海上油田开发井钻井优化设计和应用实践

董振国1, 熊 伟2, 龚长芳3, 李进宏1

(1.神华地质勘查有限责任公司,北京 102211; 2.河北省地矿局第三地质大队,河北 张家口 075000 3.招商路凯有限公司,广东 深圳 518052)

摘要:LF7-2油田位于我国南海珠江口盆地LF区块,是一个小规模油田,根据前期探井揭示,上部地层以厚层泥岩为主,极易水化、分散,使钻井液性能变差;起下钻过程中钻具遇卡、遇阻等复杂情况频繁发生;钻头选型不尽合理,易泥包;下部地层以砂泥岩互层为主,岩石致密、可钻性变差,钻具扭矩、摩阻增加,定向钻进时滑动困难,井眼轨迹控制难度大,给钻井提速增效带来诸多困难。根据探井地质情况和岩石力学剖面,利用钻井软件优选平台位置,对开发井井身结构、井眼轨迹、钻柱力学、钻井液、固井等方面进行钻井仿真模拟,制定出科学的钻井设计方案,在直井段采用"牙轮钻头+直螺杆+MWD"钻具开展防斜打直,造斜段使用"PDC钻头+弯螺杆+MWD/LWD"开展复合钻井,水平段采用"PDC钻头+PowerDriver+MWD/LWD"开展旋转导向钻井,实现精准化钻井,顺利完成6口开发井施工。现场应用单井平均机械钻速29.43 m/h,钻井工期191.59 d,工期比设计提前28.41 d,钻井提速增效显著,降低开发成本。通过PowerDriver的近钻头井斜、自然伽马实时测量和传输,减少地质误判,实现对储层顶界面的实时探测,使储层钻遇率达100%,收到较好的经济效益和投资回报,实现小油田的效益开发。

关键词:钻井设计,钻井提速;开发井;井眼轨迹;钻头选型;海上油田

中图分类号:TE21 文献标识码:A 文章编号:2096-9686(2021)07-0046-12

Optimal design and application of development well drilling in offshore oilfields

DONG Zhenguo¹, XIONG Wei², GONG Changfang³, LI Jinhong¹

 $(1. Shenhua\ Geological\ Exploration\ Co.\,,\ Ltd.\,,\ Beijing\ 102211\,,\ China;$

2.No.3 Geological Brigade, Hebei Bureau of Geology and Mineral Exploration, Zhangjiakou Hebei 075000, China; 3.China Merchants Loscam Ltd., Shenzhen Guangdong 518052, China)

Abstract: The LF7-2 Oilfield is a small-scale oilfield located in the LF block of the Pearl River Mouth Basin in the South China Sea. According to previous exploration wells, the upper stratum is dominated by thick mudstone which is easily hydrated and dispersed, leading to poor performance of the drilling fluid, frequent drilling string sticking and resistance during tripping, and bit balling due to improper bit selection. The lower stratum is dominated by alternate sand and mudstone which is dense, and of poor drillability. As a result, the drilling torque/drag increased with difficulty in slide drilling and control of the well trajectory during directional drilling, which brough many difficulties to the drilling speed and efficiency. According to the geological conditions and rock mechanics profiles from exploratory wells, drilling software was used to optimise the platform location and simulate development well drilling in terms of the wellbore structure, wellbore trajectory, drill string mechanics, drilling fluid, cementing and other aspects, so as to formulate proper drilling design. For the vertical well section, the "rock bit+mudmotor+MWD" drill assembly was used for vertical drilling; for build-up sections, the "PDC bit+mudmotor+MWD/LWD" was used for rotary steering drilling to achieve precision drilling. In such a way, 6 development wells were successfully completed. Field use indicated the average ROP was 29.43m/h with the total drilling period per well of 191.59 days, 28.41 days ahead of the design,

收稿日期:2020-08-30**; 修回日期:**2021-03-08 **DOI:**10.12143/j.ztgc.2021.07.008

作者简介: 董振国, 男, 汉族, 1962年生, 高级工程师, 硕士, 主要从事钻井工程技术研究和管理工作, 北京市昌平区未来科技城神华园区 202号楼9层 910室, dzhenguo@aliyun.com。

引用格式:董振国,熊伟,龚长芳,等.海上油田开发井钻井优化设计和应用实践[J].钻探工程,2021,48(7):46-57.

DONG Zhenguo, XIONG Wei, GONG Changfang, et al. Optimal design and application of development well drilling in offshore oil-fields[J]. Drilling Engineering, 2021,48(7):46-57.

which improved drilling efficiency, and reduced development costs. Near-bit inclination and gamma real-time measurement and transmission of PowerDriver reduced geological misdiagnosis, and can provide real-time detection of the roof of the reservoir with the reservoir intersection rate reaching 100%, resulting in good economic benefits and investment return to achieve profitable development of small oilfields.

Key words: drilling design; drilling speed enhancement; development well; wellbore trajectory; bit selection; offshore oilfield

0 引言

近年来,我国剩余的油气储量大多为低孔低渗、致密油气、非常规油气等难开采资源。随着勘探开发技术的进步,拓展了勘探开发领域,在非常规、深水及深层油气领域的勘探中取得了一系列重大发现,但非常规、深水及深层的油气的勘探开发,具有资金投入高和开发难度大的特点,据统计,目前海洋上钻井平台日费为(1.0~1.5)×10⁷ \$,而陆地上钻井日费为(3.0~5.0)×10³ \$,钻一口3000 m的探井需要(2.0~3.0)×10⁶ \$,海洋石油钻井比陆地石油钻井费用高5~8倍,海洋石油勘探开发更具有挑战性,是一项高风险、高投入、高技术的系统工程[1],多采用"丛式井"、"井工厂"作业模式及其配套技术进行钻完井作业。

"丛式井"、"井工厂"作业模式,是指在一个井场或平台上,集中布置大批相似井,采用标准化的工程装备与工艺技术,以流水线方式实施钻井、完井、开采等,由此可以节约大量的作业时间和投资。基于丛式井开发方案,虽然在同一个钻井平台上的众多井口相距不到数米,但各井井底则伸向不同方位地下油气藏,目标则相距较远。因此,采用"丛式井"、"井工厂"作业模式,既有利于"降本增效"和安全环保,又大量缩减了井场面积与平台规模,而且便于后续的油气生产与管理。从国内外的发展现状看,丛式水平井在非常规、低孔低渗、深水及深层等复杂油气藏的高效开发中已获得了规模应用,但国内与国外之间仍存在着一定的水平差距[2]。

为了加快 LF7-2油田建设速度,改进和提升钻井模式,节约钻井投资,以科学钻井理念为指导思想,针对油田地层和岩石力学特征,开展钻井方案优化设计、技术研究及新技术、新工具推广应用等工作,逐步形成了适合本油田特点的钻井提速技术,现场应用成效显著,为海上油田增产上储起到了示范作用[3]。

1 LF7-2油田概况

LF7-2油田位于香港东南200 km处的16/05合同区块西端,区域上位于南海东部珠江口盆地LF凹陷中央隆起带的LF7断裂构造带上,是一个小规模油田(图1)。

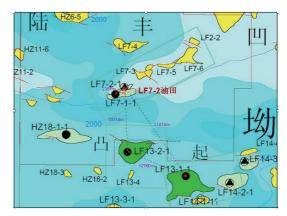


图1 LF7-2油田地理位置

Fig.1 Geographical location of LF7-2 Oilfield

2007年8月,开展地质研究和物探工作。2008年2月,LF7-2构造上LF7-2-1探井钻遇含油层(ZJ1A),发现了LF7-2油田。为了进一步落实LF7-2构造的储量规模和产能,2009年5月在南块部署LF7-1-1评价井,发现良好的油气显示,其中在ZJ1A层DST试获工业油流,折算油当量285.8 m³/d。

2014年8月20日LF7-2导管架平台上部组块安装到位,2014年9月29日开始使用ZJ70/4500型模块钻机钻开发井,仅用191.56 d在6个井口槽钻完9个井眼,2014年11月5日第一口油井——A4H井投产,截至2020年底累计生产原油4.0×10⁶ t,总产值约为1.5×10⁶ \$,创造了"小油田、大贡献"的辉煌业绩,获得良好的投资效果。

2 钻遇地层和钻井难点

2.1 钻遇地层

LF7-2油田从上到下主要地层为粤海组、韩江组、珠江组、珠海组和恩平组,见表1。

表1 LF7-2油田地质层系

Table 1 Geological strata in LF7-2 Oilfield

	层	位			LF7-	2-1	LF7-	1-1			
系	统		组	层位 代号	底界深 (MD)/m	厚度/ m	底界深 (MD)/m	厚度/ m	岩性岩相简述	备	注
第四	1系			Q							
	上新统		万山组	N_{2w}	571.0				砂泥岩互层		
新		上	粤海组	N_{1y}	1016.0	445.0	1021.0				
近		中	韩江组	N_{1h}	1767.0	751.0	1777.0	756.0	底部为砂泥岩互层,向上为厚		
系	中新统								层泥岩夹泥质、钙质粉砂岩		
尔		下	珠江组	N_{1z}	2577.7	810.7	2698.0	921.0	砂岩、粉砂岩和泥岩交互剖面,	ZJ1A-Z	ZJ3D
									夹少量灰岩和白云岩		
_	渐新统		珠海组	E_{3z}	2758.0	180.3	2881.0	183.0	厚层砂岩夹薄层泥岩	ZH1A-	ZH3D
古	渐一始新	斤统	恩平组	$\mathrm{E}_{\scriptscriptstyle 3e}$	3018.0	260.0	3030.0	149.0	砂泥互层	EP1A-	EP2D
近系	始新统 文昌组		E_{2w}	缺失	缺失	未钻穿					
厼	古新统		神狐组	E_{1s}	缺失	缺失					
前古	近系				3026.0	8.0			安山岩		

上部地层以泥岩为主,泥岩极易水化、分散,井壁不稳定,钻进过程中,频繁发生遇卡、遇阻等复杂情况;珠江组地层主要是砂岩、粉砂岩和泥岩交互剖面夹少量灰岩、白云岩,珠江组下部地层可钻性差,严重制约了钻井速度;珠海组地层主要为一套厚层砂岩夹泥岩和薄煤层;恩平组地层主要为砂泥互层,夹薄煤层^[4]。

2.2 钻井难点

钻井过程中在上部井段易发生起下钻遇阻、遇 卡、井漏、划眼困难等复杂情况,下部井段易发生井 眼缩径、掉块。

2.2.1 钻头选型困难

地层非均质性强,上部地层含有 2~5 m的钙质或灰质夹层,地层可钻性差,钻头易泥包和发生先期破坏,下部地层含灰质泥岩、泥灰岩、钙质夹层,抗压强度高,钻头不易切削,钻速较低;同时钻头和地层的匹配程度差,钻井效果尚不理想。

2.2.2 钻井液性能控制难

上部地层为大套泥岩,极易水化、分散,造浆能力强,使钻井液中有害固相含量、粘度、密度上涨过快,给钻井液性能控制带来困难;导致井眼清洁程度差,直接影响起下钻时效,增加钻井液成本。

下部地层泥岩微裂缝发育,易吸水膨胀、坍塌,容易导致起下钻困难、卡钻、下套管不到位等井下复杂情况的发生。

随着定向井井斜角和位移的增加,钻井液携岩和润滑性能不足,钻进过程中扭矩、泵压过高,增加了钻井作业风险。

2.2.3 并眼轨迹控制难

储层埋藏深、井斜大、裸眼段长,造成钻压传递 困难和工具面失稳;深部地层硬度大,自然造斜能力强,井眼轨迹控制困难;地质情况复杂,油藏动油水 界面具有不确定性,给地质导向钻井带来挑战,相关 的定向钻井仪器、工具及工艺选择困难。

3 开发井的优化设计和分析

通过钻井、录井和地层评价,获得储层参数,确定目标靶体,钻前建立精准的地质导向模型,设计中采用先进的钻井软件,对井身结构、井眼轨迹、钻柱力学、扭矩/摩阻、井眼清洁、下套管、固井等方面进行仿真模拟和预测,对钻井中可能存在的风险进行提示和预警^[5],按照"井工厂"模式组织施工,优化钻井流程,实现优快钻井,可有效降低钻井风险、避免井下复杂情况、缩短建井周期。

3.1 平台位置优选和槽口排列

根据地质靶点分布情况,以"总井深最小"为目标,初选 site1为平台位置;以"总水平位移最小"为目标,得到 site2平台位置;以"总水平位移、平均井斜角、总井深"最优化为目标函数,使用 Compass site optimiser模块优选 site3为平台位置[6]。

通过3种平台位置方案的分析和风险评估,认 为调整平台位置到 site0,可有效地降低钻井施工难 度,确定 site0 为最终平台位置: X=399717 m, Y=2404570 m(见图 2)。

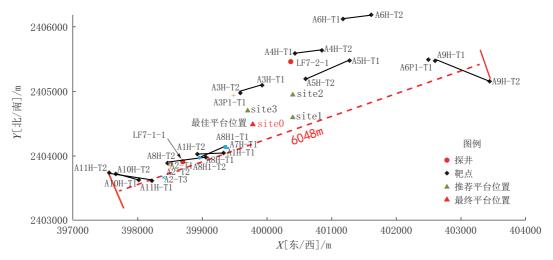


图 2 LF7-2油田平台位置优选

Fig.2 LF7-2 Oilfield platform location optimization

根据油田生产规模和后续开发的布置,优选 LF7-2平台井槽数量为24个(见图3),排列为6 (行)×4(列),井口间距2.286 m×2.286 m,设计初 钻8口井,预留16个井槽,以满足后期作业需求。

3.2 地层压力体系和合理井身结构设计

通过对前期探井声波测井数据和试采资料的处理,得出如下认识:

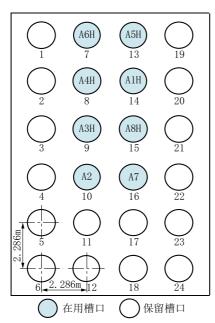


图 3 LF7-2油田槽口分布示意

Fig.3 Schematic diagram of slot distribution in LF7-2 Oilfield

LF7-1-1 井孔隙压力系数为 0.92~1.05, LF7-2-1 井孔隙压力系数为 0.93~1.04, 属于正常压力系统, 有利于开展平衡压力钻井^[7]。

合理并身结构设计是以井内压力系统平衡为基础,依据地层压力和破裂压力2个剖面,同时参考地质必封点,对套管下入深度进行合理的设计^[8]。A4H井井身结构见表2。

表 2 A 4 H 水平井井身结构数据

Table 2 A4H horizontal well structure data

钻井	井眼尺寸/in	套管尺寸/in	钢级/
顺序	×井深/m	×井深/m	线质量/(kg•m ⁻¹)
一开	16×733	$13\frac{3}{8} \times 728$	K55/90.78
二开	$12\frac{1}{4} \times 2975$	$9\frac{5}{8} \times 2970$	3Cr-80+N80/69.94
三开	$8\frac{1}{2} \times 3558$	筛管	

注:1 in=25.4 mm,下同。

3.3 井眼轨迹优化设计

LF7-2油田设计开发井8口,其中定向井2口, 水平井6口,设计钻井总进尺27035 m。利用Landmark Compass 软件进行井眼轨迹设计和防碰扫描分 析,为了后期有利于下入电潜泵采油,采用"直一增 一稳一增一平"剖面类型,造斜率<6°/30 m。

由于开发井井距较近,井眼轨迹的防碰问题十分重要。要求在上部直井段,保证防斜打直,对半径

300 m范围的邻井进行防碰扫描,井眼间的分离系数应大于1.5,避免深层发生碰撞;对外排井,可适当上提造斜点(KOP)深度造斜,以降低稳斜段的井斜角,保证内排井作业安全,避免浅层发生碰撞。

LF7-2油田实际钻开发井6口(9个井眼),其中

定向井1口(含侧钻井1口)、水平井5口(含领眼井2口),总进尺27333.84 m,平均井深3416.73 m,最大井深3817 m,最大水平位移2104.67 m,最大位垂比0.86。实际钻井数据见表3,钻井轨迹见图4。

表 3 开发井实际钻井数据

Table 3 Actual drilling data of the development wells

井名	井深	造斜	井斜	方位	垂深	[+N/S-]/	[+E/W-]/	水平位	造斜率/	水平	位垂	备注
开名	/m	点/m	角/(°)	角/(°)	/m	m	m	移/m	[(°)/30 m]	段/m	比	首任
A4H	3558	343.6	91.12	89	2402.53	920.93	1401.82	1434.78	3.5	430	0.60	水平井
A 1D / A 111	2964	343.6	69.87	256.61	2575.89	-637.05	-238.33	367.81	5	500	0.14	领眼井
A1P/A1H	3817	1760	92.5	256.61	2537.83	-796.99	-1227.03	1366.34	6	570	0.54	水平井
A2/A2S1	3708	280	41.01	228.64	3195.09	-1108.12	-1285.92	1683.38	3		0.53	定向井
A2/ A251	3587	1150	36.76	228.64	3232.28	-821.58	-1113.34	1683.38	2.5		0.52	侧钻井
A 2D / A 211	3615	785	64.61	65.49	2475.88	874.53	1897.11	2104.67	3.3	600	0.85	领眼井
A3P/A3H	3469	746	98.23	65.494	2391.01	467.72	484.20	650.26	3.83	650	0.27	水平井
A5H	3515	721	91	66.59	2401.12	1755.55	64.35	1755.53	3	730	0.73	水平井
A6H	3738	754.35	89.51	71.42	2408.26	1361.86	1760.53	2067.71	2.5	440	0.86	水平井

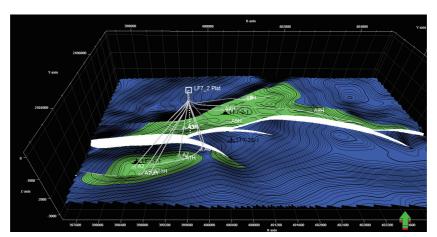


图 4 开发井井眼轨迹 3D 立体图

Fig.4 3D view of the development well trajectories

3.4 岩石可钻性和钻头选型

针对LF7-2油田地层和岩性特点,开展岩石可钻性研究及个性化钻头选型。

3.4.1 地层抗钻特性

以前期探井测井资料为依据,提取岩石抗压强度作为地层抗钻特性的主要表征参数之一,再参考探井钻头进尺、机械钻速、纯钻时等技术指标,指导开发井钻头的优选^[9]。

利用钻头优选软件,输入探井测井资料计算岩石力学参数,结果显示,LF7-2油田岩石的抗压强

度、摩擦角、硬度均随井深增加而增大(见图5)。

上部地层(粤海组、韩江组及珠江组上部)以泥岩为主,岩石抗压强度UCS<60 MPa,摩擦角约为35°,地层可钻性较好,钻进该地层要求钻头具备较强的攻击性。优选大流道面积、7喷嘴的PDC钻头,合理布置钻头流道,避免钻井液在钻头排屑槽中产生涡流造成钻屑重复破碎,影响机械钻速。利用钻头设计软件进行CFD流体动力学数值模拟分析,研究钻头井底流场、喷嘴射流对携岩的影响,合理分布井底水力能量,降低钻头泥包的发生,提高井底清洗

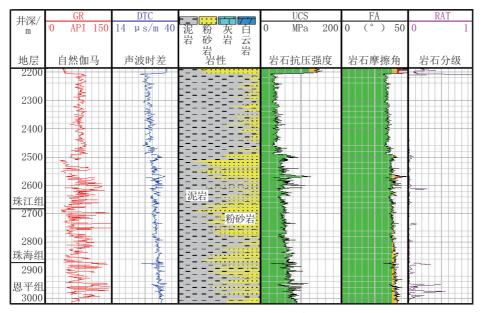


图 5 LF7-1-1评价井岩石力学参数剖面

Fig.5 Rock mechanics parameter profile at LF7-1-1 appraisal well

钻屑的净化效率[10]。

下部地层(珠江组、珠海组、恩平组)以砂泥岩互层为主,研磨性较强,抗压强度最高为80 MPa,摩擦角为40°,可钻性较差,钻进该地层要求钻头具备中等攻击性,应优选保径、抗磨的PDC钻头。珠江组底部地层含有一个厚约40 m的超硬致密灰岩夹层,抗压强度高达103 MPa,可钻性差,根据实钻情况分析,认为该灰岩夹层研磨性一般,对PDC钻头造成的破坏有限,但会降低钻井速度。

3.4.2 PDC 钻头优选

在钻头成本已定条件下,钻头选型以追求机械钻速和钻头工作寿命最大为目标,这2项指标都与钻头切削齿的尺寸和布齿密度相关[111]。在软地层选择大切削齿钻头,在硬地层选择小切削齿钻头;切削齿尺寸一定时,布齿密度越高,钻头寿命越长,但较多的切削齿会降低钻头机械钻速,通常随着地层强度的增加,使用的切削齿尺寸应变小,布齿要密集。

根据探井揭露,LF7-2油田珠江组及以上地层较软,抗压强度<60 MPa,适合选择19 mm切削齿钻头;而珠江组底部含有灰岩硬夹层,会降低钻头切削效率,珠海组地层致密,抗压强度超过60 MPa,对机械钻速影响较大,应选用能有效"吃入"地层的钻头切削齿,适合选择16 mm切削齿钻头,可以提高钻进速度。因此,在12¼ in井段优选19 mm切削齿PDC钻头,8½ in井段优选16 mm切削齿PDC钻

头,详见表4。

表 4 开发井岩石强度和钻头选型

Table 4 Rock strength at the development wells and bit selection

ᄪ	底深/	岩石强	岩石	井径/	IADC	PDC
地层	m	度/MPa	硬度	in	编码	钻头
万山组	571	<21	很软	24(导管)		
				- 16	115	
粤海组	1016	21	很软			5刀翼,
韩江组	1767	28	很软	$12\frac{1}{4}$		19 mm
-				_	Cana	切削齿
		35	软		S223	5刀翼,
珠江组	2577.7					16 mm
						切削齿
						6刀翼,
珠海组	2758	$48 \sim 62$	中等	$8\frac{1}{2}$	M323	16 mm
						切削齿
			中等			7刀翼,
恩平组	3018	55~90			M323	16 mm
						切削齿

3.5 扭矩、摩阻计算

A4H井(井深 3558 m、垂深 2402.53 m)为LF7-2油田第一口水平井,对其摩阻、扭矩进行模拟计算, 对其它开发井将有一定指导作用[12],使用 Wellplan Drag 模块对 12¼、8½ in 井眼钻进以及 9½ in 套管下入等工况的扭矩、摩阻开展仿真模拟(见表 5)。

表 5 A4H 井钻进、起下钻等作业工况下的扭矩和摩阻 Table 5 Torque/drag during drilling & tripping in A4H well

		包	均载/kN		±17 左 /	允许最	
井段	工况	悬重	上提摩阻	下放 摩阻	扭矩/ (kN•m)	大过载 值/kN	
	钻进	807.1	_	_	30.6		
101/:	滑动钻进	559.7	_	_	5*		
12½ in	起钻	1308.2	351.1	_	0	016.6	
(钻进 2975 m)	下钻	701.6	_	255.5	0	916.6	
2973 III)	空转	957.1	_	_	25.6		
	倒划眼	987.1	_	_	30.8		
	钻进	851.4	_	_	30.2		
01/:	滑动钻进	616.7	_	_	5*		
8½ in	起钻	1295.9	344.5	_	0	929.5	
(钻进 3558 m)	下钻	687.5	_	263.9	0	949.0	
5550 III)	空转	951.4	_	_	25.3		
	倒划眼	981.4	_	_	27.5		

^{*:}设定值。

模拟结果表明: A4H 井在 12¼ in 井段,起钻过程中,最大钩载为 1308.2 kN;倒划眼过程中,最大扭矩为 30.8 kN•m;滑动钻进过程中,当钻压>100 kN,钻杆在 2500 m有可能发生正弦弯曲,钻进过程中需要注意控制钻压。A4H 井在下 95% in 套管过程中,最大钩载 2248.8 kN,最大上提摩阻 612.3 kN,最大下放摩阻 448.9 kN,下套管最大钩载在钻机的安全提升负荷内(见表 6、图 6)。

表 6 A4H 井下 9½ in 套管工况摩阻

Table 6 Torque during RIH of 9½ in casing in A4H well

				允许最		
井 段	工况	钩载	上提	下放	大过载	
		钩蚁	摩阻	摩阻	值/kN	
9¾ in 套管	拔管	2248.8	612.3	_	1017.7	
(2970 m)	下套管	1187.6	_	448.9	1617.7	

3.6 钻井水力学计算

利用 Wellplan Hydraulic 模块开展钻井水力学 仿真模拟,在A4H井12¼ in井段,优选泵排量为48

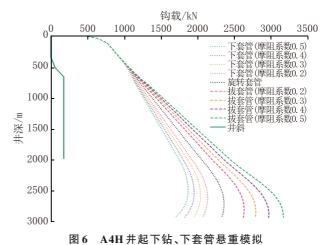


Fig.6 Weight on hook simulation for tripping and RIH of casing in A4H well

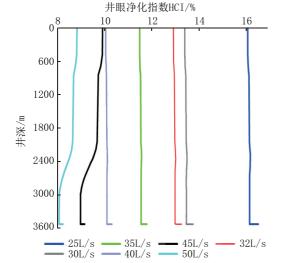

L/s,对应的泵压为 24.06 MPa;在 8½ in 井段,优选 泵排量为 28 L/s,对应的泵压为 17.53 MPa;均小于 F-1600型泥浆泵的额定泵压 27 MPa(见表 7)。

表 7 A4H 井水力参数计算
Table 7 Hydraulic parameter calculation for A4H well

Tuble /	iryaraane param		101 11 111 11011	
井段/in		121/4	8½	
计算井深/1	m	3320	3844	
	密度/(g•cm ⁻³)	1.20	1.30	
钻井液	$PV/(\mathrm{mPa} { ext{-}s})$	38	22	
	<i>YP/</i> Pa	18	21	
喷嘴组合/	(in/32)	$18 \times 5 + 16 \times 2$	$16\times5+14\times2$	
喷嘴面积/i	n^2	1.635	1.282	
泵排量/(L	$\bullet_{\mathbf{S}}^{-1}$)	48	28	
泵压/MPa		24.06	17.53	
地面压降/	MPa	0.69	0.69	
钻具压耗/	MPa	20.22	10.91	
钻头压降/	MPa	1.4	0.84	
钻头水马力	J/kW	67.47	23.94	
钻头冲击力	J/kN	2.66	1.26	
喷嘴喷速/	$(m \cdot s^{-1})$	45.81	34.25	
环空返速/	5 in 钻杆	0.77	1.21	
(m•s ⁻¹)	8 in/6¾ in钻铤	1.1/0	0/2.09	
井底 ECD/	(g•cm ⁻³)	1.262	1.481	
钻速/(m•h	⁻¹)	15	15	

井眼清洁问题关系到钻井安全,井眼净化不良容易发生粘附卡钻等事故。在地面机泵条件允许下,尽可能提高排量,要求环空返速大于临界返速,

软地层适当控制机械钻速以清洁井眼,尽量减少岩屑床的生成^[13]。A4H井井眼净化指数(HCI)为16%时,对应的泵排量为25 L/s,只要泵排量>25 L/s,钻井液携岩效果较好,井眼净化程度较高^[14](见图7)。

HCI: 0~25为优秀; 25~50为良好; 50~75为中等; 75~100为差

图7 A4H 井井眼净化指数(HCI)分析

Fig.7 Hole clear index (HCI) analysis for A4H well

排量是影响并眼净化的重要参数之一,排量越大,并眼净化越好。一般认为,并底处岩屑浓度较高,是并眼净化的重点区域,故要求钻井液有较大的携岩能力和较小的环空岩屑浓度。定向井井眼净化良好的推荐标准是岩屑传输比>70%~80%、环空岩屑浓度<5%、岩屑床厚度小于环空直径的15%[18],根据计算,在A4H井12¼in井段设泵排量=48 L/s,得到岩屑传输比=77.32%,环空岩屑浓度=6%,岩屑床厚度=35 mm;在8½in井段设泵排量=28 L/s,得到岩屑传输比=84.25%,环空岩屑浓度=0.6%,无岩屑床产生;说明只要泵排量大于临界排量,井眼净化情况就良好(见图8)。

3.7 优选钻井液体系和性能

根据地质特点和探井钻井液使用经验,在满足安全钻井的前提下,上部井段钻井液性能以保证井眼稳定为目的,可有效抑制泥岩的吸水膨胀,降低钻井液成本;下部井段钻井液性能以储层保护为目的,避免钻井液对储层造成伤害,提高油井的产能^[15]。

3.7.1 钻井液性能

3.7.1.1 钻井液选择原则

根据钻井目的,优选合适的钻井液体系,要求钻

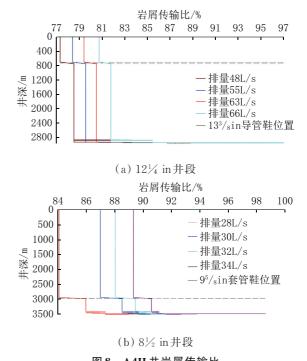


图 8 A4H 井岩屑传输比

Fig.8 Cuttings transfer ratio in A4H well

井液具有较强的抑制性、携砂能力和封堵性;在钻遇断层附近时,能有效封堵地层裂隙与破碎带,防止发生井漏,达到护壁和堵漏目的[16]。

3.7.1.2 钻井液体系选择

根据开发井的地层情况,在16 in 井段,采用海水/膨润土浆钻井液体系钻进;在12½ in 井段,采用PDF-PLUS/KCL钻井液体系钻进,根据需要加入0.5%聚胺提高体系抑制能力;在8½ in 井段,采用EZ-FLOW钻井液体系钻进,采用甲酸钠加重,结合破胶的技术进行储层保护(详见表8)。

3.7.1.3 钻井液性能选择

根据地层岩性、井底温度和地层压力优选钻井液性能,要求钻井液性能稳定,易于维护,发挥钻井液携岩、润滑、防塌、防卡、防水化膨胀的作用,在满足储层保护与废钻井液排放要求的前提下,尽可能地降低钻井液费用[17]。钻井液性能详见表9。

3.7.2 钻井液日常维护

3.7.2.1 16 in 井段

采用海水钻进,每隔30m使用膨润土稠浆清扫井眼,防止沉砂和井壁垮塌。为提高地层稳定性,可根据地层压力变化适当调整钻井液密度,钻井液应具备良好的井眼净化和页岩抑制性能,必要时加入XC聚合物,提高钻井液的携岩能力。钻进时,要求

表 8 开发井钻井液体系及配方

Table 8 Drilling fluid system and recipe for the development wells

井段/in	16	121/4	8½
钻井液类型	海水/	PDF-PLUS	EZ-
	高粘	/KCL	FLOW
膨润土	35.0~45.0		
烧碱	$0.85 \sim 1.5$	$0.85 \sim 1.5$	$0.35 \sim 1.05$
纯碱	$0.5 \sim 1.0$	$0.5 \sim 1.0$	$0.35 \sim 0.7$
胍胶粉 PF-GUAR	$3.5 \sim 5.3$		
生物聚合物 PF-XC		$0.7 \sim 1.5$	
聚阴离子纤维素		$0.7 \sim 1.2$	
PF-PAC LV			
氯化钾 KCl		20~30	$20 \sim 35$
聚丙烯酰胺 PF-PLUS		$2.0 \sim 3.5$	
变性淀粉 PF-FLOTROL		$3.5 \sim 5.3$	
防塌剂 PF-LSF		$5.3 \sim 9.0$	
护壁剂 PF-LPF-H		$5.3 \sim 9.0$	
改性淀粉PF-EZFLO			$3.5 \sim 10.5$
增粘剂 PF-EZVIS			$1.0 \sim 3.0$
暂堵剂 PF-EZCARB			21.0~35.5

注:配方单位为lb/桶(1lb/桶=2.86 kg/m³)。

表 9 开发井钻井液性能
Table 9 Drilling fluid performance for the
development wells

井段/in	16	$12\frac{1}{4}$	$8\frac{1}{2}$
井深/m	736	2985	3558
钻井液类型	海水/	PDF-PLUS	EZ-
	高粘	/KCL	FLOW
密度/(g•cm ⁻³)	$1.06 \sim 1.14$	$1.11 \sim 1.2$	$1.1 \sim 1.14$
漏斗粘度/s	90~120	$40 \sim 57$	$50 \sim 64$
PV/(mPa•s)		$12 \sim 26$	$15 \sim 25$
<i>YP/</i> Pa		$2.8 \sim 11$	$9.5 \sim 11.3$
Gel 10 s/Pa		$0.46 \sim 2.07$	$1.84 \sim 2.53$
Gel 10 min/Pa		$0.69 \sim 3$	$2.76 \sim 3$
API失水量/mL		$4.2 \sim 6.5$	3~5
API泥饼厚/mm		$0.5 \sim 1$	0.5
固相含量(体积)/%		$3.4 \sim 8$	$1.5 \sim 6.1$
$MBT/(kg \cdot m^{-3})$		0~28	$0\sim4.2$
Cl ⁻ 含量/(10 ³ mg•L ⁻¹)		$46 \sim 50$	44~49
低剪切速率粘度			35.8~38.2
LSRV/(10³mPa•s)			

接立柱要快,密切观察返出情况,避免井漏的发生。 3.7.2.2 12½ in 井段

采用 PDF-PLUS/KCL体系钻进,根据需要加入 0.5%~0.8% PF-PLUS 提高体系抑制性,上部地层可使用重晶石加重,下部地层改用复配不同粒径的碳酸钙加重,防止泥浆向高渗储层漏失,有利于油层发现和储层保护。

如果钻遇断层破碎带,采取以下防漏堵漏措施:

- (1)钻遇断层前,在钻井液中加入 0.5% PF-TEX 和 1% PF-ZP,提高钻井液的封堵能力。
- (2)备足堵漏材料,以应对较严重的破碎地层和较大裂缝性地层的漏失,堵漏剂应包括颗粒较细的PF-ZP,颗粒较大的PF-SEAL、核桃壳等及纤维类和填充类。

3.7.2.3 8½ in 井段

采用无粘土固相的 EZ-FLOW 钻井液体系钻进,运行三除一筛固控系统(振动筛更换 API140~170目的振动筛网)去除钻井液中固相,维持钻井液密度 1~1.02 g/cm³,根据井眼情况加入降滤失剂 PF-EZFLO 控制失水,加入润滑剂 PF-GreenLube增加润滑性,降低钻具扭矩和消除钻井液起泡。

3.8 9% in 套管固井技术

3.8.1 水泥浆体系优选

为有效封隔油、气和水等地层,为后期的采油作业提供安全保障,9% in套管采用单级双封固井方式。要求水泥浆尾浆(1.9 g/cm³)返到最上层油层顶 150 m; 领浆(1.58 g/cm³)返到 13% in套管鞋以上10 m。固井方案详见表 10。配浆时在水泥浆中加入膨胀剂,防止水泥石体积收缩,形成微间隙,使用防气窜水泥浆体系,通过聚合物颗粒堵塞作用和成膜作用防止在水泥内部气窜^[19],配方见表 11。

3.8.2 提高顶替效率的措施

- (1)下套管前通井时,保持钻井液有较高的屈服值,大排量循环,确保固相沉淀和岩屑携带干净。
- (2)下完套管后循环时适当改善钻井液的流动性能,提高顶替效率。为保证套管居中度>67%,使用Cement固井模块科学设计扶正器安放距离。
- (3)采用冲洗液、隔离液、冲洗液的三级冲洗工艺,提高并眼清洗效果^[20]。固井前至少进行2个循环,循环结束后要尽快转入注水泥固井施工。
- (4)全井采用清水顶替,使套管在浮力作用下产 生向井筒高边漂浮的趋势,减小套管的偏心程度,尽

表 10 开发井固井方案

Table 10 Cementing plan for the development wells

套管/	水泥浆返高/m	水泥类型	水泥浆密度/	附加量/%	添加剂	 固井方法
in	小////////////////////////////////////	小化矢室	$(g \cdot cm^{-3})$	門川里//0	የአና አነበ ንቦነ	四开刀仏
$13\frac{3}{8}$	尾浆密度封固 13¾ in 套管鞋以上	"G"级	领浆 1.58,尾	裸眼 100%,	PC-G80L多功能降失水	单级固井
	200 m环空,首浆返至泥线		浆 1.90	套管内无	剂等	
95/8	尾浆封固到最上层油层顶 150 m,首	"G"级	领浆 1.58,尾	裸眼 50%	PC-G80L多功能降失水	单级双封
	浆返至上层套管鞋以上100 m		浆 1.90		剂、PC-GS12L液硅等	

表 11 开发井水泥浆配方

Table 11 Cement slurry recipe for the development wells

套管/in	水泥浆	~~
	领浆	JH"G"水泥+0.056 GPS PC-X61L消泡剂+2%PC-P50膨润土+0.171 GPS PC-A93L早强剂+
193/		10.435 GPS F/W 淡水
$13\frac{3}{8}$	尾浆	JH"G"水泥+0.056 GPS PC-X61L消泡剂+0.205 GPS PC-G80L降失水剂+2.982 GPS F/W 淡水+
		1.988 GPS S/W 海水
	领浆	JH"G"水泥+0.056 GPS PC-X61L消泡剂+2.5%PC-P50膨润±+0.058 GPS PC-H21L缓凝剂+
05/		10.019 GPS F/W 淡水
95/8	尾浆	JH"G"水泥+0.056 GPS PC-X61L消泡剂+0.055 GPS PC-F41L分散剂+0.41 GPS PC-G80L降失水
		剂+0.49 GPS PC-GS12L液硅+1.5%PC-B10膨胀剂+4.455 GPS F/W 淡水

注:1 GPS(加仑/袋)=3.79 LPS(升/袋)。

量提高水泥浆的顶替效率[21]。

3.8.3 套管固井程序

钻完 12¼ in 井眼、下完 9% in 套管后, 开泵循环钻井液直至井眼清洁, 倒阀门至固井管线, 泵入 10 m³冲洗液、10 m³隔离液、5 m³冲洗液, 投底塞, 泵注 1.6 m³清水, 固井泵混泵密度为 1.58 g/cm³的首浆, 随后混泵密度为 1.9 g/cm³的尾浆, 投顶塞, 泵注 1.6 m³清水, 泥浆泵以 16 冲/min 泵速顶替, 最后 3.2 m³放慢顶替速度, 控制最大顶替量不要超过鞋塞体积的一半, 碰压压力在替浆泵压的基础上附加 3.5 MPa, 泄压检查回流量, 候凝 24 h以上。

4 应用实践

通过优化设计和优快钻井技术,提高开发井设计的科学性、钻井效率和储层钻遇率,达到提速增效的目的,节省钻井投资,加快油田整体开发步伐,取得了显著的经济效益。

(1)在钻前,收集探井地震、地质、测井等资料,建立地质导向模型和岩石力学模型;利用钻井软件开展平台位置优选、钻井仿真模拟和优化设计;为节省钻机作业时间,2014年9月25日开始使用打桩

机,仅用3d就一次性锤入8口井24in隔水导管,每口井打桩入泥井深约为65m。

(2)在LF-2平台钻井期间,为提高钻井速度, 积极推行"一趟钻"技术;开展复合钻井和旋转导向 钻井;倡导施工交叉作业,履行"边钻井边完井边开 采"建井流程,即钻完一口井、完一口井、交一口井采 油,使完井和试采作业尽可能不占用钻机作业时 间[22-25]。上部井段使用"PDC钻头+螺杆+MWD/ LWD"钻具组合,起到连续控制井眼轨迹的作用;下 部井段使用"PDC钻头+PowerDriver+MWD/ LWD"钻具组合,确保钻头在储层中最大限度地穿 行,实行精准化钻井;固井中使用PDC钻头可钻的 套管附件及配套胶塞,油层固井选用防气窜水泥浆 体系,防止固井环空气窜发生,各层次套管均按照设 计下到位并固井成功。所用的HZJ70/4500型模块 钻机,采用交流变频电驱动,钻机模块主要有 E-2000型绞车(4500 kN)、NOV顶驱(60 kN·m)、Drillview钻井参数记录仪等,钻井液模块主要有F-1600 型泥浆泵(3个)、MISWACO振动筛(4个)、除砂器、 除泥器、离心机等,辅助钻井设备主要有钻机移动系 统、折臂吊机(工作半径3~25 m)等,自动化程度

高,具有良好的钻井性能。据统计,LF7-2油田开发 井项目因钻机设备故障产生的非生产时间只有10 h,主要是顶驱和钻机绞车出现过一些小故障。在安 全环保(HSE)方面表现卓越,没有发生钻井和人身 伤亡事故,没有发生溢油事件。

(3)通过开发井方案优化、钻井技术提升,取得了

较好的开发效果,在6个井口槽成功钻成9个井眼,总进尺27333.84 m,平均机械钻速(ROP)29.43 m/h,平均钻井成本 1.29×10^4 Y/m。钻井指标与邻近13-2 油田具有可比性,明显优于LF13-1平台、LF13-2WHP平台,与LF13-2DPP平台接近(见表12)。

表 12 LF7-2油田与 LF13油田钻井技术指标对比

Table 12 Drilling technical index comparison between LF7-2 Oilfield and LF13 Oilfield

	油	田	井数/口	总进尺/m	平均井深/m	纯钻时/h	平均 ROP/(m•h ⁻¹)	钻井成本/(10 ⁴ ¥·m ⁻¹)
	LF	13-1第8批次	4	12385	3096.25	850.00	14.57	
LF13	LF13-2WHP		3	10210.73	3403.58	780.24	13.09	
LF 15	LF13-2DPP		8	30927.22	3865.90	911.23	33.94	1.04
	平均				3568.20	847.16	20.53	
LF7-2			6	27333.84	3416.73	928.83	29.43	1.29

(4)LF7-2开发井项目设计钻井工期 220 d,通过优快钻井的提速研究,实际钻井工期 191.59 d,节省 28.41 d的钻井时间,节省钻机费用 51.14×10⁴\$。

5 结论与建议

- (1)实践证明,在开发井采用"井工厂"的流水线 作业模式和优快钻井技术,有助于降低钻井成本、缩 短钻井工期、实现油田提前投产。
- (2)通过对探井测井资料的处理,提取地层岩石力学剖面,探讨岩石抗压强度与PDC钻头切削齿关系,建立适合LF7-2油田的PDC钻头程序;使用钻井软件开展钻井仿真模拟和预测,为钻井工程提速增效提供了技术保证。
- (3)根据地层特点,优选PDF-PLUS/KCL和EZ-FLOW钻井液体系,解决上部泥岩地层易水化,下部泥岩地层易坍塌的问题,实现安全钻井。
- (4)二开后采用地质导向钻井,开展随钻测量/测井(MWD/LWD),实时更新地学模型,及时了解地下储层的变化,必要时采用钻领眼井落实构造和油层,确保轨迹在储层中最大限度地穿行。

在水平段,使用"PDC钻头+PowerDriver+MWD/LWD"的旋转导向系统,开展近钻头测量,实时调整井眼轨迹,降低钻具摩阻、扭矩,提高钻井效率和井身质量,降低钻井作业风险。

通过 LWD 随钻测井技术,实现测井资料实时 传输和发布,提高水平段储层钻遇率,同时开发井产 量高于预期,节约钻井投资,提高了油气采收率,为 海上小规模油田的增储上产起到了示范作用。

(5)开发井优化设计和优快钻井技术在油田开发中发挥了重要作用,钻井防真模拟、PDC钻头选型、旋转导向钻井是提速增效的利器,在油田开发建设中意义重大。建议今后在开发井钻井工作中推广应用"Vortex超级马达"导向钻具、涡轮钻具等其它更高效率的井下工具,进一步提高机械钻速,缩短建井周期。

参考文献 (References):

- [1] 杨金华,田洪亮,郭晓霞,等.美国页岩气水平井钻井提速提效 案例与启示[J].石油科技论坛,2013,32(6):44-48,67.
 - YANG Jinhua, TIAN Hongliang, GUO Xiaoxia, et al. Case analysis of improving the performance of horizontal drilling in U.S. shale gas plays, and suggestions[J]. Oil Forum, 2013, 32(6): 44-48,67.
- [2] 张福祥,郑新权,李志斌,等.钻井优化系统在国内非常规油气资源开发中的实践[J].中国石油勘探,2020,25(2):96-109. ZHANG Fuxiang, ZHENG Xinquan, LI Zhibin, et al. Practice of drilling optimization system in the development of unconventional oil and gas resources in China[J]. China Petroleum Exploration, 2020,25(2):96-109...
- [3] 刘再生,施和生,杨少坤,等.南海东部海域自营勘探实践与成效[J].中国海上油气,2014,26(3):1-10.

 LIU Zaisheng, SHI Hesheng, YANG Shaokun, et al. The practice of self-operated exploration and its achievements in the eastern South China Sea[J]. China Offshore Oil & Gas, 2014,26(3):1-10.
- [4] 刘书杰,谢仁军,全刚,等.中国海洋石油集团有限公司深水钻完井技术进展及展望[J].石油学报,2019,40(S2):168-173. LIU Shujie, XIE Renjun, TONG Gang, et al. Progress and prospect of deepwater well drilling and completion technique of CNOOC[J]. Acta Petrolei Sinica, 2019,40(S2):168-173.
- [5] 姜伟.中国海洋石油深水钻完井技术[J].石油钻采工艺,2015, 37(1):1-4.

- JIANG Wei. Deepwater drilling and completion technology of China National Offshore Oil Corporation [J]. Petroleum Drilling and Production Technology, 2015, 37(1):1-4.
- [6] 宋保健,孙凯,乐守群,等.涪陵页岩气田钻井提速难点与对策分析[J].钻采工艺,2019,42(4):9-12,6.
 SONG Baojian, SUN Kai, LE Shouqun, et al. Analysis on difficulties and countermeasures of drilling speed increase in Fuling Shale Gas Field[J]. Drilling & Production Technology, 2019,42 (4):9-12,6.
- [7] 于洋,南玉民,李双贵,等.顺北油田古生界钻井提速技术[J]. 断块油气田,2019,26(6): 780-783.
 YU Yang, NAN Yumin, LI Shuanggui, et al. Technology for increasing drilling speed of Paleozoic stratum in Shunbei Oilfield [J]. Fault-Block Oil & Gas Field, 2019,26(6):780-783.
- [8] 蒋世全,李峰飞,刘怡君,等.从浅海走向深海的挑战与钻井设计技术对策[J].海洋工程装备与技术,2015,2(6):361-372. JIANG Shiquan, LI Fengfei, LIU Yijun, et al. From shallow to deepwater drilling challenges and design technical countermeasures [J]. Offshore Engineering Equipment and Technology, 2015,2(6):361-372.
- [9] 吴德山,董振国,崔春兰.大斜度定向井钻井设计优化及应用实践[J].煤炭科学技术,2018,46(4):58-64.
 WU Deshan, DONG Zhenguo, CUI Chunlan. Optimum drilling design of high deviated directional wells and its application [J]. Coal Science and Technology, 2018,46(4):58-64.
- [10] 滕学清,陈勉,杨沛,等.库车前陆盆地超深井全井筒提速技术
 [J].中国石油勘探,2016,21(1):76-88.
 TENG Xueqing, CHEN Mian, YANG Pei, et al. Whole well ROP enhancement technology for super-deep wells in Kuqa Foreland Basin[J]. China Petroleum Exploration, 2016,21(1): 76-88.
- [11] 张锦宏. 彭水区块页岩气水平井钻井关键技术[J]. 石油钻探技术, 2013, 41(5):9-15.

 ZHANG Jinhong. Key drilling & completion techniques for shale gas horizontal wells in Pengshui Block [J]. Petroleum Drilling Technology, 2013, 41(5):9-15.
- [12] 陈涛,赵思军,常小绪,等.四川盆地川东地区复杂地层大斜度超深定向钻井技术[J].天然气勘探与开发,2018,41(1):101-107. CHEN Tao, ZHAO Sijun, CHANG Xiaoxu, et al. High-deep and ultra-deep directional drilling technology in complex formations in eastern Sichuan, Sichuan Basin [J]. Natural Gas Exploration and Development, 2018,41(1):101-107.
- [13] 杨灿,王鹏,饶开波,等.大港油田页岩油水平井钻井关键技术
 [J].石油钻探技术,2020,48(2):34-41.

 YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield
 [J]. Petroleum Drilling Technology, 2020,48(2):34-41.
- [14] 周贤海. 涪陵焦石坝区块页岩气水平井钻井完井技术[J]. 石油钻探技术,2013,41(5):26-30.

 ZHOU Xianhai. Drilling & completion techniques used in shale gas horizontal wells in Jiaoshiba Block of Fuling area[J]. Petroleum Drilling Technology, 2013,41(5):26-30.
- [15] 陈海力,王琳,周峰,等.四川盆地威远地区页岩气水平井优快钻井技术[J].天然气工业,2014,34(12):100-105. CHEN Haili, WANG Lin, ZHOU Feng, et al. Rapid and effi-

- cient drilling of horizontal wells in the Weiyuan shale gas field, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12):100-105.
- [16] 姜政华,童胜宝,丁锦鹤.彭页HF-1页岩气水平井钻井关键技术[J].石油钻探技术,2012,40(4):28-31.

 JIANG Zhenghua, TONG Shengbao, DING Jinhe. Key technologies adopted for shale gas horizontal Well Pengye HF-1
 [J]. Petroleum Drilling Technology, 2012,40(4):28-31.
- [17] 窦玉玲,唐志军,徐云龙,等.涪陵江东区块三维水平井优快钻井技术——以焦页 91平台为例[J].探矿工程(岩土钻掘工程),2019,46(2):55-59.

 DOU Yuling, TANG Zhijun, XU Yunlong, et al. Fast drilling technology of three dimensional horizontal wells in Fuling Jiang
 - technology of three dimensional horizontal wells in Fuling Jiangdong Block [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(2):55-59.
- [18] 王华平,张铎,张德军,等.威远构造页岩气钻井技术探讨[J]. 钻采工艺,2012,35(2):9-11. WANG Huaping, ZHANG Duo, ZHANG Dejun, et al. Weiyuan tectonic shale gas drilling technology exploration[J]. Drilling & Production Technology, 2012,35(2):9-11.
- [19] 王金磊,黑国兴,赵洪学.昭通 YSH1-1页岩气水平井钻井完井技术[J].石油钻探技术,2012,40(4):23-27. WANG Jinlei, HEI Guoxing, ZHAO Hongxue. Drilling & completion techniques used in shale gas horizontal Well YSH1-1 in Zhaotong Block[J]. Petroleum Drilling Techniques, 2012, 40(4):23-27.
- [20] 吴江,李炎军,张万栋,等.南海莺歌海盆地中深层高温高压水平井钻井关键技术[J].石油钻探技术,2020,48(2):63-69. WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea [J]. Petroleum Drilling Technology, 2020,48(2):63-69.
- [21] 聂靖霜,王华平,王富渝.长宁威远地区页岩气大斜度水平井钻井技术研究[J].钻采工艺,2013,36(3):118-120.
 NIE Jingshuang, WANG Huaping, WANG Fuyu. Research on drilling technology of shale gas high deviatied horizontal well in Weiyuan area of Changning[J]. Drilling & Production Technology, 2013,36(3):118-120.
- [22] 董振国,张跃恒,张磊.湖南保靖区块海相页岩气快速钻探技术[J].探矿工程(岩土钻掘工程),2019,46(10):45-52. DONG Zhenguo, ZHANG Yueheng, ZHANG Lei. Fast drilling technology for marine shale gas in Baojing Block, Hunan [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019,46(10):45-52.
- [23] 李君,辛小亮,付超胜,等.优快钻井技术在克拉美丽气田滴南地区的应用[J].天然气技术与经济,2018,12(1):25-28,82. LI Jun, XIN Xiaoliang, FU Chaosheng, et al. Application of excellent and fast drilling technology in Dinan area of Kelameili Gas Field[J]. Natural Gas Technology and Economy, 2018,12 (1):25-28,82.
- [24] 李悦,李玮,许兴华,等.塔里木山前地区超深井钻井提速技术研究[J].中州煤炭,2016(7):133-136,142. LI Yue, LI Wei, XU Xinghua, et al. ROP enhancement techniques in ultra-deep exploratory wells in the piedmont area of Tarim Basin[J]. Zhongzhou Coal, 2016(7):133-136,142.