doi:10.12097/j.issn.1671-2552.2023.09.002

湘东光明萤石矿黑云母花岗岩地球化学特征及其 对萤石成矿的启示

龚雪婧^{1,2},孟贵祥^{1,2*},汤贺军^{1,2},张雄³,阮帅^{1,2},文亭³,朱文卿⁴ GONG Xuejing^{1,2}, MENG Guixiang^{1,2*}, TANG Hejun^{1,2}, ZHANG Xiong³, RUAN Shuai^{1,2}, WEN Ting³, ZHU Wenqing⁴

1.中国地质科学院,北京 100037;

2.中国地质调查局-中国地质科学院地球深部探测中心,北京 100037;

3.湖南省水文地质环境地质调查监测所,湖南长沙410131;

4.湖南省地球物理地球化学调查所,湖南长沙 410114

1. Chinese Academy of Geological Sciences, Beijing 100037, China;

2. China Deep Exploration Center-SinoProbe Center, China Geological Survey & Chinese Academy of Geological Sciences, Beijing 100037, China;

3. Hunan Institute of Hydrogeology and Environmental Geology, Changsha 410131, Hunan, China;

4. Hunan Institute of Geophysics and Geochemistry, Changsha 410114, Hunan, China

摘要:光明萤石矿产出于湘东锡田岩体北部,为探究矿区内黑云母花岗岩与萤石成矿的关联,对岩体和萤石矿体进行了系统的地球化学研究,并利用 LA-(MC)-ICP-MS 对黑云母花岗岩中结石开展了 U-Pb 年代学、微量元素及 Hf 同位素地球化学研究。结果显示,黑云母花岗岩具有高硅(SiO₂=72.62%~77.34%)、高碱(Na₂O+K₂O=6.03%~8.66%)、富铝(Al₂O₃= 12.02%~13.83%)特征,A/CNK 值介于 1.07~1.14 之间,为过铝质花岗岩。3 个样品低 U 锆石的²⁰⁶ Pb/²³⁸ U 年龄加权平均值在 215~218 Ma 之间,指示花岗岩侵位于印支期。矿区黑云母花岗岩印支期—燕山期锆石年龄为 237~133 Ma,在 230~210 Ma、190~170 Ma、150~130 Ma 存在 3 个较集中的年龄峰期,暗示岩浆侵位后受到热事件影响,推测矿区岩浆活动具有多阶段性。黑云母花岗岩岩体有较强的负 Eu 异常,且富集大离子亲石元素 Rb、Th、U,亏损 Ba、Nb等元素;萤石具有中等程度的负 Eu 异常,Rb、Ba、Nb、Hf 相对亏损,U、La、Nd、Zr、Y 相对富集。按照燕山期成矿岩浆活动时间(133 Ma)估算,岩体 $e_{Nd}(t)$ = -11.2~-10.6,二阶段模式年龄为 1793~1837 Ma;萤石 $e_{Nd}(t)$ = -11.3~-10.0,二阶段模式年龄为 1741~1848 Ma,二者具有较一致的 Nd 同位素组成。岩体锆石 Hf 同位素测定值具有较大的变化范围、¹⁷⁶ Hf^{/177} Hf=0.282234~0.282420, $e_{Hf}(t)$ = -16.7~ -8.5, T_{DM2} =1756~2214 Ma,显示古—中元古代地壳模式年龄。综合研究发现,光明萤石矿多阶段岩浆活动起源于成熟地壳白云母的脱水熔融,经历了印支期—燕山期多期次的岩浆补给和较强的结晶分异。萤石矿石与矿区内燕山期花岗岩具有相似的稀土与微量元素特征,与黑云母花岗岩不同,暗示光明矿床萤石成矿与区内燕山期岩浆活动有关,成矿流体主要为岩浆 热液,并有少量大气降水加入。

关键词:燕山期花岗岩;萤石;锡田岩体;湘东;华南 **中图分类号:**P619.21⁺5;P588.12⁺1 **文献标志码:**A **文章编号:**1671-2552(2023)09-1432-21

Gong X J, Meng G X, Tang H J, Zhang X, Ruan S, Wen T, Zhu W Q. Geochemical characteristics of biotite granite in the Guangming fluorite deposit in eastern Hunan, China: Implications to fluorite mineralization. *Geological Bulletin of China*, 2023, 42(9):1432–1452

收稿日期:2023-03-09;修订日期:2023-05-29

资助项目:中国地质科学院项目《湖南省关键非金属矿产成矿规律及靶区优选研究》(编号:HX2021-10)、湖南省地质院项目(编号:HNGSTP-202103)和贵州省科技计划项目《黔西北三维深部电性结构与区内热液矿产控制关系研究》(编号:黔科合支撑[2023]一般 172)

作者简介:龚雪婧(1988-),女,博士,副研究员,从事矿床学、岩石地球化学研究。E-mail:xuejinggong@cags.ac.cn

^{*}通信作者:孟贵祥(1968-),男,研究员,从事资源勘查研究。E-mail:mgxlw@126.com

Abstract: Guangming fluorite deposit is located in the north of Xitian granite pluton in the eastern Hunan. Aiming to investigate the correlationship between the biotite granite and fluorite mineralization in the mining district, systematic geochemical studies of the rock mass and the orebody, as well as zircon LA-(MC) -ICP-MS U-Pb age, trace element and Hf isotopic characteristics of the biotite granite have been carried out. Biotite granite in the Guangming deposit is characterized by elevated SiO2, Al2O3 and total alkali contents, with A/CNK ratios of $1.07 \sim 1.14$, showing peraluminous.Low-U zircons from three samples yield weighted average 206 Pb/ 238 U ages from 215 Ma to 218 Ma, indicative of Indosinian emplacement. The granite has zircon ages ranging from 237 Ma to 133 Ma, yielding three relatively concentrated age peaks at 230 ~ 210 Ma, 190 ~ 170 Ma and 150 ~ 130 Ma, indicating the influence of multi-stage magmatic activity. The biotite granite has strong Eu negative anomaly with weak positive Ce anomaly, being enriched in LILE(Rb, Th, U) and depleted in Ba, Nb, etc. The fluorite has moderate negative Eu anomaly with relatively depletion of Rb, Ba, Nb, Sm, Hf, Eu and enrichment of U, La, Nd, Zr, Y. The granite has $\varepsilon_{Nd}(t)$ values of -11.2 to -10.6 and the corresponding $T_{DM2} = 1793 \sim 1837$ Ma, while the fluorite has $\varepsilon_{\text{Nd}}(133 \text{ Ma})$ values of -11.3 to -10.0 and the corresponding $T_{\text{DM2}} = 1741 \sim 1848 \text{ Ma}$. Hafnium isotope compositions showing a large variation, 176 Hf/ 177 Hf = 0.282234 ~ 0.282420, $\varepsilon_{\rm Hf}$ (133 Ma) = -16.70 ~ -8.45, $T_{\rm DM2}$ = 1756 ~ 2214 Ma, indicating the crustal model age of Paleo-Mesoproterozoic. The comprehensive analysis suggests that the biotite granite in the Guangming deposit originated from the dehydration melting of muscovite in the mature crust, experienced multiple magmatic activities from Indosinian to Yanshanian. The biotite granite experienced strong differentiation and finally formed in an environment with low oxygen fugacity. The Yanshanian granite and the fluorite have similar characteristics of rare earth and trace elements, as well as the identical Nd isotopic compositions, different from Indosinian biotite granite, suggesting that fluorite mineralization in the Guangming deposit is related to the Yanshanian magmatism in the area. The ore-forming fluid is dominated by magmatic hydrothermal with minor addition of meteoric water. Key words: Yanshanian granitoid; fluorite; Xitian granite complex; eastern Hunan; South China

萤石是非常重要的非金属资源,传统用于冶 金、玻璃、陶瓷、水泥等化学工业,近年来被广泛应 用于新能源、新材料、国防军工等领域(方贵聪等, 2020),是战略新兴产业发展不可替代的矿物原料。 全球范围内,超过40%的萤石矿床产出于环太平洋 地区,仅中国华南就占据了其中超过13.5%的储量 (USGS,2019)。华南的萤石矿床普遍产出于中生 代高演化花岗岩及其接触带附近(曹俊臣,1997;王 吉平等,2015),矿化样式主要为矽卡岩型和热液脉 型。其中,砂卡岩型萤石矿床因普遍与其他金属伴 生,近年来得到了较充分的研究,如湖南柿竹园钨-锡-钼-铋-萤石矿床(Lu et al., 2003)、骑田岭锡-钨-铅-锌-萤石矿床(Yuan et al., 2008; Xie et al., 2015)、界牌岭锡-铍-萤石矿床(Yuan et al., 2015; 沈宏飞等,2022)、桃林铅-锌-萤石-重晶石矿床 (张鲲等,2012)等。研究普遍认为,成矿物质由中 生代高演化花岗岩提供(Lu et al., 2003; Yuan et al.,2008;2015;张鲲等,2012;Xie et al.,2015)。热 液脉型萤石矿床因产出规模较小,常作为单独矿 种产出,其成因研究较薄弱并存在较大争议。前 人研究多认为其形成于低温热液流体对围岩的淋 滤,围岩中的 Ca 和 F 活化、迁移并最终成矿,赋矿 花岗岩仅作为主要的热源(曹俊臣,1997;刘道荣 等,2012);近年来有学者提出花岗岩体可能也是 重要的成矿物质来源(杨世文等,2019;方贵聪等,2020)。

锡田岩体是南岭中段一个由多期侵入花岗岩 体组成的复式岩体,前人研究认为其经历了较高程 度的演化(Zhou et al., 2015;何苗等, 2018)。锡田 矿区发育钨-锡和萤石矿化,其中已探明钨锡资源 量达 32×10⁴ t,吸引了众多学者的目光(刘国庆等, 2008;付建明等,2009;2012;蔡杨等,2011;周云等, 2013;刘飚等,2022),因此研究程度较高。虽然锡 田岩体周围发育多个萤石矿床,但是相关研究缺 乏,限制了对萤石成矿作用的认识及找矿勘查。光 明萤石矿产出于锡田岩体北部,是正在开采的热液 脉型萤石矿床,已探明资源量 89.3×10⁴t,为探索锡 田矿区的萤石成矿潜力提供了新的支点。在前人 研究的基础上,笔者对矿区内的黑云母花岗岩进行 了系统的岩石地球化学与 Nd 同位素地球化学研 究,并利用 LA-(MC)-ICP-MS 方法对其中的锆石 开展了 U-Pb 测年、微量元素及 Hf 同位素地球化学 研究,同时,对萤石开展了微量、稀土元素与 Nd 同 位素地球化学分析,初步厘清了矿区内出露的锡田 花岗岩形成与演化机制,获得了光明萤石矿的成矿 物质来源特征,为进一步认识锡田矿区萤石成矿作 用提供了新的证据。

1 地质概况与样品特征

锡田岩体位于湖南省茶陵县高陇、谭家湾、宁 冈县泥湖一带,出露面积约 230 km²,外形似哑铃 状,长轴呈 NNW 向展布,与奥陶系、石炭系、泥盆 系、二叠系呈侵入接触关系。岩体北部可见上白 垩统,与岩体呈沉积接触关系,接触界线弯曲,岩 性以红色石英砂岩、泥岩、泥质粉砂岩为主。锡田 岩体主体为印支期中细粒斑状黑云母二长花岗岩, 呈岩基产出;补体为燕山期中细粒二云母花岗岩、 中细粒黑云母花岗岩,主要呈岩株、岩枝侵入印支 期花岗岩及沉积岩中,地表出露面积小,但分布 广泛。

光明萤石矿位于锡田岩体东北部,矿区出露的 岩浆岩主要为燕山早期似斑状中粗粒黑云母花岗 岩,未见沉积地层出露(图1-a)。区内主要构造为 分布在矿区北部 NEE 向的断裂(图1-a),局部近 EW 向,倾向 SE,倾角75°左右,地表出露宽度0.5~5 m,沿走向延伸约3 km,部分地段表现为含萤石硅 化破碎带(图1-b)。近矿围岩蚀变以硅化为主,其 次为绢云母化、绿泥石化、叶腊石化。其中硅化与 成矿关系密切,矿体在空间上与硅化破碎带融为一体。矿体多呈脉状产出,中部膨大向两端收缩尖灭,萤石脉与花岗岩的界线清晰,切穿花岗岩,萤石脉两侧发育显著的蚀变作用(图版 I -a、b)。区内 圈定萤石矿体 2 个,矿体 I 为主矿体,受区内 NEE 向断裂控制,呈脉状产出,走向 82°左右,倾向近 S 向,倾角 76°左右,总体较稳定,矿体厚度为 1.35~3. 15 m,品位 29.40%~41.29%,呈中间厚两端薄的楔体形态;矿体 II 为一条未出露地表的支脉,走向 NEE 67°左右,倾向 S,倾角 76°左右,厚度为 0.94~5.04 m,品位 25.17%~66.55%。

本次研究的黑云母花岗岩样品采自光明萤石 矿竖井-50m中段(GM-E-2-1;GM-W-3-3)及 钻孔岩心中(ZK302-1)(图1-b)。黑云母花岗岩呈 中粗粒似斑状结构,主要矿物组成为钾长石(35%~ 40%)、石英(30%~35%)、斜长石(20%~30%)、黑 云母(3%~5%),其中钾长石以条纹长石为主,多见 卡氏双晶;斜长石发育聚片双晶,偶见环带结构;黑 云母部分蚀变为绿泥石(图版I-c、e)。岩体靠近 萤石矿体部位蚀变较强,尤以钾化发育,钾长石含 量升高至45%左右,黑云母普遍发生蚀变。副矿物

图 1 锡田岩体和光明萤石矿地质简图(a)(据苏红中等,2015修改)与 3 线地质剖面(b)

Fig. 1 Geological map of the Xitian granite and Guangming fluorite deposit(a) and geological profile of Line 3(b) 1-第四系松散堆积层;2-白垩系;3-二叠系;4-石炭系;5-泥盆系;6-奥陶系;7-印支期花岗岩;8-燕山期花岗岩;9-断裂;10-矿床位置

a.萤石矿脉与黑云母花岗岩接触界线;b.萤石脉与石英脉;c.黑云母花岗岩手标本; d.萤石手标本;e.黑云母花岗岩镜下特征;f.黑云母花岗岩中石英的单向固结结构。 Kfs—钾长石;Qtz—石英;PI—斜长石;Bt—黑云母;FI—萤石

组合主要有锆石、磷灰石、榍石等。矿石呈块状、条带状或环带状构造,矿石矿物主要为萤石,脉石矿物主要为石英(图版 I -d、f)。萤石样品同样采自竖井-50 m 中段(GM-C-2-1;GM-W-3-1),主要呈绿色,次为无色及紫色,透明或半透明,半自形— 自形粒状结构。

2 测试方法

样品由廊坊市拓轩岩矿检测服务有限公司进行破碎和分选,并对挑选出的单颗粒锆石进行制靶和显微照相(透射光、反射光和阴极发光)。黑云母花岗岩 LA-ICP-MS 锆石 U-Pb 定年和微量元素测试、LA-MC-ICP-MS 锆石 Hf 同位素测定、全岩与萤石主量、微量元素、Nd 同位素分析均在南京聚谱检测科技有限公司完成。

(1)LA-ICP-MS 锆石 U-Pb 定年和微量元素 测试

根据透射光、反射光和阴极发光图像,选择错

石内部无包裹体、无裂纹、结构均匀的部 位进行测试分析。采用 ASI RESOnetics 193 nm ArF 准分子激光剥蚀系统和 Agilent 7700x 四极杆型电感耦合等离子体 质谱仪联机,以 33 μm 束斑、6 Hz 频率测 试。测试过程中以标准锆石 91500 为外 标,校正仪器质量歧视与元素分馏;以标 准锆石 GJ-1与 Plešovice 为盲样,检验 U-Pb 定年数据质量;以 NIST SRM 610 为外 标、Si 为内标,标定锆石中的微量元素含 量。测试数据由软件 ICPMSDataCal 处理 (Liu et al.,2010)。

(2) LA-MC-ICP-MS 锆石 Hf 同位 素测试

锆石原位 Hf 同位素测点与 U-Pb 年 龄测点位置一致,以确保获得的 Hf 同位 素值与年龄值一一对应。实验仪器为 ASI RESOnetics 193 nm ArF 准分子激光剥蚀 系统和 Nu Plasma II 电感耦合等离子体 质谱仪。实验采用氦气作为剥蚀物质载 气,束斑直径 50 μm,测试过程中每隔 15 颗样品锆石,交替测试标住锆石(包括 GJ-1、91500、Plešovice、Mud Tank、Penglai),以 检验锆石 Hf 同位素比值的数据质量。

(3)全岩与萤石主量和微量元素分析

岩石样品粉碎至 200 目以下粉末。主量元素含量将样品溶解后采用湿法在 Agilent 5110 型 ICP-OES 上测定,分析相对误差低于 5%;微量元素采用Agilent 7700X 型等离子质谱(ICP-MS)测定,分析相对误差低于 10%。

(4)全岩与萤石 Nd 同位素分析

将待测样品溶解后,采用 Biorad AG50W-X8 阳离子交换柱和 Ln 树脂分离提纯后,将稀硝酸溶 解提纯的 Nd 上机测试,经 Cetac Aridus Ⅱ 膜去溶系 统引入,在 Nu Plasma Ⅱ MC-ICP-MS 上测定 Nd 同位素比值。测试过程中,采用¹⁴⁶ Nd/¹⁴⁴ Nd = 0.7219 内部校正仪器质量分馏,Nd 同位素国际标 准物质 JNdi-1 作为外标校正仪器漂移。

3 分析结果

3.1 黑云母花岗岩锆石 U−Pb 年龄、微量元素与 Hf 同位素

对光明萤石矿 3 件黑云母花岗岩样品(ZK302-

1,GM-W-3-3,GM-E-2-1)中的 75 颗锆石开展 的老 了原位 U-Pb 年龄、微量元素与 Hf 同位素测试,测试 结果见表 1—表 3。所测锆石为无色透明至浅棕色, 个锴

多数呈短柱状。锆石 Th 和 U 含量变化较大,分别为
16.9×10⁻⁶~2811×10⁻⁶和 225×10⁻⁶~18840×10⁻⁶。
样品 ZK302-1 测定的 25 个年龄数据中,23 个
点落于谐和线附近,年龄分布范围较大,为221.8~
77.7 Ma,1 个点年龄为 291.9 Ma,且偏离谐和线较大,另1 个点年龄为 572.2 Ma,推测为岩浆上升侵位
过程中捕获的围岩或源区继承锆石。锆石年龄明
显受到 U 含量的影响,U 含量大于 10000×10⁻⁶的年
龄明显偏低,显示锆石受到后期热事件影响而发生
铅丢失,破坏了 U-Pb 同位素体系(吴福元等,

2017)。U含量小于 10000×10⁻⁶的 6 颗具有近谐和的年龄,年龄加权平均值为 215±11 Ma(MSWD = 19)(图 2)。

样品 GM-W-3-3 测定的 25 个年龄数据中,21 个锆石年龄集中于 236.9~204.3 Ma 之间,并获得了 217.9±4.1 Ma(MSWD = 11.8)的年龄加权平均值 (图 2);获得 3 个较年轻的年龄分别为 186.9 Ma、 152.2 Ma 和 134.9 Ma,推测为晚期岩浆活动结晶的 锆石;此外 1 个点的锆石年龄为 2847.7 Ma,为捕获 的老基底样品。

样品 GM-E-2-1 测定的 25 个年龄数据中,21 个锆石年龄分布于 233.3~144.7 Ma 之间;此外,获 得 1 个锆石年龄为 71.9 Ma,推测其为 Pb 丢失造 成,不代表岩浆结晶时间;获得 3 个较老的锆石年龄 分别为 838.0 Ma、516.6 Ma 和 316.5 Ma,推测其为 岩浆侵位过程中的捕获锆石。与 ZK302-1 相似,锆 石具有较高的 U 含量,容易受到后期岩浆活动的影 响。U 含量小于 10000×10⁻⁶的 15 颗锆石具有近谐 和的年龄,年龄加权平均值为 214.9±6.7 Ma (MSWD=16)(图 2)。

由于受到锆石高 U 含量的影响,3 件样品均未 得到较好的谐和年龄(图 2)。所测锆石年龄分布范 围大(237~133 Ma),但存在 230~210 Ma、190~170 Ma、150~130 Ma 三个较集中的年龄峰期(图 3-a), 与锡田复式岩体多期次岩浆活动时间一致。获得 的 1 颗年龄为 2848 Ma 的捕获锆石,推测其来自华 南地块结晶基底,这也与湘东北地区存在 3100~ 1800 Ma 的早前寒武纪结晶基底的认识一致(谢玲 琳等,2000;郭乐群等,2003;唐晓珊等,2004)。3 件 样品较低 U 含量锆石的²⁰⁶ Pb/²³⁸U 年龄加权平均值 介于 215~218 Ma 之间,在误差范围内一致,应为光

图 2 锡田黑云母花岗岩锆石²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U 谐和图和²⁰⁶Pb/²³⁸U 年龄加权平均图 Fig. 2 Zircon ²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U concordia and weighted average ²⁰⁶Pb/²³⁸U age diagrams of the Xitian biotite granite samples

			Table	el LA-ICI	P-MS zi	rcon U-T	h-Pb res	sults of bio	otite gran	ite in the (Guangmir	ng fluorite e	deposit				
	含量/1	9_01	E				同位素	比值						年龄/Ma	r		
测点专 —	Th	D	D/II	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$1\sigma^2$	$^{07} \mathrm{Pb}/^{235} \mathrm{U}$	10 ²	⁰⁶ Pb/ ²³⁸ Pb	10 ²	⁰⁸ Pb/ ²³² Th	1σ	⁰⁷ Pb/ ²³⁵ U	10 T	⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ
ZK302-1-01	719	10965	0.07	0.0525	0.0006	0.1690	0.0028	0.0233	0.0003	0.0085	0.0001	158.6	2.4	148.5	2.2	170.3	2.8
ZK302-1-02	1687	14600	0.12	0.0517	0.0007	0.0868	0.0013	0.0121	0.0001	0.0046	0.0001	84.5	1.3	77.7	0.9	92.3	1.4
ZK302 - 1 - 03	1524	10782	0.14	0.0522	0.0007	0.1078	0.0017	0.0149	0.0002	0.0050	0.0001	103.9	1.6	95.6	1.3	101.8	1.6
ZK302 - 1 - 04	1193	3146	0.38	0.0713	0.0012	0.2750	0.0045	0.0280	0.0003	0.0121	0.0002	246.7	3.6	177.7	2.0	242.8	4.4
ZK302-1-05	749	7827	0.10	0.0509	0.0005	0.2466	0.0033	0.0350	0.0004	0.0120	0.0002	223.8	2.7	221.8	2.4	242.0	3.5
ZK302-1-06	1402	11571	0.12	0.0529	0.0006	0.1522	0.0031	0.0209	0.0004	0.0066	0.0002	143.9	2.8	133.0	2.6	133.7	3.3
ZK302-1-07	1139	18840	0.06	0.0572	0.0008	0.1117	0.0019	0.0141	0.0002	0.0098	0.0004	107.5	1.7	90.4	1.3	196.4	7.1
ZK302-1-08	770	13986	0.06	0.0575	0.0009	0.1048	0.0022	0.0131	0.0002	0.0108	0.0004	101.2	2.0	84.1	1.2	217.2	7.9
ZK302-1-09	2811	8457	0.33	0.0610	0.0008	0.2322	0.0040	0.0274	0.0003	0.0049	0.0002	212.0	3.3	174.4	2.0	0.66	3.2
ZK302-1-10	1172	9037	0.13	0.0503	0.0006	0.2393	0.0034	0.0344	0.0004	0.0111	0.0002	217.8	2.8	218.0	2.6	224.0	3.2
ZK302-1-11	1015	13859	0.07	0.0569	0.0008	0.1139	0.0021	0.0145	0.0002	0.0084	0.0003	109.5	1.9	92.5	1.1	169.6	5.3
ZK302-1-12	760	4906	0.16	0.0498	0.0006	0.2364	0.0034	0.0343	0.0004	0.0122	0.0002	215.5	2.8	217.3	2.4	245.0	3.8
ZK302-1-13	147	456	0.32	0.0591	0.0008	0.7595	0.0121	0.0928	0.0009	0.0270	0.0004	573.7	7.0	572.2	5.5	538.5	7.9
ZK302-1-14	1498	8735	0.17	0.0518	0.0006	0.1976	0.0031	0.0276	0.0004	0.0059	0.0001	183.1	2.6	175.7	2.4	119.9	2.6
ZK302-1-15	587	9824	0.06	0.0554	0.0006	0.2765	0.0037	0.0361	0.0004	0.0313	0.0006	247.9	2.9	228.3	2.4	622.7	10.8
ZK302-1-16	951	9954	0.10	0.0524	0.0006	0.1554	0.0023	0.0214	0.0003	0.0100	0.0002	146.7	2.0	136.8	1.8	201.8	3.2
ZK302-1-17	626	2046	0.31	0.0521	0.0007	0.2320	0.0036	0.0322	0.0004	0.0112	0.0002	211.8	3.0	204.0	2.2	224.5	3.5
ZK302-1-18	562	10704	0.05	0.0598	0.0008	0.1344	0.0023	0.0162	0.0002	0.0154	0.0005	128.0	2.1	103.7	1.2	309.3	9.0
ZK302-1-19	717	11187	0.06	0.0496	0.0014	0.1499	0.0022	0.0220	0.0003	0.0083	0.0002	141.8	2.0	140.4	1.9	167.5	3.4
ZK302-1-20	519	9576	0.05	0.0585	0.0009	0.1802	0.0037	0.0221	0.0003	0.0193	0.0010	168.2	3.2	141.2	1.8	385.5	19.7
ZK302-1-21	2525	5587	0.45	0.0529	0.0007	0.2188	0.0037	0.0299	0.0004	0.0087	0.0001	200.9	3.1	189.7	2.5	175.7	2.3
ZK302-1-22	2149	10613	0.20	0.0531	0.0006	0.1145	0.0017	0.0156	0.0002	0.0052	0.0001	110.1	1.5	9.66	1.1	104.6	1.4
ZK302-1-23	2215	5998	0.37	0.0544	0.0007	0.1699	0.0031	0.0226	0.0003	0.0064	0.0001	159.3	2.7	143.9	2.2	129.0	2.9
ZK302-1-24	930	3578	0.26	0.0560	0.0009	0.2463	0.0050	0.0317	0.0004	0.0119	0.0002	223.6	4.1	201.3	2.5	239.1	4.2

表1 光明萤石矿区黑云母花岗岩 TA-ICP-MS 锆石 U-Th-Pb 分析结果

																续表 1-1	
口 工 頭	含量	/10 ⁻⁶	E				同位素	此值						年龄/Ma			
测点亏 —	Th	D	U/U	$^{207} \mathrm{Pb}/^{206} \mathrm{Pb}$	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ Pb	1σ	$^{208}\mathrm{pb}/^{232}\mathrm{Th}$	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	1σ	²⁰⁶ Pb/ ²³⁸ U	1 σ	$^{208}{\rm pb}/^{232}{\rm Th}$	1σ
ZK302-1-25	756	1247	0.61	0.0906	0.0017	0.5838	0.0150	0.0463	0.0007	0.0225	0.0006	466.9	9.6	291.9	4.5	450.5	11.8
GM-W-3-3-01	867	3101	0.28	0.0503	0.0006	0.2543	0.0036	0.0366	0.0004	0.0113	0.0002	230.1	2.9	231.7	2.7	227.4	3.3
GM-W-3-3-02	458	4245	0.11	0.0506	0.0006	0.2252	0.0054	0.0322	0.0007	0.0114	0.0002	206.2	4.5	204.3	4.4	229.0	3.9
GM-W-3-3-03	363	2586	0.14	0.0499	0.0006	0.2313	0.0035	0.0335	0.0004	0.0110	0.0002	211.2	2.9	212.6	2.4	220.5	3.2
GM-W-3-3-04	427	2221	0.19	0.0509	0.0007	0.2357	0.0041	0.0334	0.0004	0.0110	0.0002	214.9	3.3	212.1	2.4	221.4	3.2
GM-W-3-3-05	244	1296	0.19	0.0506	0.0008	0.2495	0.0050	0.0356	0.0005	0.0115	0.0002	226.2	4.0	225.5	3.2	230.6	3.9
GM-W-3-3-06	455	2890	0.16	0.0509	0.0007	0.2337	0.0038	0.0332	0.0004	0.0108	0.0002	213.3	3.1	210.6	2.3	217.3	3.4
GM-W-3-3-07	222	684	0.33	0.0545	0.0009	0.2587	0.0053	0.0344	0.0005	0.0118	0.0002	233.6	4.3	217.9	3.1	236.7	4.8
GM-W-3-3-08	280	1467	0.19	0.0530	0.0008	0.2409	0.0040	0.0329	0.0004	0.0109	0.0003	219.1	3.3	208.9	2.2	220.0	5.0
GM-W-3-3-09	760	2124	0.36	0.0534	0.0008	0.2502	0.0044	0.0339	0.0004	0.0093	0.0002	226.7	3.6	215.1	2.5	186.7	4.7
GM - W - 3 - 3 - 10	515	498	1.03	0.0506	0.0011	0.2449	0.0055	0.0352	0.0004	0.0106	0.0003	222.4	4.5	222.9	2.7	213.0	6.2
GM-W-3-3-11	817	11192	0.07	0.0564	0.0007	0.1646	0.0022	0.0212	0.0002	0.0101	0.0003	154.7	1.9	134.9	1.4	203.3	6.7
GM-W-3-3-12	184	324	0.57	0.3018	0.0035	23.3042	0.5551	0.5554	0.0105	0.1313	0.0050	3239.7	23.3	2847.7	43.5	2493.3	90.06
GM-W-3-3-13	404	1644	0.25	0.0525	0.0008	0.2419	0.0042	0.0334	0.0004	0.0109	0.0004	220.0	3.4	211.9	2.2	218.5	9.0
GM-W-3-3-14	484	11618	0.04	0.0551	0.0007	0.1810	0.0043	0.0239	0.0005	0.0161	0.0007	168.9	3.7	152.2	3.3	323.3	14.8
GM-W-3-3-15	496	1244	0.40	0.0514	0.0009	0.2398	0.0050	0.0338	0.0004	0.0086	0.0004	218.3	4.1	214.1	2.8	173.5	7.9
GM-W-3-3-16	355	1228	0.29	0.0559	0.0010	0.2261	0.0047	0.0294	0.0004	0.0104	0.0005	207.0	3.9	186.9	2.8	210.1	9.1
GM-W-3-3-17	1178	2666	0.44	0.0548	0.0008	0.2443	0.0037	0.0324	0.0004	0.0083	0.0003	222.0	3.0	205.6	2.4	167.0	6.7
GM-W-3-3-18	345	775	0.44	0.0514	0.0009	0.2539	0.0050	0.0359	0.0004	0.0111	0.0004	229.7	4.0	227.1	2.8	222.4	7.3
GM-W-3-3-19	216	520	0.42	0.0524	0.0011	0.2624	0.0057	0.0363	0.0004	0.0118	0.0004	236.6	4.6	229.9	2.6	236.4	7.1
GM-W-3-3-20	404	497	0.81	0.0515	0.0011	0.2609	0.0057	0.0368	0.0004	0.0102	0.0003	235.4	4.6	232.7	2.6	205.2	5.1
GM-W-3-3-21	173	1225	0.14	0.0501	0.0008	0.2406	0.0040	0.0348	0.0004	0.0115	0.0003	218.9	3.3	220.8	2.3	231.2	5.7
GM-W-3-3-22	715	1836	0.39	0.0505	0.0007	0.2341	0.0039	0.0335	0.0004	0.0107	0.0002	213.5	3.2	212.5	2.3	215.1	3.9
GM-W-3-3-23	383	737	0.52	0.0585	0.0015	0.2886	0.0085	0.0356	0.0005	0.0120	0.0002	257.4	6.7	225.3	3.3	240.2	4.8
GM-W-3-3-24	253	665	0.38	0.0542	0.0010	0.2811	0.0060	0.0374	0.0005	0.0121	0.0002	251.5	4.8	236.9	3.1	242.2	4.6

2023年

																续表 1-2	
口 山 泉	含量	$^{10^{-6}}$	11/11				同位素	比值						年龄/Ma	~		
测点专 -	Th	D	Ih/ U	$^{207}\rm{pb}/^{206}\rm{pb}$	τ01	$^{207}{\rm Pb}/^{235}{\rm U}$	$1\sigma^{2}$	⁰⁶ Pb/ ²³⁸ Pb	$1\sigma^2$	⁹⁰⁸ Pb/ ²³² Th	1σ	⁰⁷ Pb/ ²³⁵ U	τ	²⁰⁶ Pb/ ²³⁸ U	τ01	²⁰⁸ Pb/ ²³² Th	1σ
GM-W-3-3-25	727	2314	0.31	0.0522	0.0007	0.2436	0.0045	0.0337	0.0005	0.0087	0.0001	221.3	3.7	213.8	3.1	175.8	2.9
GM-E-2-1-01	170	508	0.34	0.0659	0.0013	0.7998	0.0412	0.0834	0.0035	0.0289	0.0012	596.7	23.2	516.6	21.0	575.2	23.7
GM-E-2-1-02	736	950	0.78	0.0519	0.0008	0.2369	0.0042	0.0329	0.0004	0.0110	0.0002	215.9	3.5	208.9	2.5	221.1	3.1
GM-E-2-1-03	533	11878	0.04	0.0525	0.0005	0.3658	0.0056	0.0503	0.0007	0.0465	0.0006	316.5	4.2	316.5	4.2	917.9	11.6
GM-E-2-1-04	868	9886	0.09	0.0757	0.0008	0.3857	0.0061	0.0368	0.0005	0.0631	0.0015	331.2	4.4	233.0	3.2	1237.3	28.3
GM-E-2-1-05	1876	1984	0.95	0.0527	0.0009	0.2245	0.0071	0.0307	0.0008	0.0094	0.0002	205.7	5.9	195.2	5.1	188.9	3.1
GM-E-2-1-06	1191	3519	0.34	0.0554	0.0007	0.2188	0.0032	0.0286	0.0003	0.0073	0.0001	200.9	2.6	181.5	2.0	147.8	2.2
GM-E-2-1-07	1092	3617	0.30	0.0535	0.0007	0.2327	0.0035	0.0315	0.0003	0.008	0.0002	212.5	2.9	199.8	2.1	198.0	3.2
GM-E-2-1-08	1715	12849	0.13	0.0559	0.0007	0.0864	0.0014	0.0112	0.0002	0.0044	0.0001	84.1	1.3	71.9	1.0	88.8	1.7
GM-E-2-1-09	679	2632	0.26	0.0505	0.0006	0.2398	0.0038	0.0343	0.0004	0.0110	0.0002	218.3	3.1	217.7	2.5	220.2	3.2
GM-E-2-1-10	291	755	0.39	0.0533	0.0009	0.2689	0900.0	0.0364	0.0006	0.0117	0.0002	241.8	4.8	230.8	3.5	235.3	4.7
GM-E-2-1-11	367	9215	0.04	0.0594	0.0007	0.2958	0.0045	0.0361	0.0005	0.0333	0.0009	263.1	3.5	228.5	3.0	661.5	17.9
GM-E-2-1-12	881	2315	0.38	0.0519	0.0007	0.2311	0.0040	0.0323	0.0005	0.0085	0.0002	211.1	3.3	204.7	3.1	171.0	3.1
GM-E-2-1-13	1303	5338	0.24	0.0557	0.0006	0.2494	0.0041	0.0325	0.0005	0.0134	0.0002	226.1	3.3	205.9	3.0	269.7	4.3
GM-E-2-1-14	683	11034	0.06	0.0505	0.0005	0.1791	0.0027	0.0257	0.0003	0.0147	0.0002	167.3	2.3	163.5	2.0	295.3	4.6
GM-E-2-1-15	470	10638	0.04	0.0503	0.0005	0.2458	0.0032	0.0354	0.0004	0.0131	0.0002	223.1	2.6	224.0	2.2	263.1	3.4
GM-E-2-1-16	163	225	0.72	0.0528	0.0016	0.2595	0.0083	0.0358	0.0005	0.0108	0.0002	234.2	6.7	226.9	3.4	216.8	3.7
GM-E-2-1-17	686	8464	0.08	0.0526	0.0007	0.1642	0.0029	0.0227	0.0004	0.0094	0.0002	154.4	2.6	144.7	2.4	188.8	3.4
GM-E-2-1-18	325	1198	0.27	0.0532	0.0009	0.2173	0.0036	0.0296	0.0003	0.0104	0.0002	199.7	3.0	188.3	2.0	209.5	3.3
GM-E-2-1-19	895	719	1.24	0.0541	0.0010	0.2519	0.0058	0.0336	0.0004	0.0102	0.0001	228.1	4.7	213.0	2.5	205.9	2.9
GM-E-2-1-20	395	1092	0.36	0.0537	0.0008	0.2783	0.0094	0.0368	0.0008	0.0121	0.0002	249.3	7.5	233.3	5.2	243.6	4.7
GM-E-2-1-21	172	1016	0.17	0.0506	0.0008	0.2321	0.0045	0.0332	0.0004	0.0116	0.0002	211.9	3.7	210.3	2.4	232.7	4.1
GM-E-2-1-22	1290	8723	0.15	0.0542	0.0006	0.2058	0.0038	0.0274	0.0004	0.007	0.0001	190.0	3.2	174.6	2.8	194.4	3.0
GM-E-2-1-23	17	841	0.02	0.0720	0.0009	1.3805	0.0205	0.1388	0.0018	0.0468	0.0014	880.7	8.8	838.0	9.9	923.8	28.0
GM-E-2-1-24	1008	6387	0.16	0.0547	0.0007	0.1914	0.0032	0.0253	0.0003	0.0086	0.0001	177.8	2.7	160.9	2.2	173.0	2.7
GM-E-2-1-25	596	12662	0.05	0.0508	0.0006	0.2496	0.0032	0.0355	0.0004	0.0160	0.0002	226.2	2.6	225.1	2.5	320.3	4.7

							ы х	表 2 →	6明矿]	医美子	毕 花 図 1	岢锆石5	元素 分析	í结果								
			Τ	able 2	Cont	ents of	eleme	nt in zi	rcon gi	ains fo	or the b	iotite g	ranite iı	n the G	uangmi	onli gu	rite dep	osit				
测试点	La	Ce	\mathbf{Pr}	РN	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Ti	Zr/%	₩£%	Zr/Hf	Eu⁄Eu *	ΔFMQ	$T_{\rm Ti}$ /°C
ZK302-1-01	3.92	24.0	2.06	10.4	8.91	0.65	48.5	22.9	342	140	765	183	1816	345	4614	3.35	45.5	1.94	23.5	0.10	-1.32	653
ZK302-1-02	4.73	40.8	3.13	15.9	15.3	1.12	80.2	32.6	441	171	872	196	1841	343	5474	7.80	45.4	1.70	26.7	0.10	-1.39	720
ZK302-1-03	115	291	32.8	135	56.2	1.57	122	38.4	443	158	780	175	1642	306	5217	19.6	45.5	1.59	28.7	0.06	1.49	804
ZK302-1-04	3.94	60.2	3.66	21.1	17.4	25.3	51.7	16.3	185	64	298	63	564	105	2073	5.91	47.6	1.24	38.5	2.58	0.86	697
ZK302-1-05	2.06	23.1	1.92	12.3	10.3	0.46	48.1	19.1	260	105	547	123	1180	225	3375	4.76	47.1	1.72	27.4	0.06	-1.40	680
ZK302-1-06	3.02	26.0	1.82	10.1	10.4	0.45	58.3	25.3	361	146	767	174	1671	315	4769	6.07	45.5	1.77	25.7	0.06	-1.75	669
ZK302-1-07	13.8	76.1	8.77	46.3	33.3	1.13	129	54.3	759	300	1579	360	3510	651	9860	17.9	43.5	1.88	23.1	0.05	-1.24	795
ZK302-1-08	13.4	69.69	7.92	40.9	25.1	0.89	88.8	37.1	528	209	1142	282	2906	552	7007	18.9	44.5	2.04	21.8	0.06	-1.19	800
ZK302-1-09	7.54	62.4	8.87	45.3	36.8	1.89	102	35.9	445	164	837	194	1916	365	5310	23.2	45.6	2.00	22.8	0.09	-1.12	821
ZK302-1-10	1.33	23.6	1.34	8.37	10.2	0.33	52	21.1	286	112	572	128	1212	230	3560	5.09	46.3	1.60	28.9	0.04	-1.55	685
ZK302-1-11	20.8	101	13.73	71.8	44.0	1.48	114	43.0	580	225	1191	290	2963	559	7413	55.4	44.3	1.97	22.4	0.06	-1.46	918
ZK302-1-12	4.16	25.4	1.93	10.6	8.5	0.23	46.8	18.8	251	97	488	108	1009	190	3077	2.36	47.6	1.52	31.3	0.03	-0.22	628
ZK302-1-13	0.02	1.77	0.02	0.28	0.81	0.37	5.11	1.77	22.3	7.64	33.7	6.59	55.8	10.0	246	3.86	49.0	1.13	43.3	0.56	-3.21	664
ZK302-1-14	8.79	61.6	7.63	42.2	31.1	0.98	90.6	32.7	405	150	764	175	1711	327	4774	15.2	45.4	1.81	25.1	0.06	-0.80	779
ZK302-1-15	3.10	27.7	2.55	13.5	11.4	0.32	52.9	24.1	356	143	796	207	2190	425	4759	8.06	45.6	2.20	20.8	0.04	-1.75	722
ZK302-1-16	2.94	33.5	3.66	14.5	13.8	0.82	58.8	25.4	354	138	729	172	1709	324	4469	7.87	45.9	1.75	26.2	0.09	-1.40	720
ZK302-1-17	52.1	149	20.31	92.8	25.5	0.59	39.4	9.9	109	39	186	40	378	71.0	1189	14.1	47.4	1.23	38.4	0.06	2.06	772
ZK302-1-18	10.5	59.7	7.85	41.5	28.8	1.05	97.4	41.6	581	229	1231	303	3187	619	7682	23.1	44.7	2.19	20.4	0.06	-1.40	820
ZK302-1-19	1.66	18.6	1.49	7.99	8.66	0.27	49.5	24.3	372	153	841	210	2189	409	5043	5.33	45.4	2.03	22.4	0.04	-2.19	689
ZK302-1-20	3.37	23.8	2.62	14.0	10.5	0.44	46.1	21.8	323	132	737	190	2025	394	4388	6.42	45.3	2.18	20.8	0.06	-1.78	703
ZK302-1-21	2.61	38.9	1.87	10.9	12.1	1.11	55.1	20.9	271	103	512	114	1056	193	3216	23.8	43.6	1.32	32.9	0.13	-1.60	823
ZK302-1-22	10.8	67.0	6.51	31.9	24.2	3.32	83.7	31.2	391	142	684	151	1381	249	4518	15.6	44.3	1.36	32.6	0.22	-0.85	781
ZK302-1-23	3.8	61.6	4.05	25.5	28.4	1.64	96.9	32.8	393	137	651	140	1280	233	4295	17.8	45.3	1.20	37.6	0.10	-0.61	794
ZK302-1-24	2.74	39.7	3.30	21.6	21.0	1.00	76.9	24.5	289	103	485	103	930	172	3258	26.1	45.3	1.26	36.0	0.08	-1.26	833
ZK302-1-25	11.0	34.2	2.18	12.4	9.84	2.87	32.2	9.84	114	42	207	45.1	423	81.5	1359	137	42.9	1.00	42.8	0.49	-2.05	1039

																				续表 2-	1
测试点 La	Ce	Pr	ΡN	Sm	Eu	Gd	Tb	Dy	Но	Er	$T_{\rm m}$	Yb	Lu	Υ	Ti	Zr/%	%∕JH	Zr/Hf]	Eu∕Eu *	ΔFMQ	$\Gamma_{\rm Ti}/{}^{\rm o}{\rm C}$
GM-W-3-3-01 0.46	17.9	0.40	3.36	5.65	0.28	28.5	10.7	137	50	248	53.8	501	93.9	1597	4.37	47.9	1.28	45.9	0.13	-0.80	692
GM-W-3-3-02 0.70	12.6	0.66	4.11	4.88	0.20	26.0	10.6	150	61	324	75.4	741	143	1995	4.22	47.3	1.52	44.6	0.17	0.74	714
GM-W-3-3-03 0.00	6.82	0.01	0.54	2.17	0.10	17.1	7.26	107	44	239	55.0	540	108	1425	2.01	43.7	1.36	21.7	0.02	-1.50	606
GM-W-3-3-04 0.00	8.86	0.03	0.72	2.64	0.09	18.9	7.34	101	40	201	45.1	429	82.6	1249	2.28	44.1	1.32	25.4	0.02	-2.54	843
GM-W-3-3-05 0.00	7.14	0.01	0.38	1.29	0.20	10.3	3.97	55	23	120	28.0	276	55.8	714	2.75	48.4	1.26	43.4	0.07	-0.11	745
GM-W-3-3-06 0.15	9.43	0.12	1.02	3.20	0.15	21.5	8.74	123	50	266	60.7	591	116	1611	2.68	46.2	1.35	34.8	0.08	-1.42	735
GM-W-3-3-07 2.09	15.5	0.84	4.99	2.84	0.43	11.0	3.52	45	18	06	20.6	201	39.5	553	3.74	46.3	1.27	34.9	0.10	-2.24	841
GM-W-3-3-08 3.20	15.5	1.35	6.36	3.70	0.33	14.2	5.45	73	29	152	34.5	335	65.7	892	2.28	42.6	1.32	27.2	0.22	-1.43	995
GM-W-3-3-09 1.16	20.3	0.86	5.17	6.02	0.63	25.4	9.61	122	45	225	49.6	458	85.9	1392	5.16	47.0	1.23	36.6	0.06	-1.22	634
GM-W-3-3-10 0.28	36.0	0.64	9.08	14.4	2.09	59.6	17.5	197	68	302	58.7	505	91.4	2026	8.09	47.0	1.00	42.5	0.09	-2.41	761
GM-W-3-3-11 3.84	34.5	5.83	40.3	51.5	2.54	110	42.9	530	192	1003	241	2468	462	6016	35.5	43.9	2.09	17.7	0.03	-3.46	635
GM-W-3-3-12 0.08	12.1	0.11	1.38	2.15	0.41	10.3	3.49	43	17	06	20.3	202	43.2	567	11.0	46.7	1.02	38.1	0.10	-0.84	683
GM-W-3-3-13 5.40	21.0	1.83	8.40	5.74	0.31	24.7	8.76	115	44	220	47.4	449	86.2	1380	4.72	45.2	1.22	26.2	0.08	0.57	678
GM-W-3-3-14 0.55	9.53	0.38	1.69	4.93	0.07	42.2	23.2	366	151	861	226.2	2507	492	5082	2.18	44.0	2.22	21.5	0.02	2.75	654
GM-W-3-3-15 0.86	16.7	0.66	4.14	5.12	0.46	21.1	7.57	93	34	163	34.2	313	58.6	1002	5.96	44.8	1.18	21.8	0.01	-2.75	646
GM-W-3-3-16 0.50	16.0	0.53	3.92	5.23	0.56	21.1	7.29	06	33	167	36.4	339	65.7	1018	4.46	47.5	1.26	46.3	0.16	-0.96	764
GM-W-3-3-17 5.79	44.9	4.83	27.4	28.2	2.12	87.9	30.2	338	111	500	98.8	850	151	3286	15.9	43.4	1.18	27.0	0.10	-1.34	717
GM-W-3-3-18 0.01	11.9	0.12	1.86	3.83	0.45	18.2	5.77	74	28	142	30.8	290	56.7	878	6.3	47.9	1.18	38.9	0.12	-1.43	800
GM-W-3-3-19 5.55	48.9	2.80	15.2	7.58	0.98	19.6	5.43	64	23	112	24.0	224	44.5	705	11.9	47.3	1.11	46.4	0.21	0.72	785
GM-W-3-3-20 0.08	15.8	0.35	4.96	6.96	1.43	31.8	9.27	107	38	182	37.6	342	65.6	1167	10.3	47.4	1.00	42.1	0.09	-0.96	710
GM-W-3-3-21 0.01	5.53	0.01	0.26	0.87	0.12	7.21	2.99	44	19	105	25.0	254	51.1	606	2.29	47.5	1.35	35.9	0.06	-1.19	629
GM-W-3-3-22 0.12	20.2	0.23	3.53	6.97	0.80	32.8	11.2	142	53	264	56.5	520	99.1	1667	2.92	44.7	1.22	29.2	0.05	-1.95	700
GM-W-3-3-23 0.87	12.5	0.78	8.24	11.8	0.85	51.0	15.1	175	62	288	57.8	515	96.5	1916	13.6	47.3	1.02	34.6	0.25	-5.94	678
GM-W-3-3-24 15.9	50.9	5.35	24.2	7.22	0.46	17.9	5.33	65	24	116	24.5	225	43.5	727	19.5	44.8	1.09	29.4	0.08	-1.55	698
GM-W-3-3-25 3.70	31.9	3.74	20.2	22.7	1.77	63.6	22.9	255	79	354	72.8	618	109	2301	9.06	43.7	1.25	18.9	0.01	-2.73	602
GM-E-2-1-01 0.08	9.05	0.15	2.23	4.37	0.42	23.1	7.46	95	36	172	36.2	336	68.7	1070	5.59	46.9	1.04	36.8	0.07	-0.97	673

																					续表 2-	5
测试点	La	Ce	\mathbf{Pr}	ΡN	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Υ	Ti	Zr/%	%∕JH	Zr/Hf]	Eu∕Eu *	ΔFMQ	$T_{\rm Ti}$
GM-E-2-1-02	0.30	34.37	0.58	8.04	12.1	1.40	52.0	15.2	174	60	273	53.9	469	85.8	1846	7.33	46.3	1.06	30.5	0.05	-1.82	670
GM - E - 2 - 1 - 03	4.06	16.02	1.91	8.25	7.13	0.11	43.3	22.5	355	148	828	207	2121	400	4915	1.7	47.1	2.01	34.7	0.05	-1.81	617
GM-E-2-1-04	1.64	33.07	1.83	9.67	9.33	0.14	51.2	22.9	330	133	709	167	1618	307	4299	28.7	47.4	1.74	35.9	0.04	-1.33	626
GM - E - 2 - 1 - 05	0.09	36.39	0.49	8.19	13.3	0.60	59.2	17.1	198	67	302	9.09	531	94.0	2026	10.5	47.8	1.11	38.0	0.16	-1.40	639
GM-E-2-1-06	1.12	21.54	1.66	8.61	13.2	0.72	51.8	22.3	292	103	512	110	866	186	3242	9.38	47.3	1.33	35.0	0.06	-1.60	637
GM-E-2-1-07	1.94	23.63	1.29	8.74	13.2	0.89	60.4	23.4	307	110	531	110	066	183	3463	28.3	47.7	1.33	37.7	0.24	0.23	661
GM-E-2-1-08	28.5	133.96	17.64	6.99	48.5	5.59	121	51.9	677	239	1230	281	2705	493	7927	101	47.3	1.57	35.8	0.14	0.00	626
GM-E-2-1-09	0.01	10.9	0.04	1.05	3.36	0.16	21.0	8.20	109	41	208	45.7	421	80.8	1300	2.56	46.6	1.28	37.7	0.15	-0.57	686
GM-E-2-1-10	0.13	6.50	0.27	3.97	8.05	0.53	39.0	12.6	153	55	260	53.0	463	89.9	1706	12.5	47.4	1.11	47.3	0.22	1.30	723
GM-E-2-1-11	0.22	5.66	0.19	1.41	4.37	0.12	33.3	18.6	287	115	660	179	1994	395	3910	2.58	43.6	2.48	20.9	0.10	-2.76	866
GM-E-2-1-12	1.11	17.7	0.56	3.31	5.36	0.40	28.5	11.3	154	58	289	63.5	576	108	1753	4.94	47.9	1.23	46.9	0.27	-0.50	750
GM-E-2-1-13	2.74	58.7	2.62	14.5	12.9	0.65	46.4	18.1	245	96	507	121	1181	230	3120	4.67	47.6	1.72	38.8	0.08	-0.21	679
GM-E-2-1-14	56.0	253	31.7	121	31.5	0.28	63.2	25.2	364	144	804	206	2175	423	4806	3.38	43.7	2.05	19.8	0.02	-2.61	623
GM-E-2-1-15	0.23	9.93	0.22	1.54	4.75	0.05	42.3	22.9	367	156	876	216	2191	420	5125	3.04	47.5	2.05	40.3	0.14	-0.56	697
GM-E-2-1-16	0.08	8.34	0.19	2.75	5.30	0.58	22.2	6.29	73	25	111	22.3	197	37.2	723	12.9	47.8	1.03	37.9	0.16	-0.38	675
GM-E-2-1-17	3.70	31.5	2.60	11.6	12.6	0.86	53.4	25.4	370	148	786	183	1757	329	4769	7.57	46.6	1.61	39.4	0.13	-0.36	783
GM-E-2-1-18	3.50	17.7	1.04	3.98	3.12	0.27	14.6	5.36	71	27	142	31.5	300	60.0	875	18.9	47.5	1.23	40.3	0.17	-0.79	702
GM-E-2-1-19	1.85	44.0	1.40	15.7	19.3	2.53	72.7	20.0	216	71	313	60.3	504	93.2	2191	16.2	47.3	1.02	42.8	0.25	1.46	756
GM-E-2-1-20	0.03	13.5	0.16	2.79	5.45	0.36	29.0	9.62	117	42	200	42.4	389	74.2	1297	6.94	47.4	1.13	47.2	0.29	-0.34	744
GM-E-2-1-21	0.01	6.64	0.03	0.32	1.19	0.07	8.47	3.45	48	20	103	23.4	226	45.7	611	2.38	47.4	1.32	35.0	0.15	-1.64	626
GM-E-2-1-22	0.87	20.2	1.00	5.73	8.66	0.37	49.9	22.3	315	121	622	138	1284	236	3841	6.15	46.8	1.53	38.3	0.16	0.05	643
GM-E-2-1-23	0.02	0.55	0.04	0.35	0.74	0.18	6.31	3.61	56	22	116	26.8	260	50.9	702	4.65	47.2	1.37	46.3	0.11	-1.33	769
GM-E-2-1-24	1.30	21.5	1.46	7.05	10.1	0.55	47.4	21.3	290	111	560	126	1170	217	3446	5.99	47.3	1.52	43.2	0.12	0.88	803
GM-E-2-1-25	0.06	7.90	0.03	0.74	4.32	0.04	44.1	24.9	392	157	897	241	2684	532	5278	1.59	46.5	2.31	37.1	0.14	-0.34	732
注:除 Zr 和 F	H£βh,∄	其他元素	美单位均	为 10 ⁻⁶																		

2023 年

Table 3	Zircon Lu-	Hf isotopic co	ompositions	of the biotit	e granite i	n the Gu	ıangmi	ng fluorite	deposit
测试点	年龄/Ma	176 Yb/ 177 Hf	¹⁷⁶ Lu⁄ ¹⁷⁷ Hf	$^{176}\mathrm{Hf}\!/^{177}\mathrm{Hf}$	$\pm 1\sigma$	$\boldsymbol{\varepsilon}_{\mathrm{Hf}}(t)$	$\pm 1\sigma$	$T_{\rm DM}/{ m Ma}$	$T_{\rm DM2}/{ m Ma}$
ZK302-1-01	77.7	0.109563	0.003218	0.282345	0.000007	-13.99	0.23	1360	1994
ZK302-1-02	95.6	0.112632	0.003343	0.282329	0.000006	-14.23	0.21	1390	2023
ZK302-1-03	148.5	0.108219	0.003287	0.282321	0.000006	-13.45	0.23	1399	2014
ZK302-1-04	177.7	0.052182	0.001538	0.282358	0.000009	-11.35	0.30	1281	1906
ZK302-1-05	221.8	0.075239	0.002341	0.282362	0.000006	-10.37	0.22	1303	1879
ZK302-1-06	133.0	0.100715	0.003117	0.282356	0.000006	-12.50	0.22	1340	1943
ZK302-1-07	90.4	0.158253	0.004829	0.282297	0.000007	-15.55	0.25	1499	2101
ZK302-1-08	84.1	0.111703	0.003640	0.282346	0.000009	-13.87	0.31	1376	1992
ZK302-1-09	174.4	0.111799	0.003516	0.282358	0.000006	-11.64	0.23	1353	1922
ZK302-1-10	218.0	0.070187	0.002153	0.282401	0.000009	-9.04	0.31	1240	1793
ZK302-1-11	92.5	0.109851	0.003486	0.282319	0.000006	-14.66	0.21	1410	2047
ZK302-1-12	217.3	0.070914	0.002128	0.282393	0.000009	-9.35	0.33	1251	1811
ZK302-1-13	572.2	0.008371	0.000251	0.282493	0.000009	2.34	0.32	1052	1353
ZK302-1-14	175.7	0.103485	0.003315	0.282362	0.000009	-11.44	0.32	1338	1910
ZK302-1-15	228.3	0.102071	0.003316	0.282329	0.000007	-11.57	0.24	1389	1959
ZK302-1-16	136.8	0.092679	0.002887	0.282372	0.000007	-11.84	0.24	1308	1905
ZK302-1-17	204.0	0.035416	0.001144	0.282400	0.000009	-9.26	0.32	1209	1795
ZK302-1-18	103.7	0.139388	0.004624	0.282284	0.000010	-15.74	0.34	1511	2123
ZK302-1-19	140.4	0.094020	0.002984	0.282354	0.000008	-12.41	0.27	1339	1944
ZK302-1-20	141.2	0.104102	0.003539	0.282342	0.000008	-12.85	0.28	1377	1971
ZK302-1-21	189.7	0.091367	0.002798	0.282381	0.000011	-10.41	0.38	1291	1857
ZK302-1-22	99.6	0.084885	0.002493	0.282363	0.000007	-12.88	0.25	1307	1941
ZK302-1-23	143.9	0.110712	0.003594	0.282290	0.000014	-14.65	0.49	1457	2086
ZK302-1-24	201.3	0.067915	0.002060	0.282378	0.000008	-10.19	0.27	1270	1852
ZK302-1-25	291.9	0.065459	0.002014	0.282389	0.000009	-7.89	0.33	1252	1778
GMW33-01	231.7	0.075950	0.002295	0.282328	0.000013	-11.38	0.45	1351	1950
GMW33-02	204.3	0.087788	0.002935	0.282343	0.000008	-11.49	0.27	1352	1935
GMW33-03	212.6	0.069982	0.002219	0.282377	0.000009	-10.01	0.31	1277	1849
GMW33-04	212.1	0.047604	0.001568	0.282386	0.000010	-9.63	0.35	1243	1825
GMW33-05	225.5	0.057594	0.001924	0.282351	0.000010	-10.62	0.34	1304	1897
GMW33-06	210.6	0.041625	0.001381	0.282416	0.000016	-8.55	0.57	1193	1756
GMW33-07	217.9	0.036130	0.001201	0.282404	0.000012	-8.82	0.42	1205	1779
GMW33-08	208.9	0.032407	0.001109	0.282383	0.000018	-9.72	0.62	1230	1828
GMW33-10	222.9	0.052691	0.001615	0.282348	0.000011	-10.73	0.38	1297	1902
GMW33-12	2847.7	0.026759	0.000941	0.281255	0.000035	9.00	1.23	2780	2739
GMW33-13	211.9	0.048844	0.001581	0.282362	0.000007	-10.48	0.26	1277	1878
GMW33-14	152.2	0.128569	0.003918	0.282285	0.000007	-14.71	0.25	1479	2096
GMW33-15	214.1	0.046583	0.001505	0.282411	0.000019	-8.68	0.69	1204	1767

表 3 光明矿区黑云母花岗岩锆石 Lu-Hf 同位素分析结果

2023 -	雸
--------	---

									续表 3
测试点	年龄/Ma	176 Yb/ 177 Hf	$^{176}Lu\!/^{177}Hf$	$^{176}\mathrm{Hf}\!/^{177}\mathrm{Hf}$	$\pm 1\sigma$	$\boldsymbol{\varepsilon}_{\mathrm{Hf}}(t)$	$\pm 1\sigma$	$T_{ m DM}/ m Ma$	$T_{\rm DM2}/{ m Ma}$
GMW33-16	186.9	0.079904	0.002483	0.282305	0.000016	-13.12	0.56	1390	2023
GMW33-17	205.6	0.106696	0.003257	0.282268	0.000024	-14.16	0.86	1476	2103
GMW33-18	227.1	0.035354	0.001148	0.282370	0.000009	-9.80	0.33	1251	1847
GMW33-19	229.9	0.035796	0.001210	0.282372	0.000012	-9.69	0.42	1250	1843
GMW33-20	232.7	0.025720	0.000860	0.282404	0.000011	-8.45	0.38	1194	1767
GMW33-21	220.8	0.022977	0.000802	0.282379	0.000009	-9.56	0.30	1226	1827
GMW33-22	212.5	0.044409	0.001405	0.282368	0.000008	-10.23	0.27	1262	1862
GMW33-23	225.3	0.050889	0.001689	0.282329	0.000011	-11.37	0.39	1327	1944
GMW33-24	236.9	0.031680	0.001017	0.282371	0.000012	-9.55	0.42	1245	1839
GMW33-25	213.8	0.063082	0.002097	0.282342	0.000011	-11.21	0.39	1323	1925
GME-2-1-01	516.6	0.031990	0.001196	0.282315	0.000017	-5.53	0.60	1330	1804
GME-2-1-02	208.9	0.046352	0.001514	0.282354	0.000010	-10.80	0.34	1285	1895
GME-2-1-03	316.5	0.118779	0.004223	0.282271	0.000007	-12.05	0.23	1513	2056
GME-2-1-04	233.0	0.062348	0.002145	0.282352	0.000007	-10.46	0.26	1310	1893
GME-2-1-05	195.2	0.122612	0.004076	0.282282	0.000010	-13.98	0.37	1490	2083
GME-2-1-06	181.5	0.115470	0.003891	0.282283	0.000013	-14.21	0.45	1481	2087
GME-2-1-07	199.8	0.084925	0.002608	0.282360	0.000007	-10.94	0.24	1316	1897
GME-2-1-08	71.9	0.182906	0.006059	0.282102	0.000027	-22.85	0.94	1868	2539
GME-2-1-09	217.7	0.063458	0.002110	0.282345	0.000013	-11.04	0.47	1320	1917
GME-2-1-10	230.8	0.054088	0.001859	0.282354	0.000023	-10.42	0.81	1298	1888
GME-2-1-11	228.5	0.089284	0.003200	0.282283	0.000011	-13.15	0.40	1451	2057
GME-2-1-12	204.7	0.084999	0.002554	0.282356	0.000009	-10.96	0.33	1319	1903
GME-2-1-13	205.9	0.099748	0.003253	0.282324	0.000009	-12.18	0.33	1393	1979
GME-2-1-14	163.5	0.098653	0.003537	0.282319	0.000012	-13.22	0.44	1411	2012
GME-2-1-15	224.0	0.126375	0.004774	0.282293	0.000009	-13.14	0.32	1503	2053
GME-2-1-16	226.9	0.024166	0.000840	0.282362	0.000015	-10.03	0.54	1251	1861
GME-2-1-17	144.7	0.123112	0.004257	0.282234	0.000010	-16.70	0.34	1571	2214
GME-2-1-18	188.3	0.029116	0.000990	0.282420	0.000016	-8.86	0.58	1176	1759
GME-2-1-19	213.0	0.061467	0.002038	0.282369	0.000028	-10.28	0.98	1283	1866
GME-2-1-20	233.3	0.039615	0.001215	0.282295	0.000009	-12.34	0.32	1358	2010
GME-2-1-21	210.3	0.027236	0.000927	0.282393	0.000014	-9.33	0.48	1211	1805
GME-2-1-22	174.6	0.128474	0.003948	0.282343	0.000013	-12.20	0.46	1391	1956
GME-2-1-23	838.0	0.033263	0.001033	0.282038	0.000039	-8.28	1.39	1710	2224
GME-2-1-24	160.9	0.105005	0.003191	0.282324	0.000014	-13.07	0.49	1390	2000
GME-2-1-25	225.1	0.118336	0.003862	0.282320	0.000009	-12.02	0.32	1423	1984

明萤石矿黑云母花岗岩的侵位时间。

光明萤石矿黑云母花岗岩印支期—燕山期的 锆石 Y 含量介于 553×10⁻⁶~6016×10⁻⁶之间, Zr 含 量介于 43.4%~48.4% 之间, Hf 含量介于 1.00%~ 2.48%之间。计算得到 Zr/Hf 值为 17.7~47.4, Eu/ Eu* 值为 0.01~0.29。利用 Loucks et al.(2020) 提出

1445

的锆石氧逸度计算方法,得到 Δ FMQ 变化范围为 -3.46~2.75,且随锆石年龄由老至新, Δ FMQ 逐渐 降低;利用 Watson et al.(2006)提出的计算方法,估 算出锆石结晶温度为 602~866°C(α_{siO_2} =1; α_{TiO_2} = 0.7)。

光明萤石矿区黑云母花岗岩印支期—燕山期 的锆石 Hf 同位素测定值具有较大的变化范围, ¹⁷⁶Hf/¹⁷⁷Hf=0.282234~0.282420, $\varepsilon_{\rm Hf}(t)$ = -16.7~ -8.5,利用平均地壳 $f_{\rm Lu/Hf}$ =-0.5,¹⁷⁶Lu/¹⁷⁷Hf=0.015 计算对应的二阶段模式年龄为 1756~2214 Ma,且 在 1900~1950 Ma 间较集中(图 3-b),显示物质源 区为古—中元古代地壳。

3.2 黑云母花岗岩主量、微量元素特征

光明萤石矿黑云母花岗岩主量、微量及稀土元素 分析结果见表4。岩体具有高硅(SiO₂=72.62%~ 77.34%)、高碱(Na₂O+K₂O=6.03%~8.66%)、富铝 (Al₂O₃=12.02%~13.83%)的特征。在岩浆/火山 岩系统全碱-硅(TAS)分类图解(图4-a)上,样品点 均位于花岗岩区,结合岩石手标本及镜下观察将其 定名为黑云母花岗岩。K₂O含量较高,为5.02%~ 5.88%;Na₂O含量(0.15%~3.16%)远小于K₂O含 量,在SiO₂-K₂O图解(图4-b)中,样品点落于高钾 钙碱性-钾玄岩系列,反映出样品富钾的特征。样 品A/CNK值介于1.07~1.14之间,在全岩A/CNK-A/NK图解(图4-c)中,样品点落入弱过铝质—过 铝质区域。岩体的Fe₂O₃、MnO、MgO、CaO、TiO₂ 及 P₂O₅含量均较低(表4),指示岩浆可能经历了较 高程度的演化。

光明萤石矿内黑云母花岗岩的稀土元素总量 较低(Σ REE=161×10⁻⁶~194×10⁻⁶),相对富集轻 稀土元素,LREE/HREE 值介于 6.86~7.56 之间,在 稀土元素球粒陨石标准化配分图中表现为右倾的 平行曲线簇(图 5-a),轻、重稀土元素分馏明显, (La/Yb)_N=6.47~7.24,有较强的负 Eu 异常(δ Eu= 0.13~0.15)和微弱的正 Ce 异常(δ Ce=1.01~ 1.13),与已报道的新鲜印支期花岗岩的配分模式 相似,而显著不同于燕山期花岗岩的稀土元素配 分。整体上,岩石富集大离子亲石元素 Rb、Th、U, 亏损 Ba、Nb 等元素(图 5-b),且具有较高的 Rb 含 量(359×10⁻⁶~612×10⁻⁶)和 Rb/Sr 值(7.69~14.5), 以及较低的 Nb/Ta 值(6.21~7.75)。

3.3 萤石稀土与微量元素

萤石样品的稀土与微量元素含量及特征参数 见表 4。2 个萤石样品的稀土元素总量均较低 (Σ REE=34.6×10⁻⁶~44.6×10⁻⁶),在稀土元素球粒 陨石标准化配分图中表现为轻稀土元素略富集的 平坦型曲线(图5-a),(La/Yb)_N=1.13~2.15。轻稀 土元素之间分馏较明显,(La/Yb)_N=1.55~2.18, 中、重稀土元素分异不大,(Gd/Yb)_N=0.72~0.84, 配分模式整体上与燕山期花岗岩相似,而与印支期 花岗岩和矿区黑云母花岗岩不同(图5)。2 个样品 均具有中等程度的负 Eu 异常(δEu=0.44~0.50), 以及非常微弱的负 Ce 异常(δCe=0.96~0.97)。 萤石样品的微量元素特征整体上较一致,相对亏损

Fig. 3 Frequency diagrams of zircon U-Pb ages(a) and $T_{DM2}(b)$ from the Xitian granite

接口旦	78202-1	GM-E-	GM-W-	GM-C-	GM-W-	长口旦	71/202-1	GM-E-	GM-W-	GM-C-	GM-W-
件吅丂	ZK302 1	2-1	3-3	2-1	3-1	件吅丂	ZK302 1	2-1	3-3	2-1	3-1
样品类型	花岗岩	花岗岩	花岗岩	萤石	萤石	样品类型	花岗岩	花岗岩	花岗岩	萤石	萤石
Al ₂ O ₃	13.83	12.02	12.46	/	/	Ga	17.1	14.4	18.7	0.67	0.75
CaO	0.59	0.31	2.76	/	/	As	4.18	6.25	3.83	0.70	1.58
Fe_2O_3	1.33	1.12	1.15	/	/	Se	1.25	1.00	1.30	0.47	0.53
K_2O	5.50	5.02	5.88	/	/	Rb	382	359	612	0.72	0.57
MgO	0.23	0.18	0.71	/	/	Sr	49.7	37.9	42.2	68.2	74.0
MnO	0.05	0.04	0.07	/	/	Y	39.3	30.4	43.0	35.3	64.7
Na ₂ O	3.16	2.73	0.15	/	/	Zr	103	88.5	89.6	1.11	0.80
P_2O_5	0.04	0.03	0.03	/	/	Nb	18.1	16.7	17.0	0.07	0.06
TiO_2	0.13	0.11	0.11	/	/	Mo	0.46	0.34	0.45	0.55	0.21
SiO_2	73.75	77.34	72.62	/	/	Sn	14.3	17.7	18.6	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
烧失量	0.86	0.78	3.65	/	/	Cs	17.7	19.3	63.6	0.07	0.08
总计	99.47	99.69	99.60	/	/	Ba	105	65.9	101	3.67	2.96
K ₂ O+Na ₂ O	8.66	7.76	6.03	/	/	Hf	3.63	3.23	3.39	0.02	0.02
A/CNK	1.13	1.14	1.07	/	/	Та	2.33	2.62	2.73	0.01	0.03
A/NK	1.24	1.21	1.88	/	/	Yb	3.76	2.87	4.00	1.71	3.22
Li	76.0	32.8	40.2	0.69	1.08	Pb	99.4	82.7	54.0	0.29	0.17
Be	4.59	6.97	7.26	0.23	0.44	Th	45.5	37.5	39.4	0.13	0.16
Sc	3.17	2.79	4.53	0.09	0.08	U	28.3	24.2	25.5	0.13	0.15
Ti	797	674	671	4.89	3.81	Nb/Ta	7.75	6.38	6.21	4.59	1.98
V	7.05	5.95	6.03	0.65	0.52	Zr/Hf	28.3	27.4	26.5	53.2	42.4
Cr	2.42	1.50	7.12	2.78	16.5	Σree	193	161	194	34.6	44.6
Mn	348	281	624	21.4	7.84	δEu	0.15	0.13	0.14	0.50	0.44
Co	1.16	0.95	0.94	0.14	0.25	δCe	1.04	1.13	1.01	0.96	0.97
Ni	2.15	1.05	3.42	2.18	8.42	$(La/Nd)_N$	2.19	2.24	2.18	2.00	1.65
Cu	0.34	0.83	0.74	0.17	0.42	$(La/Sm)_N$	3.10	3.27	3.08	2.18	1.55
Zn	33.8	30.6	34.8	<lod< td=""><td><lod< td=""><td>(La/Yb)_N</td><td>6.78</td><td>7.24</td><td>6.47</td><td>2.15</td><td>1.13</td></lod<></td></lod<>	<lod< td=""><td>(La/Yb)_N</td><td>6.78</td><td>7.24</td><td>6.47</td><td>2.15</td><td>1.13</td></lod<>	(La/Yb) _N	6.78	7.24	6.47	2.15	1.13

(Gd/Yb)_N

1.37

1.39

表 4 光明矿区黑云母花岗岩和萤石主量、稀土及微量元素分析结果

Table 4 Results of major, rare earth and trace element compositions of biotite granite and fluorite in the Guangming deposit

注:主量元素含量单位为%,微量和稀土元素含量单位为10⁻⁶;"/"表示无数据;<LOD 表示低于检出限

Rb、Ba、Nb、Sm、Hf、Eu,相对富集U、La、Nd、Zr,具 明显的正Y异常。在微量元素原始地幔标准化图 解(图5-b)中,萤石样品总体上显著低于岩体,但 Cr、Ni、Sr、Y含量整体大于岩体。萤石具有较高的 Y/Ho值(59.9~60.3),显著高于岩体(28.4~31.7), 指示了强烈的流体活动(Veksler et al.,2005)。

3.4 黑云母花岗岩与萤石 Nd 同位素

Sm-Nd 同位素分析结果(表 5)显示,3 件黑云

母花岗岩样品的 Sm 含量为 $5.94 \times 10^{-6} \sim 7.83 \times 10^{-6}$, Nd 含量为 $26.7 \times 10^{-6} \sim 34.0 \times 10^{-6}$, ¹⁴³Nd/¹⁴⁴Nd 值 为 $0.512016 \sim 0.512045$ 。2 件萤石样品的 Sm 含 量分别为 1.58×10^{-6} 和 2.20×10^{-6} , Nd 含量分别为 5.29×10^{-6} 和 6.32×10^{-6} , ¹⁴³Nd/¹⁴⁴Nd 值分别为 0.512113和 0.512071。黑云母花岗岩样品的 Nd 同位 素组成分别按照 218 Ma 和 133 Ma 估算,得出 $\varepsilon_{Nd}(t)$ 值分别为 $-10.5 \sim -10.0$ 和 $-11.2 \sim -10.6$, T_{DM2}

1.31

0.84

0.72

图 4 锡田岩体岩石类型和系列划分图解

(燕山期花岗岩数据据 Zhou et al., 2015;印支期花岗岩数据据何苗等, 2018;图 5、图 6、图 8 中相关数据来源同此图)

Fig. 4 Classification and series diagrams of the Xitian granitoids

a-SiO₂-(Na₂O+K₂O)图解(底图据 Wilson, 1989)(1--橄榄辉长岩;2a--碱性辉长岩;2b-亚碱性辉长岩;3---辉长闪长岩;4--闪长岩;

5--花岗闪长岩;6--花岗岩;7--硅英岩;8-二长辉长岩;9-二长闪长岩;10-二长岩;11-石英二长岩;12-正长岩; 13--副长石辉长岩;14--副长石二长闪长岩;15--副长石二长正长岩;16--副长石正长岩;17--副长石深成岩;

18-- 霓方钠岩/磷霞岩/粗白榴岩);b-SiO2-K2O图解(底图据 LeMaitre, 2002);c-A/CNK-A/NK 图解

(球粒陨石、原始地幔数据据 Sun et al., 1989)

Fig. 5 Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns(b)

		nes ,			NAMEN	Thu PJ P S		~~		
Table 5	Results of Nd	isotop	e comp	ositions in l	oiotite granit	te and fluc	orite from	m the Gua	angming	; deposit
样只是	样只米刑	含量	/10 ⁻⁶	¹⁴⁷ Sm⁄	(¹⁴³ Nd⁄	+1 <i>a</i>	$\boldsymbol{\varepsilon}_{\mathrm{Nd}}(t)$	$T_{\rm DM2}/{ m Ma}$	$\boldsymbol{\varepsilon}_{\mathrm{Nd}}(t)$	$T_{\rm DM2}/{ m Ma}$
1千四 夕	件吅天堂	Sm	Nd	¹⁴⁴ Nd	¹⁴⁴ Nd)t	±10	(13	3 Ma)	(21	8 Ma)
ZK302-1	花岗岩	7.66	33.4	0.1385	0.512016	0.000003	-11.15	1837	-10.5	1855
GM-E-2-1	花岗岩	5.94	26.7	0.1347	0.512024	0.000003	-10.93	1819	-10.3	1834
GM-W-3-3	花岗岩	7.83	34.0	0.1391	0.512045	0.000004	-10.60	1793	-10.0	1811
GM-C-2-1	萤石	1.58	5.29	0.1801	0.512113	0.000006	-9.97	1741		
GM-W-3-1	萤石	2.20	6.32	0.2102	0.512071	0.000002	-11.29	1848		

表 5 光明矿区黑云母花岗岩和萤石 Nd 同位素分析结果

为 1811~1855 Ma,皆与锆石 Hf 同位素获得的二阶 段模式年龄(1756~2214 Ma)一致;萤石样品的 Nd 同位素组成按照燕山期花岗岩年龄(即可能的成矿 年龄 133 Ma)估算,结果与黑云母花岗岩相似, $\varepsilon_{Nd}(t) = -11.3 \sim -10.0, T_{DM2} = 1741 \sim 1848 Ma,指示$ 二者源区类似且可能为古—中元古代成熟地壳。

4 光明萤石矿黑云母花岗岩起源与演化

前人对锡田岩体已获得的年龄数据进行了详 细统计(苏红中等,2015),认为其成岩作用集中于 3 个主要阶段,即印支期阶段(226~225 Ma)、燕山期 第一阶段(166~158 Ma)和燕山期第二阶段(152~ 142 Ma),整体看,燕山期岩浆活动年龄范围较大。 本次对光明矿区 3 个黑云母花岗岩样品开展的 LA-ICP-MS 锆石 U-Pb 年龄测试没有得到较好的谐和 年龄,所测锆石年龄介于 237~133 Ma 之间,但从年 龄分布频谱图(图 3-a)看,印支期年龄在 230~210 Ma 之间出现明显的峰值。3 个样品中低 U 锆石 的²⁰⁶ Pb/²³⁸U 年龄加权平均值为 215~218 Ma,在误 差范围内一致,暗示侵位年龄为印支期。此外,3 个 黑云母花岗岩的稀土元素配分图和微量元素蛛网 图均与已报道的印支期花岗岩相似,而与燕山期岩 体不同,也支持形成时代为印支期。

前人研究认为,单个侵入体从岩浆形成到锆石 U-Pb 同位素体系封闭的时间一般不超过1 Ma (Petford et al., 2000; Coleman et al., 2004; Glazner et al.,2004),而光明矿区出露的锡田岩体内岩浆锆石 结晶年龄存在 100 Ma 左右的时间差,这可能与岩 浆多期次活动、补给有关(Chamberlain et al., 2014; Yan et al., 2018; 2020), 这一猜想也得到锆石 Ti 温 度估算与 Hf 同位素特征的支持。利用锆石 Ti 含量 估算温度值、氧逸度等与锆石结晶年龄进行投图 (图 6),发现印支期—燕山期锆石结晶温度和氧逸 度变化较大,可能经历了多次岩浆注入或热液活动 的影响。且黑云母花岗岩的稀土元素配分型式与 前人报道的印支期花岗岩非常相似,而不同于燕山 期花岗岩。因此,结合前人研究结果、岩石结构、锆 石 U-Pb 定年结果与全岩主量、微量元素特征,笔者 认为光明矿区黑云母花岗岩主体形成于印支期,但 其中锆石可能受到燕山期岩浆活动的影响,最年轻 的锆石年龄 133 Ma 可能代表了最晚岩浆/热液活 动时间。

单个岩体 5 个单位以上的 *ε*_{нf}(*t*) 值变化可能由 岩浆多期次快速上升补给造成的 Hf 同位素不均一

图 6 锆石特征值与年龄关系图解

Fig. 6 Diagrams of zircon characteristic values vs.U-Pb age

导致(Tang et al.,2014)。本次研究获得的花岗岩锆 石 $\varepsilon_{\rm Hf}(t)$ 值介于-16.7~-8.5之间,相差 8 个 $\varepsilon_{\rm Hf}(t)$ 单位。但印支期与燕山期锆石具有相似的 Hf 同位 素比值(表 3),且两者的 Hf 同位素二阶段模式年龄 呈现明显的单峰分布特征(图 3-b),暗示二者具有 相似的岩浆源区。因此,较大的锆石 $\varepsilon_{\rm Hf}(t)$ 差值,可 能受控于源区矿物间不平衡的 Hf 同位素特征,以 及 Lu-Hf 同位素体系的演化,而非不同源区(苏红 中等,2015)。结合其与华夏基底相似的明显的负 $\varepsilon_{\rm Hf}(t)$ 值,推测光明萤石矿黑云母花岗岩起源于华 夏陆块古—中元古代的古老地壳(于津海等,2005; 2007;何苗等,2018)。

光明矿区黑云母花岗岩具有高硅、低镁、富钾的特征,为弱过铝质—过铝质花岗岩(图4),指示其 形成于地壳物质的部分熔融(陈小明等,2002;包志 伟等,2003;Li et al.,2007;徐夕生等,2007;陈璟元 等,2015),这也与其富集的 Nd 同位素特征($\varepsilon_{Nd}(t)$ = -10.5~-10.0)吻合。在 CMF-AMF 花岗岩源区判 别图解(图 7-a)中,2个新鲜黑云母花岗岩样品点 均落入变泥质岩部分熔融源区;利用 Rb-Ba-Sr 体 系进行花岗岩源区判别(图 7-b),所有样品点均落 入富泥质的源区。因此,笔者倾向性地认为,光明 矿区黑云母花岗岩起源于华夏陆块古—中元古代 成熟地壳变泥质岩的部分熔融。

结合本文与前人对锡田岩体的地球化学组成研究,印支期与燕山期花岗岩在主量元素哈克图解 (图 8)上并未呈现明显的演化关系,暗示二者虽然 起源于相同的岩浆源区,但具有不同的演化程度。

6

整体上,燕山期花岗岩具有更高的 SiO。含量与更强 烈的负 Eu 异常,暗示其岩浆演化程度更高。在锆 石特征值与年龄关系图解(图 6)中,燕山期锆石具 有普遍低的 Eu/Eu*和⊿ FMQ,同样指示燕山期黑 云母花岗岩经历了较强的结晶分异,且具有更低的 氧逸度。整体上,光明矿区黑云母花岗岩与锡田印 支期花岗岩具有较一致的元素含量范围与变化特 征(图 4、图 5、图 8),样品的 Fe₂O₃、MnO、MgO、 $CaO_Ti_2O及 P_2O_5含量均较低,结合其较高的 Rb$ 含量(359×10⁻⁶~612×10⁻⁶)、Rb/Sr 值(7.69~14.5) 和较低的 Nb/Ta 值(6.21~7.75),指示岩浆可能经 历了较高程度的分异。此外,全岩低的 Zr/Hf 值 (26.5~28.3),低于球粒陨石的组成(约 34.3, Münker et al., 2003) 和大陆地壳的平均值(约 36.7, Rudnick et al., 2004), 同样指示其演化过程中发生 了明显的分异。

5 对萤石成矿的启示

黑云母花岗岩

普遍认为,与稀有、稀土矿床相伴生的萤石成 矿作用与高F岩浆岩密切相关(Bailey,1977;Huang et al.,2007;Graupner et al.,2015;Xie et al.,2015)。 而常作为单独矿种产出的热液脉型萤石矿床成因 尚存争议,部分学者认为其成矿作用源于低温热液 流体对围岩中Ca和F的淋滤,赋矿花岗岩主要提 供成矿所需的热量(曹俊臣,1997;刘道荣等, 2012),近年来逐渐有研究者提出花岗岩体可能也 提供了主要的成矿物质(杨世文等,2019;方贵聪

> 等,2020)。岩浆热液中的稀土 元素往往能继承岩浆的稀土元 素组成特征。本次研究发现, 虽然萤石稀土元素含量低于花 岗岩,但光明矿床萤石矿石稀 土与微量元素配分型式与燕山 期花岗岩相似(图 5),暗示萤 石成矿可能与矿区内燕山期岩 浆活动具有密切的成因联系 (曹俊臣,1995)。

萤石中的稀土元素主要来 自成矿流体中的 F-REE 络合物,因此其 Nd 同位素组成常被 用于示踪成矿流体,尤其是其 中 F 的来源(Simonetti et al.,

100

1995)。虽然光明矿区萤石的 Nd 同位素组成与围 岩花岗岩基本一致,锡田岩体的印支期和燕山期花 岗岩具有相似的源区,因此其 Nd 同位素组成也非 常接近。萤石和花岗岩具有相同的 Nd 同位素组成 仅说明岩浆岩为 F 来源,而无法区分是印支期还是 燕山期的花岗岩。萤石的稀土元素配分图和微量 元素蛛网图与围岩花岗岩不一致,暗示围岩花岗岩 不是成矿物质的主要来源。因此,稀土元素配分模 式结合 Nd 同位素组成支持了燕山期岩体是成矿物 质的主要来源。此外,笔者在黑云母花岗岩与萤石 矿体接触部位观察到单向固结结构(图版 I f),这 一特征也表明萤石矿的围岩花岗岩并未参与萤石 成矿作用,光明矿床萤石成矿主要与区内燕山期岩 浆活动有关,成矿流体中主要为燕山期岩浆热液的 参与。

微量元素方面, 萤石矿石较岩体具有更高的 Cr、Ni、Sr、Y含量及 Y/Ho值, 可能与强烈的流体活 动及流体/萤石的分配系数有关。值得注意的是,靠 近矿体蚀变较强的黑云母花岗岩样品(GM-W-3-3) 较新鲜围岩黑云母花岗岩明显具有高的 CaO 含量 和低的 Na₂O 含量,指示成矿流体相对富集 Ca 元 素。萤石形成过程中稀土元素以F络合物形式迁移 时,从 LREE→MREE→HREE 与F形成的络合物 稳定性逐渐增强。流体中F含量减少时,萤石中轻 稀土元素趋于亏损,而中、重稀土元素趋于富集 (Möller et al.,1976; McLennan et al.,1979; Bau et al.,1995)。光明矿床萤石样品(La/Yb)_N=1.13~ 2.15,轻稀土元素略富集,暗示成矿流体中F含量较 高,这与中国南岭地区燕山期花岗岩普遍的高 Li-F 特征一致。此外,萤石矿体和硅化带紧密伴生,也 暗示成矿流体中高含量的F与岩体发生了强烈的相 互作用。

Eu和 Ce是变价元素。不同价态的离子具有不同的离子半径,在萤石中的分配系数有很大差异。

因此,在萤石结晶过程中表现出不同富集/亏损特 征(曹俊臣,1995;彭建堂等,2002;孙祥等,2008;彭 强等,2021)。氧化条件下,Eu 呈高价态的 Eu³⁺,而 更易替代萤石中的 Ca²⁺,从而减弱萤石中 Eu 的亏 损,而高价态的 Ce⁴⁺则不易进入萤石晶格,从而增 强了 Ce 的亏损:还原条件下则相反。本次研究的 萤石样品具有中等程度的负 Eu 异常(δEu = 0.44~ (0.50),以及非常微弱的负 Ce 异常(δ Ce = 0.96~ 0.97)。与光明萤石矿黑云母花岗岩相比:①萤石的 负 Eu 异常较弱:②萤石样品具有微弱的负 Ce 异 常,而岩体样品表现出微弱的正 Ce 异常。这些特 征指示成矿流体的氧逸度较岩体高,可能与成矿过 程中大气降水的加入有关。因此,笔者认为,光明 矿区的萤石成矿作用与锡田岩体燕山期岩浆活动 密切相关,成矿流体主要为岩浆热液,成矿流体演 化过程中有大气降水加入,矿区内印支期主体的黑 云母花岗岩为容矿围岩,不是成矿母岩。

致谢:野外工作中得到原湖南省地质矿产勘查 开发局四一六队工作人员的大力支持,审稿专家提 出了许多建设性意见,在此一并表示衷心的感谢。

参考文献

- Bailey J C. Fluorine in granitic rocks and melts: a review [J]. Chemical Geology, 1977, 19(1/4): 1-42.
- Bau M, Dulski P. Compartive study of yttrium and rare earth element behaviors in fluorine – rich hydrothermal fluids [J]. Contribution to Mineralogy and Petrology, 1995, 119: 213–223.
- Chamberlain K J, Wilson C J, Wooden J L, et al.New perspectives on the Bishop Tuff from zircon textures, ages and trace elements[J].Journal of Petrology,2014,55(2):395-426.
- Coleman D S, Gray W, Glazner A F. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California[J]. Geology, 2004, 32: 433–436.
- Glazner A F,Bartley J M,Coleman D S, et al. Are plutons assembled over millions of years by amalgamation fromsmall magma chambers? [J] GSA Today,2004,14(4/5): 4–11.
- Graupner T, Mühlbach C, Schwarz Schampera U, et al. Mineralogy of high – field – strength elements (Y, Nb, REE) in the world – class Vergenoeg fluorite deposit, South Africa [J]. Ore Geology Reviews, 2015,64: 583–601.
- Huang Z L, Xu C, Andrew M, et al. REE geochemistry of fluorite from the Maoniuping REE Deposit, Sichuan Province, China: implications for the source of ore-forming fluids[J]. Acta Geologica Sinica, 2007, 81: 622–636.
- LeMaitre R W.Igneous rocks: A classification and glossary of terms [M].

Cambridge University Press, 2002: 1-256.

- Li X H, Li W X, Li Z X. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China[J].Chinese Science Bulletin, 2007, 52(14): 1873–1885.
- Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA–ICP–MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535–1546.
- Loucks R R, Fiorentini M L, Henríquez G J. New magmatic oxybarometer using trace elements in zircon[J].Journal of Petrology, 2020,61(3): egaa034.
- Lu H Z, Liu Y M, Wang C L, et al. Mineralization and fluid inclusion study of the Shizhuyuan W - Sn - Bi - Mo - F skarn deposit, Hunan province, China[J].Economic Geology, 2003, 98: 955-974.
- McLennan S M, Taylor S R.Rare earth element mobility associated with uranium mieralization[J].Nature, 1979, 282: 247-250.
- Möller P, Parekh P P, Schneider H J. The application of Tb/Ca –Tb/La abundance ratios to problems of fluorite genesis[J]. Mineral Deposita, 1976, (11): 111–116.
- Münker C, Pfänder J A, Weyer S, et al. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics[J].Science, 2003, 301 (5629): 84-87.
- Paul J S. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 49: 29-44.
- Petford N, Cruden A R, McCaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 2000, 408(6813): 669–673.
- Rainer A, Albert H, Ernst H, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald(Germany) [J].Lithos, 2000, 50: 51–73.
- Rudnick R L, Gao S.Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam: Elsevier, 2004,3: 1–64.
- Simonetti A, Bell K. Nd, Pd, and Sr isotope systematics of fluorite at the AmbaDongar carbonatite complex, India: evidence for hydrothermal and crustal fluid mixing[]]. Economic Geology, 1995, 90: 2018–2027.
- Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C]// Saunders A D, Norry M J.Magmatism in the Ocean Basins. Geological Society Special Publication, 1989: 313–345.
- Tang M, Wang X L, Shu X J, et al. Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modelling of 'zircon effect' in crustal anatexis[J].Earth Planet Science Letter, 2014, 389: 188–199.
- USGS.Mineral commodity summaries 2019[M].USGS,2019.
- Veksler I V,Dorfman A M,Kamenetsky M, et al.Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks [J]. Geochimica et Cosmochimica Acta,2005,69(11): 2847–2860.
- Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J].Contributions to Mineralogy and Petrology, 2006,

151: 413-433.

- Wilson M.Igneous petrogenesis: A global tectonic approach[M].London: Unwin Hyman, 1989: 1-468.
- Xie L, Wang R C, Groat L A, et al. A combined EMPA and LA–ICP–MS study of Li–bearing mica and Sn–Ti oxide minerals from the Qiguling topaz rhyolite(Qitianling District, China): the role of fluorine in origin of tin mineralization[J].Ore Geology Reviews,2015,65: 779–792.
- Yan L L, He Z Y, Beier C, et al. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China[J].Contributions to Mineralogy and Petrology, 2018, 173: 4.
- Yan L L, He Z Y, Klemd R, et al. Tracking crystal-melt segregation and magma recharge using zircon trace element data[J]. Chemical Geology, 2020,542: 119596.
- Yuan S D, Peng J T, Hu R Z, et al. Characteristics of rare–earth elements (REE), strontium and neodymium isotopes in hydrothermal fluorites from the Bailashui tin deposit in the Furong ore field, southern Hunan Province, China[J].Chinese Journal of Geochemistry,2008,27: 342–350.
- Yuan S D, Mao J W, Cook N J, et al. A late cretaceous tin metallogenic event in nanling W–Sn metallogenic province: constraints from U–Pb, Ar–Ar geochronology at the Jiepailing Sn–Be–F deposit, Hunan, China[J]. Ore Geology Reviews, 2015, 65: 283–293.
- Zhou Y, Liang X Q, Wu S C, et al. Isotopic geochemistry, zircon U–Pb ages and Hf isotopes of A–type granites from the Xitian W–Sn deposit, SE China: Constraints on petrogenesis and tectonic significance[J].Journal of Asian Earth Sciences, 2015, 105: 122–139.
- 包志伟,赵振华.佛冈铝质 A 型花岗岩的地球化学及其形成环境初探[J]. 地质地球化学,2003,31:52-61.
- 蔡杨,马东升,陆建军,等.湖南邓阜仙岩体和锡田岩体的地球化学及成矿差异性对比[J].矿物学报,2011,增刊:4-5.
- 曹俊臣.华南低温热液脉状萤石矿床稀土元素地球化学特征[J].地球 化学,1995,24(3):225-234.
- 曹俊臣.中国萤石矿床稀土元素地球化学及萤石的矿物物理特征[J]. 地质与勘探,1997,33(2):18-23.
- 陈璟元,杨进辉.佛冈高分异 I 型花岗岩的成因:来自 Nb-Ta-Zr-Hf 等元素的制约[J].岩石学报,2015,31(3):846-854.
- 陈小明,王汝成,刘昌实,等.广东从化佛冈(主体)黑云母花岗岩定年 和成因[J].高校地质学报,2002,8(3):293-307.
- 方贵聪,王登红,陈毓川,等.南岭萤石矿床成矿规律及成因[J].地质学报,2020,94(1):161-178.
- 付建明,伍式崇,徐德明,等.湘东锡田钨锡多金属矿区成岩成矿时代 的再厘定[J].华南地质与矿产,2009,3:1-7.
- 付建明,程顺波,卢友月,等.湖南锡田云英岩-石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石 SHRIMP U-Pb 定年[J].地质与勘探,

2012,48(3):313-320.

- 郭乐群,唐晓珊,彭和求.湖南益阳早前寒武纪镁铁质—超镁铁质火 山岩的 Sm-Nd 同位素年龄[J].华南地质与矿产,2003,2:46-51.
- 何苗,刘庆,孙金凤,等.湘东地区锡田印支期花岗岩的地球化学特征 及其构造意义[J].岩石学报,2018,34(7):2065-2086.
- 刘飚,吴堑虹,孔华,等.湖南锡田矿田花岗岩时空分布与钨锡成矿关系:来自锆石 U-Pb 年代学与岩石地球化学的约束[J].地球科学, 2022,47(1):240-258.
- 刘道荣,严生贤,陈荫,等.浙西北岩前高氟岩体地球化学特征及其与 新类型萤石矿床成矿关系[J].地质与勘探,2012,48(5):884-893.
- 刘国庆,伍式崇,杜安道,等.湘东锡田钨锡矿区成岩成矿时代研究[J]. 大地构造与成矿学,2008,32(1):63-71.
- 彭建堂,胡瑞忠,漆亮,等.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学,2002,37(3):277-287.
- 彭强,江小均,李超,等.云南个旧西凹蚀变花岗岩型铜-锡多金属矿床 萤石地球化学特征及其地质意义[J].矿床地质,2021,40(6):1182−1198.
- 沈宏飞,李立兴,李厚民,等.湘南中生代钨锡大规模成矿控制因素: 锆 石年龄和微量元素的启示[J].地质通报,2022,41(2/3):461-485.
- 苏红中,郭春丽,伍式崇,等.锡田印支—燕山期复式花岗质岩浆-热 液活动时限和物质来源[J].地质学报,2015,89(10):1853-1872.
- 孙祥,杨子荣,刘敬党,等.义县萤石矿床稀土元素地球化学特征及其 指示意义[J].矿床地质,2008,27(5):579-586.
- 唐晓珊,贾宝华,黄建中.湖南早前寒武纪变质结晶基底的 Sm-Nd 同 位素年龄[J].资源调查与环境,2004,25(1):55-63.
- 王吉平,商朋强,熊先孝,等.中国萤石矿床成矿规律[J].中国地质, 2015,42(1):18-32.
- 吴福元,刘小驰,纪伟强,等.高分异花岗岩的识别与研究[J].中国科 学:地球科学,2017,47(7):745-765.
- 谢玲琳,谢文安.从稳定同位素测年信息探讨湖南的结晶基底[J].湖 南地质,2000,19(4):219-225.
- 徐夕生,鲁为敏,贺振宇.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体 的形成年龄和起源[J].中国科学(D辑),2007,37(1):27-38.
- 杨世文,丰成友,楼法生,等.赣南隆坪萤石矿床成矿时代及成因初探: 来自萤石 Sm-Nd 测年及黑云母电子探针的证据[J].高校地质学 报,2019,25(3):341-351.
- 于津海,周新民,赵蕾,等.壳幔作用导致武平花岗岩形成——Sr-Nd-Hf-U-Pb 同位素证据[J].岩石学报,2005,21(3):651-644.
- 于津海, O' Reilly Y S, 王丽娟, 等. 华夏地块古老物质的发现和前寒武 纪地壳的形成[J]. 科学通报, 2007, 52(1): 11-18.
- 张鲲,胡俊良,徐德明.湖南桃林铅锌矿区花岗岩地球化学特征及其 与成矿的关系[J].华南地质与矿产,2012,28(4):307-314.
- 周云,梁新权,梁细荣,等.湖南锡田含 W-Sn A 型花岗岩年代学与地 球化学特征[J].大地构造与成矿学,2013,37(3):511-529.