.4	晚中新世			
ZK1-5-63.4 m	海相沉积物	0.729617	0.000018	0.512105	0.000007	-10.4	晚中新世			
ZK1-5-77.8 m	海相沉积物	0.718396	0.000017	0.512337	0.000010	-5.9	中中新世			
ZK1-5-83.7 m	海相沉积物	0.728399	0.000019	0.511919	0.000006	-14.0	中中新世			
ZK1-5-93.7 m	海相沉积物	0.730398	0.000014	0.512058	0.000011	-11.3	中中新世			
ZK1-5-103.4 m	海相沉积物	0.727270	0.000020	0.512191	0.000010	-8.7	早中新世			
ZK1-5-113.7 m	海相沉积物	0.727790	0.000016	0.512065	0.000006	-11.2	早中新世			
ZK1-5-127.8 m	海相沉积物	0.728163	0.000017	0.512092	0.000006	-10.7	早中新世			
ZK1-5-141.7 m	变质岩	0.763657	0.000023	0.511871	0.000007	-15.0				

表 2 海南岛北部 ZK1-5 钻孔岩心的 Sr-Nd 同位素组成 Table 2 Sr-Nd istopic data of borehole ZK1-5 in the northern Hainan Island

范围较大,但平均值与岩心平均值接近。

(3)9.8~46.6 m:上新世一早更新世海陆交互相和陆相沉积,该段地层 87 Sr/ 86 Sr 值为 0.71000~0.722820,平均值为 0.714917, Sr 同位素组成变化幅度较小, Sr 同位素整体低于岩心平均值; 143 Nd/ 144 Nd值在 0.512124~0.512378 之间,平均值为 0.512241, ε_{Nd} (0)值为 $^{-10.0}$ ~ $^{-5.1}$,平均值为 $^{-7.7}$; Nd 同位素组成变化特征表现为在岩心平均值上下小幅波动。

(4)0~9.8 m:中更新世玄武岩,⁸⁷ Sr/⁸⁶ Sr 值为 0.704199, ¹⁴³Nd/ ¹⁴⁴Nd 值为 0.512918,ε_{Nd}(0)值为 5.5。

4 讨论

4.1 化学风化

Sr 同位素组成能够指示大陆风化程度,风化程度越高,结晶岩石占被风化的岩石比例越高,碎屑物的⁸⁷Sr/⁸⁶Sr 值越高^[60],是联系海陆环境变化的纽带^[61-62]。ZK1-5晚新生代沉积物的Sr-Nd 同位素组成自上而下明显可分为2段(图2),分界线大约在46.6 m,即中新世海相地层与上新世海陆过渡相地层的分界处(约5.3 Ma)。下部中新世海相沉积物具有较高的Sr 同位素比值(平均值为0.727002),上部上新世海陆过渡相和更新世陆相沉积物的Sr

同位素比值整体偏低(平均值 0.714917)(图 2)。从中新世进入上新世, ZK1-5 沉积物的⁸⁷ Sr/⁸⁶ Sr 值整体降低, 表明源区源岩风化程度相对减弱, 而此时(从中新世进入上新世)北极冰盖逐渐扩张^[63], 全球气候逐渐变冷^[64]。因此, Sr 同位素值整体降低可能与此时全球气候变冷、大陆风化减弱有关。钻孔基底变质岩⁸⁷ Sr/⁸⁶ Sr 值较高(0.763657), 可能与其 Rb含量高、形成时代老等有关。顶部第四纪玄武岩⁸⁷ Sr/⁸⁶ Sr 值最低(0.704199), 表明其风化程度弱, 与岩心中观察到的玄武岩较新鲜结果一致(图 2)。

4.2 物源示踪

海南岛沿海地区沉积物主要来自径流的物质,近岸沉积物主要来自于海南岛本土[55]。ZK1-5 所在位置目前为海南岛近滨海地区,为近岸沉积,沉积学为典型的海陆过渡特征[13,65]。作为稀土元素,Nd同位素在地质作用中更稳定,次生分馏较弱,Nd同位素组成在不同类型沉积物和不同粒级中变化很小,基本不受粒度分异、化学风化、搬运过程、沉积作用及后期变质作用的影响,Nd同位素组成的差异直接与物源属性有关[24,66-68],原岩Nd同位素组成可以为探讨沉积物物源提供重要信息。因此,Nd同位素是沉积物物质来源的有效示踪手段。

如图 4 所示,笔者绘制了所采样品的 Sr-Nd 同位素组成散点分布图,并将钻孔的 Sr-Nd 同位素数据与海南岛不同地区、不同时代、不同岩性的源岩的 Sr-Nd 同位素组成进行对比(图 4)。从图 4 可以

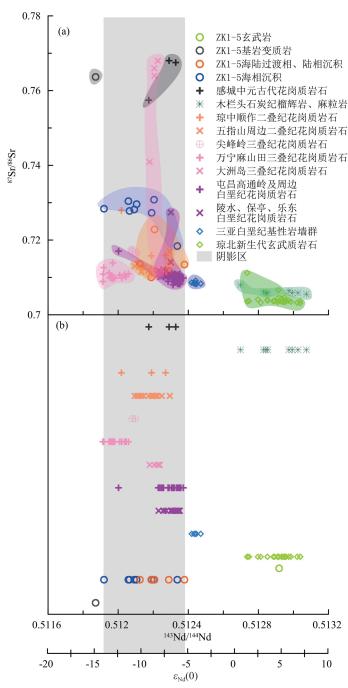


图 4 海南岛北部晚新生代沉积物与岛内源岩的 87 Sr/86 Sr 和¹⁴³ Nd/¹⁴⁴ Nd 组成对比

Fig. 4 Comparison of ⁸⁷ Sr/⁸⁶ Sr and ¹⁴³ Nd/¹⁴⁴ Nd compositions of Late Cenozoic sediments from the northern Hainan Island with the source rocks in the Hainan Island

看到,海南岛晚新生代海相沉积、海陆过渡相沉积 及陆相沉积的 Nd 同位素分布范围基本一致,但与 底部基岩和顶部玄武岩不在同一范围(图 4-a),表 明海南岛北部晚新生代海相、海陆过渡相和陆相沉

积的物质来源具有较好的一致性。为进一步 明晰源岩与海南岛晚新生代沉积物的关系,笔 者将海南岛本土感城中元古代花岗质岩石结 晶基底[52]、木栏头石炭纪榴辉岩、麻粒岩[42]、 琼中顺作二叠纪花岗岩岩体[35]、五指山周边二 叠纪花岗质岩石[43]、乐东尖峰岭三叠纪花岗 岩[51]、万宁中三叠世花岗质岩石[48]、大洲岛中 三叠世花岗质岩石[49]、屯昌高通岭及周边晚白 垩纪花岗质岩石[45-47]、陵水白垩纪花岗质岩 石[45]、保亭白垩纪花岗质岩石[45]、乐东白垩纪 花岗质岩石[45]、三亚白垩纪基性岩墙[50]、琼北 新生代玄武岩[44] 13 个地区(图 1),从中元古 代到新生代的变质岩类、花岗岩类、玄武岩类 源岩 Nd 同位素与 ZK1-5 晚新生代沉积物的 Nd 同位素组成进行对比(图 4-b),可以看出, 海南岛晚新生代海相沉积、海陆过渡相和陆相 沉积的 $ε_{N4}(0)$ 分布范围(-14.0~-5.1) 与海南 岛本土的花岗质岩石的 $\varepsilon_{Nd}(0)$ 范围(-14.1~ -5.2)一致,在同一范围内(灰色阴影区内) (-14.1~-5.2),包括中元古代、二叠纪、三叠 纪、白垩纪的花岗质岩石,与花岗质岩石亲源 性很高,而与源岩时代无关。与变质岩榴辉岩 (1.2~8.5)、基性岩墙(辉绿岩)、玄武岩(1.9~ 7.8)等的 $\varepsilon_{\text{Nd}}(0)$ 范围差别较大,不在同一范 围。以上结果表明,海南岛晚新生代无论海 相、海陆过渡相还是陆相沉积物的主要源岩均 来自海南岛本土的花岗质岩石,而变质岩、玄 武岩等贡献较小。从海南岛源岩分布情况看, 海南岛及周边地区皆为大陆型地壳,花岗质岩 石分布非常广泛,约占全岛总面积的 3/4 (图 1)[52]。广泛分布的花岗质岩石能够为海 南岛周边沿海提供充足的物质来源,因此沉积 物中的 Nd 同位素主要受花岗质岩石的控制。 其他源岩由于分布面积较小,作为物源其贡献 较少。琼北玄武岩由于其覆盖在沉积物顶部, 形成时代晚于下部沉积物,因此不可能是其 物源。

5 结 论

- (1)海南岛北部晚新生代经历了滨浅海相沉积—海陆交互相沉积—陆相沉积—火山喷发环境的转变。海相沉积物的 Sr 同位素值比海陆过渡相和陆相沉积物的 Sr 同位素值整体偏高,表明海相沉积比海陆过渡相和陆相沉积经历更深程度的风化。
- (2)对海南岛不同地区、不同时代、不同类型的源岩的 Nd 同位素进行对比,发现海相沉积物、海陆过渡相沉积物和陆相沉积物的 Nd 同位素范围较一致,表明三者的物源区没有发生明显变化。海南岛北部晚新生代沉积物的 Nd 同位素分布范围与海南岛本土花岗质岩石 Nd 同位素范围基本一致,而与岛内变质岩、基性岩墙群及玄武岩的 Nd 同位素范围差别较大,说明其物源主要来源于岛内花岗质岩石,岛内变质岩基底、基性岩墙群以及玄武岩风化物的贡献相对较小,这可能与岛内花岗质岩石分布范围广有关。

致谢:审稿专家提出了宝贵的修改意见,对论 文质量提高起了重要作用,在此表示感谢。

参考文献

- [1] Mounteney I, Casson M, Rushton J, et al. Cenozoic to modern—day source to sink systems of Senegal: A record of provenance, transport, recycling and climate controls [J]. Journal of African Earth Sciences, 2021, 178: 104150.
- [2] Zhang L, Qin X, Liu J, et al. Geochemistry of sediments from the Huaibei Plain (east China): Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River [J]. Journal of Asian Earth Sciences, 2016, 121: 72–83.
- [3] 林旭,刘静,吴中海,等.渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石 U-Pb 年龄和磷灰石原位地球化学元素双重约束[J].地质力学学报,2021,27(2): 304-316.
- [4] Bentley Sr S, Blum M, Maloney J, et al. The Mississippi River source—to—sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene [J]. Earth—Science Reviews, 2016, 153: 139—174.
- [5] 黄永金,陶春辉,梁锦,等.西南印度洋中脊轴部裂谷(49.58°E)沉积 物岩心地球化学特征及物源[J].地质通报,2021,40(2): 320-329.
- [6] 杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5): 902-910.
- [7] 李铁刚, 曹奇原, 李安春, 等. 从源到汇: 大陆边缘的沉积作用[J]. 地球科学进展, 2003, 18(5): 713-721.
- [8] Li X H, Wei G, Shao L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211

(3): 207-220.

GEOLOGICAL BULLETIN OF CHINA

- [9] Chi G, Liu B. Sedimentary source area and paleoenvironmental reconstruction since late Miocene in the southern South China Sea[J]. Geochemistry, 2020, 80(1): 125567.
- [10] Liu Z, Zhao Y, Colin C, et al. Source—to—sink transport processes of fluvial sediments in the South China Sea[J]. Earth—Science Reviews, 2016,153: 238—273.
- [11] 蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, (1): 113-121.
- [12] 田成静,欧阳婷萍,朱照宇,等.海南岛周边海域表层沉积物磁化率空间分布特征及其物源指示意义[J].热带地理,2013,33(6):666-673.
- [13] 吴敏.海南岛周边海域环境变化的粘土矿物学研究[D].中国地质大学(北京)博士学位论文,2007.
- [14] 叶翔,徐勇航,王爱军,等.海南岛东南部陆架晚全新世以来海洋 沉积物来源与环境变化特征[J].第四纪研究,2016,36(1):18-30.
- [15] 田旭,徐方建,吴淑壮,等.中全新世以来琼东南陆架粘土矿物特征及物质来源[J].地球科学,2015,40(9):1497-1504.
- [16] 周渭.海南岛近海表层沉积物中辉石与角闪石的成因及物源研究[D].中国地质大学(北京)硕士学位论文,2007.
- [17] Shao L, Cao L, Pang X, et al. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 255–269.
- [18] Wang C, Liang X, Zhou Y, et al. Construction of age frequencies of provenances on the eastern side of the Yinggehai Basin: Studies of LA-ICP-MS U-Pb ages of detrital zircons from six modern rivers, western Hainan, China [J]. Earth Science Frontiers, 2015, 22 (4): 277-289.
- [19] Wang C, Liang X, Foster D A, et al. Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai – Song Hong Basin, South China Sea [J]. AAPG Bulletin, 2019, 103 (7): 1525–1552.
- [20] 马荣林,杨奕,何玉生.海南岛南渡江近岸河口沉积物稀土元素地球化学[]].中国稀土学报,2010,28(1):110-114.
- [21] 王军广.海南岛北部红树林地区沉积物元素地球化学特征研究[D]. 海南师范大学硕士学位论文,2011.
- [22] 韩卓汝.海南岛北部潮间带沉积物稀土元素富集规律及其生态效应研究[D].海南师范大学硕士学位论文,2013.
- [23] Goldstein S J, Jacobsen S B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution[J]. Earth Planetary Science Letters, 1988,87(3): 249-265.
- [24] Borg L E, Banner J L. Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies[J]. Geochimica et Cosmochimica Acta, 1996, 60 (21): 4193–4206.
- [25] 綦琳, 乔彦松, 刘宗秀, 等. 陇东新近纪红粘土与第四纪黄土地球 化学特征及其物源和风化指示意义[J]. 地质力学学报, 2021, 27 (3): 475-490.
- [26] Zaarur S, Stein M, Adam O, et al. Late Quaternary climate in southern China deduced from Sr-Nd isotopes of Huguangyan Maar sediments[J]. Earth and Planetary Science Letters, 2018, 496: 10-19.

- [27] Bretschneider L, Hathorne E C, Huang H, et al. Provenance and weathering of clays delivered to the Bay of Bengal during the middle Miocene: Linkages to tectonics and monsoonal climate [J]. Paleoceanography and Paleoclimatology, 2021, 36(2): e2020PA003917.
- [28] Zou J, Shi X, Zhu A, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern Sea of Japan[J]. Marine Geology, 2021, 432: 106393.
- [29] Ali S, Hathorne E C, Frank M J P. Persistent provenance of South Asian monsoon—induced silicate weathering over the past 27 million years [J]. Paleoceanography and Paleoclimatology, 2021, 36 (3): e2020PA003909.
- [30] Goldstein S L, O'nions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems [J]. Earth and Planetary Science Letters, 1984, 70(2): 221-236.
- [31] Zhang L, Zhang Y, Cui X, et al. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks[J]. Precambrian Research, 2019, 325: 69-87.
- [32] 汪啸风, 马大铨, 蒋大海. 海南岛地质(三): 构造地质[M]. 北京: 地质出版社, 1991.
- [33] 张立敏,王岳军,张玉芝,等.海南岛北部古生界时代: 碎屑锆石 U-Pb 年代学约束[J].吉林大学学报(地球科学版),2017,47(4): 1187-1206.
- [34] 汪啸风, 马大铨, 蒋大海, 海南岛地质(一): 地层古生物[M]. 北京: 地质出版社, 1991: 1-280.
- [35] 王超,魏昌欣,云平,等.海南岛五指山地区顺作花岗岩锆石 U-Pb 年龄、地球化学特征及其地质意义[J].地质通报,2019,38(8): 1352-1361.
- [36] He H, Wang Y, Cawood P A, Et al. Permo Triassic granitoids, Hainan Island, link to Paleotethyan not Paleopacific tectonics [J]. GSA Bulletin, 2020, 132(9/10): 2067–2083.
- [37] 汪啸风, 马大铨, 蒋大海. 海南岛地质(二): 岩浆岩[M]. 北京: 地质 出版社, 1991.
- [38] 廖香俊,王平安,覃海灿,等.海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代[]].地质通报,2008,27(4):560-570.
- [39] 张家友, 傅杨荣, 陈沐龙, 等. 海南岛北部新生代火山岩风化成矿作用[J]. 地质论评, 2013, 59(z1): 1237-1238.
- [40] 张仲英, 刘瑞华, 韩中元. 海南岛沿海的第四纪地层[J]. 热带地理, 1987, 7(1): 54-64.
- [41] Metcalfe I.Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 1996, 43(6): 605–623.
- [42] Liu X, Chen Y, Wang W R, et al. Carboniferous eclogite and garnet—omphacite granulite from northeastern Hainan Island, South China: Implications for the evolution of the eastern Palaeo – Tethys [J]. Journal of Metamorphic Geology, 2021, 39(1): 101–132.
- [43] Shen L, Yu J H, O´reilly S Y, et al. Subduction related middle Permian to early Triassic magmatism in central Hainan Island, South China[J]. Lithos, 2018, 318/319: 158–175.
- [44] 朱炳泉,王慧芬.雷琼地区 MORB-OIB 过渡型地幔源火山作用的 Nd-Sr-Pb 同位素证据[]].地球化学,1989,3:193-201.

- [45] Xu D R, Wu C J, Hu G C, et al. Late Mesozoic molybdenum mineralization on Hainan Island, South China: Geochemistry, geochronology and geodynamic setting [J]. Ore Geology Reviews, 2016,72: 402–433.
- [46] Wang Q, Li X H, Jia, X H, et al. Late Early Cretaceous adaktic granitoids and associated magnesian and potassium rich mafic enclaves and dikes in the Tunchang Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization [J]. Chemical Geology, 2012, 328: 222–243.
- [47] 贾小辉,王强,唐功建,等.海南屯昌早白垩世晚期埃达克质侵入岩的锆石 U-Pb 年代学、地球化学与岩石成因[J].地球化学,2010,39(6):3-25.
- [48] 周佐民,谢才富,徐倩,等.海南岛中三叠世正长岩-花岗岩套的地质地球化学特征与构造意义[J].地质论评,2011,57(4):61-77.
- [49] Yan Q, Chen Z, Shi X. A middle Triassic extensional event in the Hainan Island: Geochronologic and geochemical evidence from igneous rocks from Dazhou Island [J]. Geochemistry International, 2017,55(12):1066-1078.
- [50] 葛小月,李献华,周汉文.琼南晚白垩世基性岩墙群的年代学、元素地球化学和 Sr-Nd 同位素研究[J].地球化学,2003,32(1): 11-20.
- [51] 谢才富,朱金初,丁式江,等.海南尖峰岭花岗岩体的形成时代,成因及其与抱伦金矿的关系[J].岩石学报,2006,22(10):2493-2508.
- [52] 许德如,梁新权,陈广浩,等.海南岛中元古代花岗岩地球化学及成因研究[J].大地构造与成矿学,2001,25(4): 420-433.
- [53] Dodson J, Li J, Lu F, et al. A Late Pleistocene and Holocene vegetation and environmental record from Shuangchi Maar, Hainan Province, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019.523: 89–96.
- [54] 郭恩华,王鼎祥,陈琍.海南岛降水与季风的关系[J].热带地理, 1982,(1):15-20.
- [55] 高抒,周亮,李高聪,等.海南岛全新世海岸演化过程与沉积记录[J].第 四纪研究,2016,35(1): 1-17.
- [56] 梁定勇,许国强,肖瑶,等.海口江东新区新近纪—第四纪标准地 层与组合分区[J].科学技术与工程,2021,21(26): 11052-11063.
- [57] 梁定勇,许国强,肖瑶,等.海南岛北部新近纪—第四纪地层结构 与沉积演化模式[J].地层学杂志,2021,45(4):554-566.
- [58] Újvári G, Varga A, Ramos F C, et al. Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian Basin [J]. Chemical Geology, 2012, 304/305: 83-96.
- [59] Jacobsen S B, Wasserburg G.Sm-Nd isotopic evolution of chondrites[J]. Earth Planetary Science Letters, 1980, 50(1): 139-155.
- [60] 韦刚健, 桂训唐, 李献华, 等. 南沙 NS90-103 钻孔沉积物 Sr-Nd 同位素组成及其气候环境信息探讨[J]. 中国科学(D 辑), 2000, 30 (3): 249-255.
- [61] Dasch E J. Strontium isotopes in weathering profiles, deep sea sediments, and sedimentary rocks [J]. Geochimica et Cosmochimica Acta, 1969, 33(12): 1521–1552.
- [62] Derry L A, France-Lanord C. Neogene Himalayan weathering history

- and river $^{87} \mathrm{Sr}/^{86} \mathrm{~Sr:~impact~~on~~the~~marine~~Sr~~record~[~J~]}.$ Earth Planetary Science Letters, 1996, 142(1/2): 59-74.
- [63] Larsen H C, Saunders A D, Clift P D, et al. Seven million years of glaciation in greenland[J]. Science, 1994, 264(5161): 952.
- [64] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292 (5517): 686-693.
- [65] 高为利,张富元,章伟艳,等.海南岛周边海域表层沉积物粒度分 布特征[J].海洋通报,2009,28(2):71-80.
- [66] Goldstein S, O'nions R. Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits [J]. Nature, 1981, 292 (5821): 324-327.

GEOLOGICAL BULLETIN OF CHINA

- [67] 杨守业,蒋少涌,凌洪飞,等.长江河流沉积物 Sr-Nd 同位素组成 与物源示踪[J].中国科学(D辑),2007,37(5):682-690.
- [68] Yu Z, Colin C, Wan S, et al. Sea level-controlled sediment transport to the eastern Arabian Sea over the past 600 kyr: Clay minerals and SrNd isotopic evidence from IODP site U1457 [J]. Quaternary Science Reviews, 2019, 205: 22-34.