第58卷第1期 2025年(总239期)

北 西 地 质

NORTHWESTERN GEOLOGY

Vol. 58 No. 1 2025(Sum239)

引文格式:何泽宇,陈磊,李成元,等.内蒙古川井坳陷巴彦花组砂岩碎屑锆石年代学特征对物源及砂岩型铀矿勘 查的启示[J].西北地质,2025,58(1):186-203.DOI:10.12401/j.nwg.2024036

Citation: HE Zeyu, CHEN Lei, LI Chengyuan, et al. Inspiration of Zircon Chronological Characteristics of Sandstone Fragments from Bayanhua Formation in Chuanjing Depression, Inner Mongolia on Exploration of Source and Sandstone Type Uranium Deposits[J]. Northwestern Geology, 2025, 58(1): 186–203. DOI: 10.12401/j.nwg.2024036

内蒙古川井坳陷巴彦花组砂岩碎屑锆石年代学特征对 物源及砂岩型铀矿勘查的启示

何泽宇,陈磊*,李成元,樊松浩,薄海军,高琪,苏攀云,刘伟,靖安

(中国地质调查局呼和浩特自然资源综合调查中心,内蒙古 呼和浩特 010010)

摘 要:早白垩世是二连盆地演化的一个重要演化阶段,其构造环境与沉积物源的探讨对该盆地 铀矿成因研究具有重要启示意义。笔者以二连盆地西部川井坳陷下白垩统巴彦花组为主要研究 对象,通过碎屑锆石 LA-ICP-MS U-Pb定年,结果显示下白垩统巴彦花组下部与上部具有不同年 龄峰值,其下部为1800~2100 Ma的主年龄峰值;其上部为250~330 Ma的主年龄峰值,综合区域 内各地质体年代学研究,认为巴彦花组沉积物质来源主要为宝音图隆起、索伦山隆起和狼山-白 云鄂博隆起。结合钻孔综合测井结果,认为下白垩统巴彦花组下部具有较高的U含量,可作为 研究区及周边寻找砂岩型铀矿的主要目标层位。

关键词:川井坳陷;二连盆地;下白垩统;碎屑锆石 LA-ICP-MS U-Pb 定年;砂岩型铀矿 中图分类号:P597;P694.14 文献标志码:A 文章编号:1009-6248(2025)01-0186-18

Inspiration of Zircon Chronological Characteristics of Sandstone Fragments from Bayanhua Formation in Chuanjing Depression, Inner Mongolia on Exploration of Source and Sandstone Type Uranium Deposits

HE Zeyu, CHEN Lei*, LI Chengyuan, FAN Songhao, BO Haijun, GAO Qi, SU Panyun, LIU Wei, JING An

(Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, Inner Mongolia, China)

Abstract: The early Cretaceous is an important evolutionary stage of the evolution of the Erlian basin, and the exploration of its tectonic environment and sediment sources has significant implications for the study of the genesis of uranium deposits in the basin. This article focuses on the Bayanhua Formation of the Lower Cretaceous in the Chuanjing depression of the western Erlian basin. Through the dating results of detrital zircon LA-ICP-MS U-Pb, it is shown that the lower and upper parts of the Bayanhua Formation of the Lower Cretaceous have different age peaks, with the lower part having a main age peak of $1\,800 \sim 2\,100$ Ma; The upper part of the Bayanhua Formation has a main age peak of $250 \sim 330$ Ma. Based on the study of plastid chronology in various

收稿日期: 2023-03-09; 修回日期: 2023-12-07; 责任编辑: 吕鹏瑞

基金项目:中国地质调查局项目"内蒙古二连盆地川井-达日罕乌拉地区砂岩型铀矿勘查"(DD20211549)和"内蒙古哈达门 沟金矿南矿带金多金属资源勘查"(DD20220972)联合资助。

作者简介:何泽宇(1992-),男,助理工程师,主要从事基础地质调查研究、战略性矿产资源勘查。E-mail:759987331@qq.com。 * 通讯作者:陈磊(1989-),男,工程师,主要从事地质工程、岩心钻探及深部找矿。E-mail:728341391@qq.com。

Langshan Baiyunebo uplift. Based on the comprehensive drilling logging results, it is believed that the lower part of the Bayanhua Formation in the Lower Cretaceous has a high uranium content, which can be used as the main target layer for searching for sandstone type uranium deposits in the study area and surrounding areas. **Keywords:** Chuanjing sag; Erlian basin; lower cretaceous; detrital zircon LA-ICP-MS U-Pb dating; sandstone-type uranium mineralization

二连盆地作为中国北方重要的煤、油、气产出地 及铀矿富集区之一,其东至大兴安岭隆起,西达狼山 隆起,南、北两界分别受巴音宝力格-索伦山隆起和温 都尔庙隆起控制,是发育在华力西期柔性褶皱基底和 侏罗纪残留盆地基础之上,经强烈伸展、裂陷及不同 类型盆地叠合而成的中生代陆相裂陷盆地(崔永谦等, 2011;李先平等, 2015; 苗全芸等, 2015)。 随着针对二 连盆地煤、油气、铀矿等地质工作的深入,相继在盆 地中部发现了诸如努和廷、苏崩、哈达图、巴彦乌拉、 赛罕高毕等多个大、中型铀矿床(赵兴齐等, 2019; 刘 佳林 2020),同时也对该区的地层、构造、物源等多方 面特征有了较为深入的研究认识(卫三元等,2006;崔 永谦等, 2011; 刘波等, 2016;)。现阶段, 盆地中与铀 矿有关的一系列地质工作及研究的重点区主要集中 于二连盆地中部(刘波等, 2017: 刘佳林等, 2019: 彭云 彪等, 2019; 李伟涛等, 2019)。相对而言, 盆地西部川 井地区的相关研究还相对薄弱。

作为二连盆地的重要组成部分,前人对川井坳陷 的研究相对较少。彭云彪等(2018)认为坳陷自侏罗 纪开始先后经历了断陷盆地发育期、断陷盆地发展期、 断坳转换期、坳陷期、沉积期等多个构造演化时期得 以形成。其地层主要包括中下侏罗统阿拉坦力群 $(J_{1,2}al)$ 、下白垩统大磨拐河组 (K_1d) 和巴彦花组 (K_1b) 、 上白垩统二连组(K₂e)及第四系(Q)(李彤等, 2022; 李 成元等, 2023)。冯雪东等(2017)通过对川井坳陷西 部测老庙坳陷早白垩世古流向分析认为其物源来自 于盆地北部。李西得等(2022)通过对川井坳陷赛汉 组砂岩矿物学及地球化学特征的研究认为其碎屑物 主要来自于中央隆起带。物源分析在盆地性质、构造 演化、盆-山耦合关系等研究中扮演者极为重要的角 色(李夔洲等, 2023)。在砂岩型铀矿找矿工作中, 对 含矿地层碎屑物的物源分析可以更好的指导找矿工 作。但由于该区针对铀矿的工作程度较低,鲜有关于 区内相关赋矿地层沉积物质来源的研究报道。

近期,基于钻探工作的持续开展,在该坳陷内发

现了多处铀矿化点,这些铀矿化主要产于下白垩统巴 彦花组中。笔者主要针对盆地西部川井坳陷早白垩 世沉积物质来源问题,根据钻探成果,选择铀矿主要 富集层位巴彦花组灰白色砂岩为研究对象,开展了碎 屑锆石 LA-ICP-MS U-Pb 定年分析,并结合前人相关 研究成果,厘定早白垩世巴彦花组物源特征,以期在 蚀源区成矿物质来源方面为二连盆地西部下白垩统 砂岩型铀矿勘查提供依据。

1 区域地质

二连盆地位于中国中北部,大地构造位置处于西 伯利亚板块和华北板块缝合带(宋景明等, 2012)。其 是在内蒙古-大兴安岭褶皱基底之上、经燕山期拉张、 翘断构造应力场作用发育起来的大型中、新生代陆相 沉积盆地(漆家福等, 2015)。盆地总体走向呈 NE 向, 盆地西、南部呈 NNE 向和 WE 向,其东西跨度约为 1000 km, 南北宽为 20~220 km(张以明等, 2019), 总 面积约为21×10⁴km²,整体形似三角形,具有西窄东宽 的特征。盆内发育川井坳陷、乌兰察布坳陷、马尼特 坳陷、乌尼特坳陷及腾格尔坳陷和苏尼特中央隆起 (聂逢君等, 2015), 其中川井坳陷位于盆地最西部, 走 向呈 EW 向(图 1b)。该坳陷受索伦山隆起和阴山-白 云鄂博隆起控制,发育有扎嘎乌苏-索伦山-西拉木伦 大断裂、巴音前达门-川井-白云鄂博大断裂以及 NE 向的白音查干坳陷西缘断裂(彭云彪等, 2018)(图 1a)。 同时,其包含有白彦花凸起、巴音杭盖凸起、桑根达 来凹陷、白音查干凹陷、包龙凹陷等次一级构造单元。 坳陷基底为元古界、古生界变质岩和华力西期—燕山 早期基性--酸性侵入岩组成,其上部盖层包括侏罗系、 白垩系及第四系,缺失三叠系(李洪军等,2012;苗全 芸等, 2016), 其中下白垩统为坳陷富铀层位。依照最 新一次地层厘定(李文国, 1996),区内下白垩统包含 大磨拐河组和巴彦花组,以及夹于其中的以基性玄武 岩为主体的甘河组。其中,大磨拐河组为一套含煤碎

图1 川井坳陷区域地质构造简图

Fig. 1 Geological structure diagram of Chuanjing depression region

屑岩。巴彦花组以河流相--河湖相沉积为主,该组岩 性整体以浅绿色泥岩、灰色或灰白色细砂岩、中砂岩 为主,局部夹灰色粗砂岩、含砾粗砂岩。该组上部碳 化明显,中下部零星见碳化,岩石颜色以浅绿色、灰色 为主,反映沉积环境为氧化--还原过度环境。该组富 矿砂岩主要为长石岩屑砂岩,中等分选,含少量砾石, 砾石呈次圆状--次棱角状,指示其具有近源碎屑物的 特征。该层为盆地一个重要富U地层。川井坳陷早 白垩世岩浆活动频繁,区内可见多处岩浆岩出露,主 要包括呈带状分布或呈岩株产出的华力西期、燕山早 期的花岗岩、花岗石闪长岩、闪长岩及辉橄岩、纯橄 榄岩等(李保侠等,2002)。

2 样品与分析方法

本次研究样品采自二连盆地西部川井地区钻孔的下白垩统巴彦花组砂岩中,分别为1ZK0003钻孔和 1ZK0701钻孔(图 1c)3件样品,编号分别为:TW0003-1,TW0003-2,TW0701(图 2)。其中TW0003-1样品和 TW0003-2样品分别采自钻孔 1ZK0003的 97.95 m 和 67.87 m 处。样品主要为灰白色中--细粒长石岩屑砂 岩; TW0701 样品采自 1ZK0701 钻孔 71.67 m 处, 样品 主要为灰黑色含砾细砂质泥岩。TW0003-1 样品位于 矿化层下部, TW0003-2 样品和 TW0701 样品属于矿化 层上部。

本次用于测年的样品锆石分选、制靶及测试均在 中国冶金地质总局山东局测试中心完成。样品重量 均≥2kg,将样品机械破碎至80~100目,后用磁选及 重液方法粗选锆石,在双目镜下挑纯,并制作锆石样 靶。对已抛光的锆石样靶进行透射光、反射光及阴极 发光拍照,以确定锆石颗粒的内部结构。在测试过程 中,选择环带清晰且无裂痕、无包裹体处进行测试。 测试在激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)上完成,样品测试过程采用的激光束斑直径30µm。 测试过程采用国际标准锆石91500/PL作为外表标准 物质,选择 NIST610作为元素成分标准样,Zr 作为内 标元素,具体实验步骤及方法参数见文献(耿建珍等, 2011)。样品的同位素比值及元素含量计算采用 ICP-MS-DATACAL 数据处理程序,U-Pb 谐和图、年龄分 布频率图绘制和年龄权重平均计算采用 Isoplot 3.0 程

a. 钻孔 1ZK0003; b. 钻孔 1ZK0701

图2 钻孔岩性柱状图、岩心实物照片及采样位置

Fig. 2 Lithological histogram of borehole, physical core photos and sampling locations

序完成。本次研究主要选择谐和度介于 90% 到 100% 之间的碎屑锆石年龄,谐和度 < 90% 的锆石年龄不参 与本文的统计和分析。对于 U-Pb 锆石年龄 < 1 000 Ma 的年轻锆石,采用²⁰⁶Pb/²³⁸U 年龄代表锆石的形成年龄; 对于 U-Pb 锆石年龄 > 1 000 Ma 的古老锆石,采用 ²⁰⁷Pb/²⁰⁶Pb 年龄代表锆石的形成年龄。

3 分析结果

3 件测试样品中锆石形态及颜色相近,绝大多数 为无色透明或浅黄色, 锆石粒径普遍为 150~200 μm, 呈短柱状或次圆状, 可见裂痕、凹坑、断口磨蚀及包 裹体,显示其经历了一定距离的搬运。根据样品锆石 CL 图像可以看出, 大多数锆石具有核-幔结构, 发育 有清晰规则的震荡环带, 指示其具有岩浆成因锆石的 特征(杨济远等, 2023; 代新宇等, 2024; 刘昊等, 2024); 少数锆石无清晰震荡环带, 可见亮白色或暗色增生边, 可能为变质成因锆石(黄广文等, 2018)(图 3)。

本次测试的 3 件巴彦花组砂岩样品共获得 346 颗 锆石颗粒的 346 个测试点的谐和年龄数据(表 1、表 2、 表 3),其中钻孔 1ZK0003 中的 TW0003-1 样品共获得 118 颗锆石年龄, TW0003-2 样品共获得 114 颗锆石年 龄; 钻孔 1ZK0701 中的 TW-0701 样品共获得 114 颗锆 石年龄(图 4)。

采自钻孔 1ZK0003 的 TW0003-1 样品中的锆石年 龄最小值为 138.5 Ma, 最大值为 3 044.1 Ma, 主要集中 于1835.2~2472.2 Ma(n=86)和 236.9~324.9 Ma(n= 13)两个区间内,其存在约1950 Ma的主峰和约250 Ma 的次峰(图4)。其中,锆石年龄较大的前寒武锆石共 95颗,占80.5%;采自钻孔1ZK0003的TW0003-2样品 中的锆石年龄最小值为 224.3 Ma, 最大值为 2713.9 Ma, 其主要集中于 1636.1~2500.0 Ma(n=81)和 224.3~ 275.2 Ma(n=26)两个区间中, 其峰值分别约为1934 Ma 和 257 Ma,该样品锆石年龄在前寒武之前的共 88 颗, 占 77.2%。采自钻孔 1ZK0701 中的 TW-0701 样品中的 锆石年龄最小值为 126.5, 最大值为 2 688.6 Ma, 主要 集中于 251.7~329.6 Ma(n=70)和 1664.8~2465.1 Ma (n=19), 其有约为 264 Ma 的主峰与 1862 Ma 的次峰 (图 4)。该样品中锆石年龄较年轻的三叠纪早期—石 炭纪晚期锆石共80颗,占70.2%,锆石年龄较大的前 寒武锆石(>541 Ma)共25颗,占21.9%。

从1ZK0003及1ZK0701两钻孔的3件样品的锆 石年龄结果看,其锆石年龄组成相近,除同时缺失侏 罗纪、泥盆纪和寒武纪外,从太古代至晚中生代均有

a.样品 TW0003-1 典型碎屑锆石阴极发光图像及测试位置; b.样品 TW0003-2 典型碎屑锆石阴极发光图像及测试位置; c.样品 TW0701 典型碎屑锆石阴极发光图像及测试位置

图3 研究区典型碎屑锆石阴极发光图像及测试位置

Fig. 3 Cathodoluminescence images and testing locations of typical detrital zircon in the research area

分布, 且各年龄段峰值相近。其中钻孔 1ZK0003 的两 个样品的锆石年龄主要集中于前寒武时期的古元古 代, 而钻孔 1ZK0701 的样品锆石年龄主要集中于晚古 生代。综上所述, 巴彦花组沉积物主要由古远古代和 晚古生代沉积物组成。

4 讨论

4.1 对巴彦花组物源的指示

根据锆石 Th/U值及锆石形态特征对锆石成因进 行判别(黄广文等,2018),本次所测试样品具有较高 的 Th/U值。其中以 Th/U>0.4 的锆石为主,Th/U< 0.1 的锆石很少(图 5),统计表明 Th/U>0.4 的锆石占 总数的 55.2%,Th/U<0.1 的锆石仅占总数的 5.2%。3 件样品中锆石形态主要呈自形柱状,具有明显的晶棱, 且发育清晰的震荡生长环带。因此,本次所获得的锆 石成因以岩浆成因为主,含少量变质锆石。由3件样 品的碎屑锆石分析结果显示(图 4),巴彦花组砂岩中 的碎屑锆石年龄主要为 250~330 Ma(晚二叠世—晚 石炭世)和 1630~2 500 Ma(古元古代),其次为少量 的 230~251 Ma(早三叠世)、420~440 Ma(志留纪)、 450~460 Ma(中—晚奥陶世)及太古代的碎屑锆石。

盆地与造山带作为两个基本构造单元,两者之间 存在着密切的演化和构造联系(周瑞,2019)。华北地 区受~2700 Ma的大规模陆陆增生事件和古元古代末 期的构造-热运动影响,产出大量岩浆岩及与其有关 的变质作用(耿元生等,2006)。在之后的~1000 Ma 至 250 Ma 期间, 华北克拉通和西伯利亚克拉通碰撞所伴随的古亚洲洋闭合, 形成了包括索伦山蛇绿岩带在内的中亚造山带(Chen et al., 2009; Wu et al., 2011), 同时于早三叠世—晚二叠世中亚造山带与阴山-燕山造山带发生碰撞, 并伴有大规模的岩浆作用(Wang et al., 2017; 周瑞, 2019)。随着之后的强烈构造运动, 阴山-燕山造山带和索伦山蛇绿岩带发生了快速隆升(Ren et al., 2016)。从早—中侏罗世开始, 受古太平洋俯冲作用影响二连盆地逐步形成(张国仁等, 2004)。

本次采集的样品以长石岩屑砂岩或岩屑长石砂 岩为主,其形态特征表现为低磨圆度和较差的分选性, 具有冲积扇--河流相沉积特征,指示其物源经历了较 短距离的搬运作用。因此,认为下白垩统巴彦花组沉 积碎屑物是由近源碎屑物质为主体组成。而分布于 川井坳陷周围的索伦山、宝音图、狼山-白云鄂博等 隆起可能为其沉积碎屑的重要源区。根据近年来学 者们对研究区周边隆起区的年代学特征的研究认识 (表 4),对比本次所获得的碎屑锆石年代学特征可以 看出,位于坳陷北部的索伦山隆起发育大量二叠纪与 石炭纪时期的基性岩浆岩和相对较少的酸性岩浆岩, 这些岩浆岩的形成时期主要集中在 246~330 Ma (Miao et al., 2008; Jian et al., 2010; Chen et al., 2012; Jian et al., 2012; Chu et al., 2013; 王炎阳等, 2014; 柳志华等, 2020),属于晚二叠世至晚石炭世时期形成,其与坳陷 内年龄为250~330 Ma的碎屑锆石一致;位于研究区 南-东南部的狼山-白云鄂博隆起主要发育有酸性岩 浆岩和中性岩浆岩,这些岩浆岩的年龄主要集中于

190

表 1 样品 TW0003-1 碎屑锆石 LA-ICP-MS U-Pb 年龄测试结果

Tab. 1 Sample TW0003-1 clastic zircon LA-ICP-MS U-Pb age test results

Barbon Barbon<	测试占	兀素	含量	Th/II			同位素	比值					年龄(Ma	ı)		
1 6.2 97 0.64 0.18947 0.00422 0.0299 0.24910 0.02175 0.0027 1.0794 2 1.624 2.0 2.535 3.11 7 18.7 0.56 0.005497 0.00219 0.24905 0.00210 0.02167 0.00314 1.883 39 1.814 1.3 457 1.8 7 18.2 0.04 0.1144 0.00225 5.18668 0.00732 0.23485 0.00344 1.803 39 2.417 9 2.412 2 4.17 9 2.412 9 1.017 1.015 0.01301 9.88655 0.2015 0.04344 1.00044 1.900 9.1101 1.050 0.0124 5.11980 0.10404 0.0239 0.053 1.01772 0.0038 5.5375 0.13404 0.0249 1.922 9 1.914 21 1.911 2.41 1.977 1.84 2.27 1.911 1.44 1.24 1.911 3.41 1.917 3.44 1.919 <t< td=""><td>121 144 777</td><td>Th</td><td>U</td><td>T II/U</td><td>²⁰⁷Pb/²⁰⁶Pb</td><td>1σ</td><td>²⁰⁷Pb/²³⁵U</td><td>1σ</td><td>²⁰⁶Pb/²³⁸U</td><td>1σ</td><td>²⁰⁷Pb/²⁰⁶Pb</td><td>1σ</td><td>²⁰⁷Pb/²³⁵U</td><td>1σ</td><td>²⁰⁶Pb/²³⁸U</td><td>-1σ</td></t<>	121 144 777	Th	U	T II/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	-1σ
2 111 194 0.57 0.01570 0.02577 0.00377 1.799 42 1.62 0.01 1.599 1.99 42 1.62 1.00 1.59 1.00 1.59 1.00 1.757 0.03747 0.00141 1.865 36 1.825 1.81 1.8 1.9 6 2.85 0.39 0.84 0.05317 0.00150 0.5764 0.01318 0.00444 0.00944 1.865 3.0 1.851 1.8 1.8 1.8 7 33.30 0.24 0.0316 0.04451 0.00947 2.413 2.6 8 0.24 0.34 0.0365 0.02101 0.0443 1.9907 2.1 2.4 1.21 1.996 2.4 1.917 2.6 100 101 0.15 0.0165 0.01461 0.0350 0.01461 0.0166 1.917 2.11 2.4 2.11 2.916 2.11 2.4 2.11 2.916 2.11 2.11 2.11	1	62	97	0.64	0.158 47	0.004 22	10.590 36	0.262 01	0.481 83	0.007 19	2 4 3 9	45	2 488	23	2 535	31
3 87 157 0.56 0.054907 0.001910 0.07347 0.00126 409 85 444 13 477 18 5 3209 0.25 0.11511 0.0022 5.18868 0.00394 0.00394 1.883 39 181 18 1813 19 6 2853 30 0.81 0.01591 0.00136 5.00151 0.00344 1.000944 1.00033 175 38 1.829 19 19 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.03 0.11772 0.00345 5.03142 0.00559 1922 49 1931 24 1991 24 1991 24 1991 24 1991 24 1991 24 1991 24 1991 24 1991 24 1991 23 14 152 61 0.20 0.05351 0.04423 0.0162 0.00550 1017	2	111	194	0.57	0.106 32	0.002 71	3.950 59	0.095 50	0.267 75	0.003 77	1 739	42	1 624	20	1 529	19
4 73 182 0.41 0.0144 1.085 3.0 185 19 19.1 </td <td>3</td> <td>87</td> <td>157</td> <td>0.56</td> <td>0.054 97</td> <td>0.002 09</td> <td>0.549 05</td> <td>0.019 10</td> <td>0.073 47</td> <td>0.001 26</td> <td>409</td> <td>85</td> <td>444</td> <td>13</td> <td>457</td> <td>8</td>	3	87	157	0.56	0.054 97	0.002 09	0.549 05	0.019 10	0.073 47	0.001 26	409	85	444	13	457	8
5 32 209 0.25 0.11511 0.00220 5.188.68 0.107.32 0.224.85 0.00394 342 32 417 19 2432 6 7 93 360 0.21 0.15593 0.0016 9.808.55 0.2015 0.45410 0.00597 24.13 34 24.17 19 24.13 34 24.17 19 24.13 34 24.17 19 24.13 34 24.17 19 21.47 19 21.47 19 21.97 21.97 21.996 24.44 30.00031 37.172.8 0.00315 18.27 21.960 0.00315 18.23 37 19.95 44.17 19 1.165 0.0031 37.142 0.00356 0.00316 10.833 10.175 30.85 27.87 8.8 18.3 19.183 18 14.13 19 5 54.4 10.155 0.0031 37.142.8 0.0035 17.07 15.9 1.156 1.157 18.3 17.153 18.0	4	73	182	0.40	0.114 04	0.002 58	5.445 22	0.117 67	0.343 65	0.004 34	1 865	36	1 892	19	1 904	21
6 285 319 0.84 0.001591 0.00169 0.00097 2413 24 7 9 435 32 24/17 9 42/15 6 8 41 360 0.11 0.0156 0.00248 5.08157 0.01059 141 100 39 1977 26 10 101 013 0.1175 0.00238 5.88757 0.13604 0.03651 0.00055 1921 24 1927 21 197 26 14 127 0.135 0.1172 0.00385 5.03384 0.00055 1921 23 1.4125 101 191 14 122 191 123 1.4125 14 125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.412 1.455 1.412 1.456 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125 1.4125	5	53	209	0.25	0.115 11	0.002 52	5.188 68	0.107 32	0.324 85	0.003 94	1 883	39	1 851	18	1 813	19
7 93 356 0.28 0.015 0.4541 0.00597 2413 34 2417 19 2413 34 2417 19 2417 19 2411 19 2411 19 2411 19 1975 211 9 100 254 0.39 0.10737 0.00248 5.11980 0.11960 0.00315 11823 21 1942 194 1942 194 1972 27 13 44 27 019 0.1565 0.00344 0.00056 0.3351 0.00076 1991 22 194 140 1951 15 96 445 0.22 0.05448 0.00066 0.0371 0.00062 301 77 1587 18 1403 198 16 32 0.12 0.032 1.71542 0.03248 0.00107 130 133 221 770 15 171 168 17 1.30 0.16679 0.032 1.	6	285	339	0.84	0.053 17	0.001 50	0.507 63	0.013 18	0.069 34	0.000 94	345	32	417	9	432	6
8 41 369 0.11 0.01248 5.68379 0.12269 0.35478 0.00443 1900 39 1929 19 1957 21 10 101 194 0.53 0.1156 0.0283 5.58757 0.1364 0.0259 1922 59 1921 24 1927 21 14 127 0.116 0.0274 5.71690 0.13066 0.03531 1000476 1939 22 19 1921 24 1927 21 197 18 1418 120 1955 301 0.0017 0.31687 0.00991 0.04212 0.00064 3331 70 748 148 143 199 4 499 0.00 1114 0.00221 5.3361 0.0107 420 77 148 12 455 6 1115 16 108 1115 16 108 1115 16 108 1115 16 108 1115 16 108 1115	7	93	336	0.28	0.155 93	0.003 16	9.808 55	0.200 15	0.454 10	0.005 97	2 413	34	2417	19	2 413	26
9 100 254 0.13 0.01737 0.00248 5.11980 0.01960 0.03513 1755 38 11991 21 1996 24 11 95 70 1.35 0.1177 0.00386 5.63386 0.1655 0.3442 0.00515 1823 21 1914 21 24 1927 27 14 152 019 0.25 0.11215 0.0031 3.77428 0.00456 0.0036 133 70 279 8 265 3 15 64 45 0.02 0.0353 0.00107 420 77 448 12 455 6 16 33 20 0.25 95.961 0.10666 0.04210 0.0017 430 71 431 1915 16 108 18 45 0.99 0.01140 0.0021 4.715261 0.00230 1833 32 177 151 1715 151 151 151 1	8	41	369	0.11	0.115 60	0.002 48	5.683 97	0.122 69	0.354 78	0.004 43	1 900	39	1 929	19	1 957	21
10 101 191 0.5 0.11 0.60 0.82 9 0.005 1 125 4 1914 21 1946 24 1927 27 13 44 227 0.10 0.116.85 5.6338 0.1565 0.334.1 0.0056 1909 42 1914 20 1951 3 15 96 445 0.22 0.05448 0.00170 0.31687 0.00991 0.00162 300 0.0364 8 245 4 16 63 255 0.16199 0.05316 0.01800 0.04201 0.00107 420 77 448 12 455 6 16 63 255 0.1140 0.00221 5.9361 0.116060 0.03361 0.00301 1433 32 177 135 161 162 162 0.44 0.9021 0.118707 0.0253 0.39863 0.0077 2516 32 212 255 21	9	100	254	0.39	0.107 37	0.002 48	5.119 89	0.119 60	0.346 31	0.005 33	1 755	38	1 839	20	1 917	26
11 95 70 1.35 0.11772 0.00386 5.63388 0.16555 0.34842 0.00476 1909 42 1921 24 1927 27 14 152 619 0.25 0.11215 0.00213 3.77428 0.08423 0.24305 0.00062 350 85 254 8 245 4 15 96 455 0.22 0.06353 0.00202 0.28482 0.01066 0.03871 0.00062 350 85 254 8 245 4 16 63 255 0.25 0.01199 0.53368 0.01883 0.07320 0.00177 20.077 448 12 445 60 0.01330 1833 32 170 15 1715 16 19084 12 140 0.00224 4.716420 0.36692 0.00371 1.0817 33 236 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	10	101	191	0.53	0.111 56	0.002 83	5.587 57	0.136 04	0.362 99	0.005 15	1 825	41	1 914	21	1 996	24
13 44 227 0.10 0.016485 0.00274 57.1690 0.13066 0.33531 0.00376 1.999 42 194 200 1951 23 15 96 445 0.22 0.015448 0.00170 0.31687 0.00991 0.042 02 0.00062 350 85 2544 8 2453 4 16 85 133 0.00170 0.0199 0.55366 0.01660 0.03710 0.000177 420 77 448 12 455 6 18 1401 0.00221 5.59361 0.01660 0.03470 0.00330 1333 32 1717 151 16 1908 18 19 45 49 0.99 0.11140 0.00221 6.59361 0.0662 0.00370 1.0333 2.1717 151 16 21 26.7 47 0.016407 0.00359 1.1261 0.00231 0.3280 0.0071 1.855 36 1.852 2.18 2.45 2.52 2.12 2.566 30 2.545 2.545	11	95	70	1.35	0.117 72	0.003 86	5.633 88	0.156 55	0.348 42	0.005 59	1 922	59	1 921	24	1 927	27
14 152 619 0.25 0.11215 0.00231 3.77428 0.08423 0.0203 0.00391 0.4202 0.00062 391 70 277 8 26.5 3 16 53 261 0.20 0.035353 0.00220 2.8482 0.01660 0.01831 0.70320 0.0017 740 74 448 12 45.5 6 16 33 255 0.25 0.11690 0.00221 5.59361 0.10660 0.34450 0.00330 1833 1247 33 20.66 20 0.00330 1833 0.32 1777 15 171 150 21 23 0.01678 0.00330 1.8231 0.00330 1833 0.32 177 0.0845 20.0707 2.536 62 2.552 2.57 2.53 37 2.53 38 2.51 33 2.022 2.12 2.045 2.51 33 2.022 2.12 2.045 2.3 2.33 2	13	44	227	0.19	0.116 85	0.002 74	5.716 90	0.130 66	0.353 51	0.004 76	1 909	42	1 934	20	1 951	23
15 96 445 0.22 0.05448 0.00170 0.31687 0.000950 391 70 279 8 265 3 16 53 261 0.20 0.05537 0.002 0.28482 0.00166 0.03730 0.00107 420 77 448 12 455 6 18 63 255 0.25 0.11699 0.00221 6.539361 0.06660 0.04450 0.00330 1.941 34 1.915 16 1.908 18 20 162 544 0.32 0.11440 0.00221 6.24008 0.14290 0.38693 0.00593 1.947 33 2.05 21 2.566 30 21 26 74 0.35 0.16670 0.00355 1.1283 0.48570 0.00845 2.518 35 2.545 2.5 2.552 3.5 0.371 1.858 36 1.877 71 1.858 36 1.879 71 1.838 18 2.44 4.52 539 0.44 0.0224 0.00247 0.03238 0.4490 <td>14</td> <td>152</td> <td>619</td> <td>0.25</td> <td>0.112 15</td> <td>0.002 31</td> <td>3.774 28</td> <td>0.084 23</td> <td>0.243 05</td> <td>0.003 64</td> <td>1 835</td> <td>37</td> <td>1 587</td> <td>18</td> <td>1 403</td> <td>19</td>	14	152	619	0.25	0.112 15	0.002 31	3.774 28	0.084 23	0.243 05	0.003 64	1 835	37	1 587	18	1 403	19
16 53 261 0.00 0.05517 0.0019 0.01833 0.0730 0.00107 420 77 448 12 455 6 18 63 255 0.25 0.1699 0.00221 4.71542 0.08692 0.03476 0.00330 1833 32 177 15 16 1908 18 19 45 499 0.09 0.11140 0.00221 4.71542 0.08692 0.30476 0.00330 1833 32 177 148 12 12 15 12 130 0.16786 0.00330 11877 170 158 16 257 251 35 254 25 257 251 35 254 25 252 257 33 12024 0.00255 22774 0.10233 0.48742 0.0052 413 65 280 6 265 33 21 155 54 0.1224 0.00247 6.20240 0.00160 0.01800 0.004405 1961 43 2009 21 2.0449 25 26 35	15	96	445	0.22	0.054 48	0.001 70	0.316 87	0.009 91	0.042 02	0.000 56	391	70	279	8	265	3
17 88 143 0.59 0.0517 0.00199 0.52386 0.01883 0.07320 0.00107 420 77 448 12 455 66 19 45 499 009 0.11140 0.00221 2.57336 0.01666 0.3445 0.00330 1833 22 1770 15 1.68 21 26 74 0.35 0.16786 0.00363 11.87907 0.26554 0.50982 0.00707 2.536 36 2.555 2.12 2.668 30 22 197 152 1.30 0.16607 0.00150 31.890 0.00840 0.04133 0.00052 413 65 280 6 2.55 2.5 2.57 0.00153 0.10242 0.0052 413 6.5 280 6 2.58 32 2.007 1.98 0.00452 143 3 0.022 1.52 0.677 2.18 30 2.022 1.5 2.067 19 2.5 2.57 7.58 0.42 0.00452 1.843 30 2.022 1.6 2.2	16	53	261	0.20	0.053 53	0.002 02	0.284 82	0.010 66	0.038 71	0.000 62	350	85	254	8	245	4
18 63 255 0.22 0.11140 0.002 20 2.539 c1 0.086 20 0.003 79 1911 34 1915 16 1908 18 20 162 504 0.32 0.11140 0.002 20 4.7154 20 0.386 93 0.005 93 1947 33 2.036 2.0 2.109 2.8 21 26 74 0.35 0.16670 0.003 59 11.2621 6 0.302 53 0.485 77 0.008 45 2.518 35 2.545 2.5 2.552 37 23 152 267 0.57 0.11400 0.002 55 5.227 54 0.102 80 0.032 81 0.041 93 0.0005 22 413 65 2.806 6.265 3 24 452 59 0.44 0.102 87 6.302 80 0.10140 0.004 65 1.858 2.9 1.885 1.6 1.896 1.88 25 0.57 2.120 40 0.018 70 0.0141 45 0.003 44 1.0741 140 0.002 44 <td>17</td> <td>85</td> <td>143</td> <td>0.59</td> <td>0.055 17</td> <td>0.001 99</td> <td>0.553 86</td> <td>0.018 83</td> <td>0.073 20</td> <td>0.001 07</td> <td>420</td> <td>77</td> <td>448</td> <td>12</td> <td>455</td> <td>6</td>	17	85	143	0.59	0.055 17	0.001 99	0.553 86	0.018 83	0.073 20	0.001 07	420	77	448	12	455	6
19 45 499 0.09 0.11140 0.0022 4.71542 0.00830 1833 32 1770 15 1715 16 20 162 0.4035 0.11940 0.00221 6.43008 0.00707 2336 36 2.2952 21 2.656 30 21 152 1.30 0.16607 0.00359 11.26216 0.32253 0.48577 0.00845 2.518 35 2.545 2.5 2.57 37 25 195 0.34 0.05203 0.0160 0.11800 0.01247 0.00212 11.465 1.865 1.857 1.7 1.9449 2.049 2.5 26 57 258 0.22 0.12042 0.00237 4.01170 0.00217 5.39843 0.1119 0.31466 0.00365 1.885 1.8 1.9 0.0211 5.33943 0	18	63	255	0.25	0.116 99	0.002 21	5.593 61	0.106 06	0.344 50	0.003 79	1 911	34	1 915	16	1 908	18
20 162 504 0.32 0.11940 0.00221 6.43008 0.14290 0.36693 0.00593 1947 33 2036 20 2595 21 265 300 21 26 40.15786 0.00359 11.26216 0.02533 0.0848 20.00371 1845 35 2545 25 2525 37 23 152 267 0.570 0.11400 0.00255 5.22754 0.10283 0.0371 1845 36 1857 17 1838 18 24 452 58 0.34 0.12042 0.00287 6.33028 0.16193 0.00052 413 65 202 212 2049 21 20467 21 2047 21 20467 200528 164143 2009 21 2047 21 20467 21 20472 21 20467 21 2048 200 233 40.0177 233843 0.01472 20058 165 2544 20	19	45	499	0.09	0.111 40	0.002 02	4.715 42	0.086 92	0.304 76	0.003 30	1 833	32	1 770	15	1 715	16
21 26 74 0.35 0.1678 0.003 63 11.879 07 0.2554 0.509 82 0.007 07 2.536 36 2.595 21 2.666 30 21 152 267 0.57 0.11400 0.00255 5.22754 0.10233 0.32985 0.00371 1.865 36 1.857 1.7 1.838 18 24 452 539 0.84 0.05247 6.32063 0.01490 0.04422 0.00228 1.964 33 2.009 6 2.204 2.5 2.55 0.374 0.00528 1.964 33 2.007 1.9 3.41 6.0065 1.858 2.90 1.865 1.6 1.896 1.8 24 1.02 0.10656 0.00247 1.90177 0.00472 2.514 30 2.500 1.15 2.477 2.18 2.48 0.00177 2.394 0.003.99 1.631.0 0.233.8 0.00456 1.884 2.514 30 1.51 2.514 30	20	162	504	0.32	0.119 40	0.002 21	6.430 08	0.142 90	0.386 93	0.005 93	1 947	33	2 0 3 6	20	2 109	28
22 197 152 1.30 0.166 07 0.003 59 1.1262.16 0.302 53 0.2885 0.0071 1.865 35 2.545 2.5 255 257 17 1.838 18 24 452 539 0.84 0.01503 0.00160 0.31800 0.00440 0.04193 0.00052 413 65 280 6 265 3 25 19 55 0.24 0.10262 0.00215 6.3207 0.0137422 0.00528 1961 43 2009 21 2.049 25 26 57 258 0.32 0.10215 0.3077 0.037844 0.00405 1858 29 1.885 1.6 1.896 1.8 29 233 247 1.02 0.10826 0.00237 4.90197 0.9213 0.31476 0.00384 1.788 34 1.802 1.8 2.460 2.6 21 9.23 6.2 8.33 0.07 0.01832	21	26	74	0.35	0.167 86	0.003 63	11.879 07	0.265 54	0.509 82	0.007 07	2 536	36	2 595	21	2 656	30
22 152 267 0.002 55 5.227 54 0.012 83 0.030 71 1865 36 1857 17 1838 188 24 452 539 0.84 0.00500 0.00160 0.31800 0.00493 0.00052 413 55 26 6 256 3 25 19 55 0.34 0.01204 0.00216 6.326 07 0.10896 0.378 04 0.00405 1865 33 2022 15 2067 19 77 1163 0.43 0.10179 0.03484 0.01019 0.03484 1965 33 2022 15 2467 1.0 2.109237 4.017277 0.17525 0.46728 0.00472 2.514 30 2.500 15 2.460 2.6 33 0.777 0.0393 1.166130 0.223 38 0.46473 0.00355 1.843 35 1.760 2.1 1684 27 33 113 218 0.52 0.117545 0.00254 </td <td>22</td> <td>197</td> <td>152</td> <td>1.30</td> <td>0.166 07</td> <td>0.003 59</td> <td>11.262 16</td> <td>0.302 53</td> <td>0.485 77</td> <td>0.008 45</td> <td>2 518</td> <td>35</td> <td>2 545</td> <td>25</td> <td>2 552</td> <td>37</td>	22	197	152	1.30	0.166 07	0.003 59	11.262 16	0.302 53	0.485 77	0.008 45	2 518	35	2 545	25	2 552	37
24 452 539 0.84 0.05530 0.00160 0.318 00 0.00840 0.001528 143 65 280 6 265 3 25 19 55 0.34 0.12042 0.00217 6.32640 0.37422 0.00528 1961 43 2002 15 2.067 19 27 71 163 0.43 0.11359 0.00217 5.39843 0.10119 0.34186 0.00372 2.514 30 2500 15 2.472 21 29 253 247 1.02 0.10924 0.07277 0.07323 0.46173 0.00526 2.120 41 282 20 202 20 202 202 202 202 202 202 202 204 29 31 13 0.74 0.002.46 1.1643 0.379.5 0.00526 2.104 1.1684 27 33 113 218 0.52 0.11585 0.002.45 3.43934	23	152	267	0.57	0.114 00	0.002 55	5.227 54	0.102 83	0.329 85	0.003 71	1 865	36	1 857	17	1 838	18
225 19 55 0.34 0.12024 0.00215 6.23028 0.13240 0.03724 0.000405 1961 43 2009 21 2049 25 26 57 258 0.22 0.12062 0.00215 6.32607 0.10886 0.004055 1858 29 1885 16 1896 18 27 71 163 0.43 0.11359 0.00217 5.39843 0.10119 0.34146 0.000384 1798 34 1803 16 1764 19 30 46 126 0.36 0.1777 0.00339 11.66130 0.22338 0.46473 0.00535 1843 35 1760 21 1684 27 33 103 0.74 0.11565 0.00259 5.41424 0.11694 0.33860 0.00456 1843 35 1760 1480 20 1497 20 1497 20 1497 20 1497 20 1497 20 1497	24	452	539	0.84	0.055 03	0.001 60	0.318 00	0.008 40	0.041 93	0.000 52	413	65	280	6	265	3
26 57 258 0.22 0.12062 0.00217 5.39843 0.01191 0.341 & 60 0.003 65 1885 29 1885 16 1896 18 28 406 200 2.03 0.165 65 0.00217 5.39843 0.10119 0.341 & 66 0.003 65 1.885 16 1777 0.003 37 1.16613 0.02238 0.04672 2.514 30 2.500 15 2.472 21 29 233 2.47 1.02 0.103 37 1.16613 0.02238 0.16613 0.02238 0.064 50 2.023 3.7 2.578 18 2.460 2.6 31 138 0.74 0.13166 0.002 46 4.66041 0.11785 0.298 56 0.0062 55 1.843 35 1.760 21 1.684 27 31 121 1.80 2.21 0.316 0.002 54 3.349 34 0.086 76 0.261 35 0.004 00 1.491 52 1.493 20 1.497	25	19	55	0.34	0.120 24	0.002 87	6.230 28	0.152 40	0.374 22	0.005 28	1 961	43	2 009	21	2 049	25
27 71 163 0.43 0.113 9 0.002 17 5.398 43 0.10119 0.341 86 0.004 72 251 30 165 50 0.002 31 75 0.467 250 165 2500 15 2472 21 29 253 247 1.02 0.109 82 0.002 37 4.90197 0.09213 0.31476 0.003 4 1803 16 1764 19 30 46 126 0.36 0.1777 0.003 9 1748 0.155 0.00626 2120 41 2082 20 2042 29 31 31 0.52 0.11186 0.00254 3.34934 0.08676 0.26135 0.00400 1491 52 1493 20 1497 20 35 74 616 0.12 0.11864 0.00237 5.5543 0.00408 1916 33 1951 20 1497 20 36 37 77 0.48 0.13564 0.00237 5.55	26	57	258	0.22	0.120 62	0.002 15	6.326 07	0.108 96	0.378 04	0.004 05	1 965	33	2 0 2 2	15	2 067	19
28 406 200 2.03 0.165 6.002.94 10.727.87 0.172.25 0.467.28 0.04727 2.51.4 30 2.500 15 2.472 2.1 30 46 126 0.36 0.17777 0.003.33 1.1661.30 0.223.38 0.464.73 0.005.99 2.632 37 2.578 18 2.460 26 31 98 133 0.74 0.112.60 0.002.46 4.660.41 0.117.85 0.298.56 0.005.25 1.843 35 1.760 21 1.684 27 33 113 218 0.52 0.115.85 0.002.59 5.414.24 0.116.94 0.338 0.004.56 1.894 40 1.887 19 1.880 22 34 84 68 1.32 0.003.16 0.002.57 5.533.0 0.005.88 1.936 33 1.917 36 1.982 2.138 2.32 2.116 3 36 37 77 0.48	27	71	163	0.43	0.113 59	0.002 17	5.398 43	0.101 19	0.341 86	0.003 65	1 858	29	1 885	16	1 896	18
29 253 241 1.02 0.109 22 0.003 34 1.016 0.005 94 1.198 34 1.198 34 1.180 1.6 1.164 19 30 46 1.26 0.36 0.1717 0.003 91 1.161 0.02338 0.464 1.011 1.66 10 0.173 0.055 0.006 262 23 2.78 81 8 246 0.002 44 4.660 1.011 1.165 0.002 54 44 0.116 0.023 5.14 40 0.004 55 1.843 35 1.760 21 1.684 27 31 132 118 52 0.012 0.118 0.002 54 1.424 0.116 0.035 1.813 0.040 1.491 52 1.493 20 1.497 20 1.497 20 1.497 20 1.4961 23 2.138 2.32 2.115 31 31 1.57 30 1.097 1.5 1.30 1.67 1.997 1.012 0.006 2.	28	406	200	2.03	0.165.65	0.002 94	10.72787	0.175 25	0.46728	0.004 72	2514	30	2 500	15	2 472	21
30 46 126 0.36 0.1777 0.00393 11.66130 0.22338 0.46475 0.00599 2632 37 2578 18 2460 26 31 98 133 0.74 0.13165 0.00399 6.77438 0.13556 0.0795 0.00626 2120 41 2082 20 2034 29 33 113 218 0.52 0.11585 0.00259 5.41424 0.11694 0.33860 0.00456 1894 40 1887 19 1880 22 34 84 68 1.22 0.11862 0.00254 3.34934 0.08676 0.26135 0.00400 1491 52 1493 20 1497 20 35 74 616 0.12 0.11862 0.00237 5.55430 0.09772 0.34416 0.00355 1917 36 1909 15 1907 17 38 246 363 0.77 0.0186 0.28950 0.01010 0.042275 0.00063 232 90 258 82 6.4	29	253	247	1.02	0.109 82	0.002 37	4.901 97	0.092 13	0.314 76	0.003 84	1 798	34	1 803	16	1 764	19
31 98 133 0.74 0.131 65 0.003 09 6.7/4 38 0.153 65 0.370 95 0.000 26 2120 41 2082 20 2034 29 32 62 833 0.07 0.112 60 0.002 26 4.660 41 0.11785 0.298 56 0.006 25 1843 35 1760 21 1684 27 34 84 68 1.23 0.093 16 0.002 54 3.349 34 0.08676 0.261 35 0.00400 1491 52 1493 20 1497 20 36 37 77 0.48 0.135 64 0.002 57 5.554 30 0.09772 0.344 16 0.005 35 1917 36 1909 15 1907 17 38 24 363 0.07 0.050 77 0.0186 0.289 50 0.01010 0.042 20 0.000 63 232 90 258 8 265 4 39 164 223 0.74 0.053 59 0.01216	30	46	126	0.36	0.17/7/	0.003 93	11.661.30	0.223 38	0.464 73	0.005 99	2 6 3 2	37	2 5 7 8	18	2 460	26
32 62 833 0.07 0.112 60 0.002 46 4.660 41 0.117 85 0.298 56 0.003 55 1 843 35 1 760 21 1 684 27 33 113 218 0.52 0.115 86 0.002 54 3.349 34 0.086 76 0.261 35 0.004 00 1 491 52 1 493 20 1 497 20 35 74 616 0.12 0.118 62 0.002 17 5.832 31 0.137 13 0.355 53 0.006 88 1 936 33 1 951 20 1 961 28 36 37 77 0.48 0.003 54 7.209 63 0.182 96 0.388 35 0.006 60 2 173 45 2 138 23 2 115 31 37 79 99 0.20 0.17 30 0.002 28 5.554 30 0.004 41 1 961 38 1 909 17 2 049 2 14 40 238 56 0.47 0.053 54 0.001 30 0.531 23 0.012 91 <t< td=""><td>31</td><td>98</td><td>133</td><td>0.74</td><td>0.131.65</td><td>0.003 09</td><td>6.774 38</td><td>0.153.65</td><td>0.370 95</td><td>0.006 26</td><td>2 120</td><td>41</td><td>2 082</td><td>20</td><td>2 034</td><td>29</td></t<>	31	98	133	0.74	0.131.65	0.003 09	6.774 38	0.153.65	0.370 95	0.006 26	2 120	41	2 082	20	2 034	29
33 113 218 0.52 0.115 85 0.002 95 5.414 24 0.116 94 0.338 0.004 1894 40 1887 19 1880 22 34 84 68 1.22 0.093 16 0.002 54 3.349 3.349 3.086 6 0.261 35 0.006 0 1491 52 1493 20 1497 20 35 74 616 0.12 0.118 62 0.002 15 5.54 0.0077 0.355 0.006 2.173 45 2.138 23 2.115 31 37 79 399 0.20 0.1170 0.002 5.54 0.0077 0.0186 0.289 0.00101 0.042 0.000 63 232 90 258 8 265 4 39 164 223 0.74 0.002 350 56 433 9 451 6 41 974 890 1.09 0.653 9 0.0167 0.308 <	32	62	833	0.07	0.112.60	0.002 46	4.660 41	0.11785	0.298 56	0.005 35	1 843	35	1 760	21	1 684	27
34 84 68 1.2.3 0.009 16 0.002 34 5.39 34 0.008 06 0.261 35 0.004 00 1 491 52 1 493 20 1 497 20 35 74 616 0.12 0.118 62 0.002 17 5.832 31 0.137 13 0.355 53 0.005 68 1 936 33 1 951 20 1 961 28 36 37 77 0.48 0.135 64 0.003 34 7.209 63 0.182 96 0.388 35 0.006 60 2 173 45 2 138 23 2 115 31 37 79 399 0.20 0.117 30 0.002 37 5.554 30 0.097 72 0.344 16 0.003 55 1 917 36 1 909 15 1 907 17 38 20 0.47 0.053 04 0.001 30 0.531 23 0.012 10 0.072 43 0.000 44 1 961 38 1 999 17 2 049 21 40 238 506 0.47 0.053 09 0.001 67 0.308 99 0.002 10 0.72 43 0.000 46 2254 38 2 03	33	113	218	0.52	0.115 85	0.002 59	5.414.24	0.116 94	0.338 60	0.004 56	1 894	40	1 887	19	1 880	22
35 74 616 0.12 0.11862 0.00217 5.83231 0.13715 0.355 0.00588 1936 33 1951 20 1961 28 36 37 77 0.48 0.113564 0.00354 7.20963 0.18296 0.38835 0.00660 2173 45 2138 23 2115 31 37 79 399 0.20 0.11730 0.00237 5.55430 0.09772 0.34416 0.00355 1917 36 1909 15 1907 177 38 24 363 0.07 0.05077 0.00186 0.28950 0.01010 0.04202 0.00063 232 90 258 8 265 4 39 164 233 0.74 0.12034 0.00258 6.16079 0.12165 0.37423 0.00441 1961 38 1999 17 2049 21 40 238 506 0.47 0.05309 0.00130 0.53123 0.01247 0.00456 2254 38 2038 19 1815 20<	34	84	68	1.23	0.093 16	0.002 54	3.349 34	0.086 /6	0.261 35	0.004 00	1 491	52	1 493	20	1 497	20
36 37 77 0.48 0.155 64 0.005 34 7.209 65 0.182 96 0.384 16 0.006 35 1917 36 1909 15 1907 17 38 24 363 0.07 0.050 77 0.001 86 0.289 50 0.0101 0 0.042 02 0.000 63 232 90 258 8 265 4 39 164 223 0.74 0.120 34 0.002 58 6.160 79 0.121 65 0.374 23 0.000 41 1961 38 1999 17 2.049 21 40 238 506 0.47 0.053 54 0.001 30 0.531 23 0.012 91 0.072 43 0.000 94 350 56 433 9 451 6 41 974 890 1.09 0.053 72 0.001 57 0.544 72 0.015 40 0.068 95 0.000 90 382 103 273 7 270 4 42 316 304 0.056 72 0.001 53 0.544 72 0.015 40 0.068 95 0.000 90 480 59 442 10	35	/4	616	0.12	0.118.62	0.002 17	5.832.31	0.13/13	0.355 53	0.005 88	1 936	33	1 951	20	1961	28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	3/	200	0.48	0.135.64	0.003 54	7.209.63	0.182 96	0.388 35	0.006.60	21/3	45	2 1 3 8	23	2115	31
38 24 363 0.07 0.03077 0.00186 0.23930 0.014202 0.00065 232 90 238 8 265 4 39 164 223 0.74 0.12034 0.00258 6.16079 0.12165 0.37423 0.00041 1961 38 1999 17 2049 21 40 238 506 0.47 0.05354 0.00130 0.53123 0.01291 0.7243 0.00059 332 103 273 7 270 4 42 316 390 0.81 0.14218 0.00317 6.44265 0.14008 0.32521 0.00406 2.254 38 2038 19 1815 20 43 173 438 0.40 0.05672 0.00133 0.54472 0.01540 0.06895 0.00090 480 59 442 10 430 5 44 50 310 0.15 0.17763 0.10168 0.34712 0.00354<	3/	79	399	0.20	0.11/30	0.002.37	5.554 50 0.280 50	0.09772	0.344 16	0.003 55	1917	30	1 909	15	1907	1/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 20	24	202	0.07	0.050 77	0.001 80	0.289 50	0.01010	0.042.02	0.000 65	232	90	258	8	205	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	104	223	0.74	0.120 34	0.002 58	0.100 /9	0.121.05	0.37423	0.004 41	1901	38 57	1 999	1/	2 049	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	238	200	0.47	0.053 54	0.001.50	0.551 25	0.012.91	0.072 43	0.000 94	350	20 102	433	9	451	0
42 516 590 0.31 0.14218 0.00317 0.44265 0.1406 0.2521 0.00406 2234 38 2438 19 1813 20 43 173 438 0.40 0.05672 0.00153 0.54472 0.01540 0.06895 0.00090 480 59 442 10 430 5 44 50 331 0.15 0.11742 0.00231 5.85461 0.11588 0.35892 0.00451 1917 35 1955 17 1977 21 45 165 472 0.35 0.11911 0.00213 5.76677 0.10343 0.34710 0.00431 1946 32 1941 16 1921 17 46 66 226 0.16146 0.00319 8.57845 0.20048 0.38129 0.00671 2472 33 2294 21 2082 31 48 100 154 0.65 0.05802 0.00216 0.59746 0.02295 0.07428 0.00126 532 77 476 15 462 8 49 92 94 0.98 0.22887 0.00456 17.83978 0.35497 0.55847 0.00701 3.044 32 2981 19 2.860 29 50 128 128 1.00 0.06985 0.00209 1.37726 0.03892 0.14253 0.00212 924 61 879 17 859 12 5	41	9/4	200	1.09	0.033.09	0.001 07	0.308 99	0.008 91	0.042 / 3	0.000 39	2 2 5 4	20	275	/	270	4
43 173 438 0.40 0.03672 0.00133 0.34472 0.01340 0.00893 0.00090 480 39 442 10 430 3 44 50 331 0.15 0.11742 0.00231 5.85461 0.11588 0.35892 0.00451 1917 35 1955 17 1977 21 45 165 472 0.35 0.11931 0.00213 5.76677 0.10343 0.34710 0.00431 1946 32 1941 16 1921 21 46 66 256 0.26 0.11911 0.00210 5.77263 0.10168 0.34712 0.00354 1943 33 1942 15 1921 17 47 67 100 0.67 0.16146 0.00319 8.57845 0.20248 0.38129 0.00671 2472 33 2294 21 2082 31 48 100 154 0.65 0.05802 0.00216 0.59746 0.02295 0.07428 0.00126 532 77 476 15 462 8 49 92 94 0.98 0.22887 0.00456 17.83978 0.35497 0.55847 0.007013 3044 32 2981 19 2860 29 50 128 128 1.00 0.06985 0.00209 1.37726 0.03892 0.14253 0.00212 924 61 879 17 859 12	42	172	390 420	0.81	0.142 18	0.005 17	0.442.03	0.140.08	0.525 21	0.004.00	2 2 3 4	50	2 0 5 8	19	1 813	20
44 50 531 0.13 0.11742 0.00231 5.83461 0.11386 0.53832 0.00431 1917 53 1933 17 1977 21 45 165 472 0.35 0.11931 0.00213 5.76677 0.10343 0.34710 0.00431 1946 32 1941 16 1921 21 46 66 256 0.26 0.11911 0.00210 5.77263 0.10168 0.34712 0.00354 1943 33 1942 15 1921 17 47 67 100 0.67 0.16146 0.00319 8.57845 0.20048 0.38129 0.00671 2472 33 2294 21 2082 31 48 100 154 0.65 0.05802 0.00216 0.59746 0.02295 0.07428 0.00126 532 77 476 15 462 8 49 92 94 0.98 0.22887 0.00456 17.83978 0.35497 0.55847 0.00711 3044 32 2981 19 2860 29 50 128 128 1.00 0.06985 0.00209 1.37726 0.03892 0.14253 0.00711 3044 32 2981 19 2860 29 51 106 131 0.81 0.07012 0.00239 1.23862 0.12725 0.00181 931 75 818 18 772 10 5	45	50	430	0.40	0.03072	0.001 33	0.344 /2	0.01540	0.008 95	0.000 90	460	25	442	10	430	21
43 103 472 0.33 0.11931 0.00213 5.70677 0.10343 0.34710 0.00431 1940 32 1941 10 1921 21 46 66 256 0.26 0.11911 0.00210 5.77263 0.10168 0.34712 0.00354 1943 33 1942 15 1921 17 47 67 100 0.67 0.16146 0.00319 8.57845 0.20048 0.38129 0.00671 2472 33 2294 21 2082 31 48 100 154 0.65 0.05802 0.00216 0.59746 0.02295 0.07428 0.00126 532 77 476 15 462 8 49 92 94 0.98 0.22887 0.00456 17.83978 0.35497 0.55847 0.00701 3044 32 2981 19 2860 29 50 128 128 1.00 0.06985 0.00209 1.37726 0.03892 0.12725 0.00181 931 75 818 18 772 10 52 102 108 0.94 0.11936 0.00285 5.96553 0.13440 0.35812 0.00491 1.947 43 1971 20 1973 23 53 76 114 0.66 0.04673 0.00268 5.96553 0.13440 0.35812 0.00491 1.947 43 1971 20 1973 23	44	30 165	472	0.15	0.11/42	0.002.51	5 766 77	0.113.88	0.338 92	0.004 31	191/	22	1 935	1/	1 977	21
46 66 236 0.20 0.11911 0.00210 5.77265 0.10168 0.34712 0.00334 1943 33 1942 13 1921 17 47 67 100 0.67 0.16146 0.00319 8.57845 0.20048 0.38129 0.00671 2472 33 2294 21 2082 31 48 100 154 0.65 0.05802 0.00216 0.59746 0.02295 0.07428 0.00126 532 77 476 15 462 8 49 92 94 0.98 0.22887 0.00456 17.83978 0.35497 0.55847 0.00701 3.044 32 2.981 19 2.860 29 50 128 128 1.00 0.06985 0.002 09 1.37726 0.03892 0.12725 0.00181 931 75 818 18 772 10 52 102 108 0.94 0.11936 0.00285 5.96553 0.13440 0.35812 0.00491 1947 43 1971 20	43	66	472	0.33	0.119.51	0.002 13	5 772 62	0.10343	0.34710	0.004 51	1 940	22 22	1 941	15	1 921	21 17
47 67 100 0.07 0.10140 0.00319 8.37843 0.20048 0.38129 0.00071 2472 33 2294 21 2082 31 48 100 154 0.65 0.05802 0.00216 0.59746 0.02295 0.07428 0.00126 532 77 476 15 462 8 49 92 94 0.98 0.22887 0.00456 17.83978 0.35497 0.55847 0.00701 3.044 32 2.981 19 2.860 29 50 128 128 1.00 0.06985 0.002 09 1.37726 0.03892 0.14253 0.00212 924 61 879 17 859 12 51 106 131 0.81 0.07012 0.00235 5.96553 0.13440 0.35812 0.00491 1947 43 1971 20 1973 23 53 76 114 0.66 0.04673 0.00268 5.96553 0.16093 0.37360 0.00500 2428 39 2275 17	40	67	100	0.20	0.11911	0.002 10	9.570 A5	0.101.08	0.34/12	0.005 54	1 945	22	2 204	15 21	2 0 8 2	21
48 100 134 0.03 0.038 02 0.002 10 0.397 40 0.022 93 0.074 28 0.001 20 332 77 476 13 462 8 49 92 94 0.98 0.228 87 0.004 56 17.839 78 0.354 97 0.558 47 0.007 01 3 044 32 2 981 19 2 860 29 50 128 128 1.00 0.069 85 0.002 09 1.377 26 0.038 92 0.142 53 0.002 12 924 61 879 17 859 12 51 106 131 0.81 0.070 12 0.002 39 1.238 62 0.039 50 0.127 25 0.001 81 931 75 818 18 772 10 52 102 108 0.94 0.119 36 0.002 85 5.965 53 0.134 40 0.358 12 0.004 91 1947 43 1971 20 1973 23 53 76 114 0.66 0.046 73 0.002 68 8.400 55 0.160 93 0.373 60 0.005 00 2 428 39	47	100	154	0.67	0.10140	0.003 19	0.507.46	0.20046	0.361 29	0.000 /1	522	23 77	2 294 176	15	2 0 8 2	0 0
49 92 94 0.93 0.228 87 0.004 30 17.03978 0.334 97 0.334 97 0.036 47 52 2.981 19 2.800 29 50 128 128 1.00 0.06985 0.002 09 1.377 26 0.038 92 0.142 53 0.002 12 924 61 879 17 859 12 51 106 131 0.81 0.070 12 0.002 39 1.238 62 0.039 50 0.127 25 0.001 81 931 75 818 18 772 10 52 102 108 0.94 0.119 36 0.002 85 5.965 53 0.134 40 0.358 12 0.004 91 1947 43 1971 20 1973 23 53 76 114 0.66 0.046 73 0.002 68 0.314 40 0.016 54 0.049 50 0.000 96 35 133 278 13 311 6 54 71 143 0.49 0.157 31 0.002 13 5.869 85 0.117 40 0.366 34 0.005 29 1 872 33 1 957 17<	40	02	04	0.03	0.038.02	0.002 10	17 820 78	0.022.95	0.074.20	0.001 20	3.044	32	2 081	10	2860	0 20
50 128 108 137 11 137 11 133 11 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 137 11 137 137 138 131 16 133 131 143 0.049 0.016 54 0.049 50 0.000 2428 39 2275 17 2046 23 15 144 0.002 13 5.869 117 0.36634	49 50	128	128	1.00	0.220.07	0.004.50	1 377 26	0.33497	0.33647	0.007.01	024	52 61	2 901	17	2 800	12
51 100 151 0.01 0.01 12 0.002 1250 0.0350 0.121 125 0.001 11 151 161 172 16 52 102 108 0.94 0.119 36 0.002 85 5.965 3 0.134 40 0.358 12 0.004 91 1947 43 1971 20 1973 23 53 76 114 0.66 0.046 73 0.002 68 0.314 0.016 54 0.049 50 0.000 96 35 133 278 13 311 6 54 71 143 0.49 0.157 31 0.003 62 8.400 55 0.160 93 0.373 60 0.005 02 2428 39 2275 17 2.046 23 55 49 445 0.11 0.114 47 0.002 12 5.755 74 0.099 26 0.355 31 0.003 96 1892 33 1940	51	126	120	0.81	0.00985	0.002.09	1.37720	0.030 50	0.142.55	0.002 12	924	75	818	18	772	12
52 102 103 0.374 0.11750 0.00265 5.30535 0.13440 0.33412 0.00491 1947 45 1971 20 1975 25 53 76 114 0.66 0.04673 0.00268 0.31440 0.01654 0.04950 0.00096 35 133 278 13 311 6 54 71 143 0.49 0.15731 0.00362 8.40055 0.16093 0.37360 0.00500 2.428 39 2.275 17 2.046 23 55 49 445 0.11 0.11447 0.00213 5.869.85 0.11740 0.36634 0.00529 1.872 33 1.957 17 2.012 25 56 46 588 0.08 0.11575 0.00212 5.75574 0.09926 0.35531 0.003 96 1.892 33 1.940 15 1.960 19 57 89 158 0.56 0.159.84 0.00317 9.979.99 0.19082 0.446 80 0.005 72 2.454 34 2.433 <td< td=""><td>52</td><td>100</td><td>109</td><td>0.01</td><td>0.07012</td><td>0.002.39</td><td>5 965 52</td><td>0.039.50</td><td>0.12/23</td><td>0.001.01</td><td>1047</td><td>13</td><td>1 071</td><td>20</td><td>1 073</td><td>22</td></td<>	52	100	109	0.01	0.07012	0.002.39	5 965 52	0.039.50	0.12/23	0.001.01	1047	13	1 071	20	1 073	22
55 70 114 0.00 0.04075 0.00266 0.51476 0.01054 0.04250 0.00050 155 155 155 155 156 157 17 2046 23 55 49 445 0.11 0.11447 0.00213 5.86985 0.11740 0.36634 0.00529 1872 33 1957 17 2012 25 56 46 588 0.08 0.11575 0.00212 5.75574 0.09926 0.35531 0.00396 1892 33 1940 15 1960 19 57 89 158 0.56 0.15984 0.00317 9.97999 0.19082 0.44680 0.00572 2.454 34 2.433 18 2.381 26 58 41 90 0.45 0.11644 0.00267 5.94484 0.14761 0.36566 0.00644 1902 41 1968 22 2.009 30 59 59 633 0.09 0.11233 0.00240 4.73433 0.11063 0.30027 0.00479 1.839	52	76	110	0.94	0.119.50	0.002.65	0 314 40	0.15440	0.020 12	0.004 91	35	122	278	13	311	23 6
54 71 145 0.79 0.15751 0.005 02 0.406 35 0.106 35 0.575 00 0.005 00 2.428 59 2.275 17 2.040 25 55 49 445 0.11 0.114 47 0.002 13 5.869 85 0.117 40 0.366 34 0.005 29 1.872 33 1.957 17 2.012 25 56 46 58 0.08 0.115 75 0.002 12 5.755 74 0.099 26 0.355 31 0.003 96 1.892 33 1.940 15 1.960 19 57 89 158 0.56 0.159 84 0.003 17 9.979 99 0.190 82 0.446 80 0.005 72 2.454 34 2.433 18 2.381 26 58 41 90 0.45 0.116 44 0.002 67 5.944 84 0.147 61 0.365 66 0.006 44 1.902 41 1.968 22 2.009 30 59 59 633 0.09 0.112 33 0.002 40 4.734 33 0.110 63 0.300 27 0.004 79 1.839 39<	55 54	70	1/2	0.00	0.04073	0.002.00	8 400 55	0.010.04	0 272 60	0.000.90	2 128	30	210 2275	17	2 0/6	22
55 46 58 0.08 0.11747 0.00215 5.80765 0.11740 0.30034 0.00229 1872 55 1957 17 2012 25 56 46 588 0.08 0.11575 0.00212 5.75574 0.09926 0.35531 0.00396 1892 33 1940 15 1960 19 57 89 158 0.56 0.15984 0.00317 9.97999 0.19082 0.44680 0.00572 2454 34 2433 18 2381 26 58 41 90 0.45 0.11644 0.00267 5.94484 0.14761 0.36566 0.00644 1902 41 1968 22 2009 30 59 59 633 0.09 0.11233 0.00240 4.73433 0.11063 0.30027 0.00479 1839 39 1773 20 1693 24	54 55	/1	145	0.49	0.13/31	0.003.02	5 860 85	0.100.93	0.373.00	0.005.00	2 +20 1 872	32	1 057	17	2 040	23 25
50 40 500 6000 6000 12 5773 14 0.002 12 5773 14 0.002 12 5773 14 0.002 12 1573 14 0.002 12 1573 14 0.002 12 1573 14 0.002 10 15 1900 19 15 1900 19 57 89 158 0.56 0.159 84 0.003 17 9.979 99 0.190 82 0.446 80 0.005 72 2 2 454 34 2 433 18 2 381 26 58 41 90 0.45 0.116 44 0.002 67 5.944 84 0.147 61 0.365 66 0.006 44 1902 41 1968 22 2 009 30 59 59 633 0.09 0.112 33 0.002 40 4.734 33 0.110 63 0.300 27 0.004 79 1 839	55 56	49 16	-++ <i>3</i> 588	0.11	0.1144/	0.002.13	5 755 71	0.11/40	0.300.34	0.003 29	1 802	33	1 937	1/	1 060	23 10
57 65 136 0.135 0.110 0.005 12 2.434 34 2.435 18 2.381 20 58 41 90 0.45 0.116 44 0.0147 61 0.365 66 0.006 44 1.902 41 1.968 22 2.009 30 59 59 633 0.09 0.112 33 0.002 40 4.734 33 0.110 63 0.300 27 0.004 79 1 839 39 1 773 20 1.693 24	50 57	40 80	J00 159	0.08	0.113/3	0.002.12	0 070 00	0.09920	0.333 31	0.003 90	1 092	33 34	1 940 2 122	10	2 3 9 0 0	19 26
59 59 633 0.09 0.112 33 0.002 40 4.734 33 0.110 63 0.300 27 0.004 79 1.839 39 1.773 20 1.693 24	58	09 /1	120	0.50	0.139.04	0.003 17	5 9/1 81	0.170.62	0.440.00	0.005 72	2 +34 1 002	54 /1	2 433 1 069	22	2 000	20
	59	59	633	0.09	0.112.33	0.002 40	4.734.33	0.110.63	0.300 27	0.004 79	1 839	39	1 773	20	1 693	24

														续	表1
测试点	元素 (1	含量 0 ⁶)	Th/U		同位素比值							年龄(Ma	l)		
	Th	U		²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ
60	42	262	0.16	0.117 07	0.002 76	5.821 89	0.129 97	0.356 33	0.005 69	1 922	42	1 950	19	1 965	27
61	283	300	0.94	0.095 03	0.002 47	3.512 55	0.090 36	0.264 41	0.004 59	1 529	49	1 530	20	1 512	23
62	111	111	1.00	0.057 53	0.003 67	0.343 44	0.01941	0.044 66	0.001 19	522	145	300	15	282	7
63	65	323	0.20	0.109 23	0.002 68	5.35436	0.124 66	0.352 16	0.005 89	1 787	44	1 878	20	1 945	28
64	317	256	1.24	0.112 29	0.002 92	4.870 30	0.105 91	0.304 72	0.004 48	1 837	46	1 797	18	1715	22
65	159	235	0.68	0.052 82	0.002 24	0.357 40	0.016 03	0.048 64	0.000 99	320	96	310	12	306	6
66	146	366	0.40	0.112 67	0.002 16	4.561 58	0.088 50	0.290 33	0.003 92	1 843	34	1 742	16	1 643	20
67	71	437	0.16	0.11786	0.002.09	5.660 38	0.104 52	0.344 48	0.004 48	1 924	32	1 925	16	1 908	22
68	805	1 668	0.48	0.049 42	0.00111	0.236 87	0.005 25	0.034 43	0.000 42	169	49	216	4	218	3
69 70	55 120	422	0.54	0.11/28	0.002.03	5.503.00	0.114.27	0.330.05	0.004 61	1 91 /	39	1 901	18	1 842	10
70	74	455	0.30	0.122 //	0.002.27	0.12/04 5.848.00	0.112.82	0.338 39	0.003 92	1 998	32 20	1 994	10	19/3	19
71	74 30	361	0.23	0.120.40	0.002.03	5 851 02	0.116.05	0.341 28	0.004.02	1 905	39	1 954	16	1 034	19
72	249	573	0.08	0.053.12	0.002.28	0 274 90	0.100.87	0.037.43	0.003 93	345	32	247	7	237	19
73	102	278	0.45	0.118.24	0.001.04	5 413 90	0.00612	0.329.23	0.000 / 1	1 931	31	1 887	15	1.835	19
75	404	624	0.65	0 125 78	0.002.02	5 712 84	0.089.20	0.326.36	0.003.03	2.040	33	1 933	14	1 821	15
76	74	864	0.09	0.125 76	0.002.02	5 414 74	0.086.08	0.335.98	0.003.43	1 892	35	1 887	14	1 867	17
77	87	475	0.18	0.122 83	0.002 07	5.822 70	0.097 78	0.340 67	0.003 36	1 998	29	1 950	15	1 890	16
78	48	389	0.12	0.121 98	0.002 13	5.891 80	0.115 90	0.347 05	0.004 59	1 987	31	1 960	17	1 920	22
79	60	150	0.40	0.119 25	0.002 37	5.563 89	0.108 83	0.336 44	0.004 22	1 946	35	1 911	17	1 870	20
80	221	155	1.43	0.170 27	0.003 23	10.438 28	0.205 49	0.441 42	0.005 36	2 560	32	2 474	18	2 3 5 7	24
81	281	379	0.74	0.058 27	0.001 63	0.567 98	0.016 48	0.07008	0.001 00	539	61	457	11	437	6
82	45	372	0.12	0.121 64	0.002 89	5.936 24	0.137 95	0.351 02	0.004 53	1 981	42	1 967	20	1 939	22
83	212	308	0.69	0.052 94	0.002 12	0.294 72	0.011 58	0.040 23	0.000 60	328	91	262	9	254	4
84	474	921	0.51	0.118 66	0.002 35	5.266 26	0.103 95	0.318 87	0.003 62	1 936	35	1 863	17	1 784	18
85	66	448	0.15	0.118 78	0.002 29	5.689 10	0.116 40	0.343 55	0.004 00	1 939	35	1 930	18	1 904	19
86	453	716	0.63	0.129 92	0.002 35	6.256 91	0.117 11	0.345 93	0.004 05	2 098	32	2 012	16	1 915	19
87	140	132	1.06	0.081 71	0.002 11	2.308 73	0.054 51	0.204 81	0.002 79	1 2 3 9	50	1 215	17	1 201	15
88	298	249	1.19	0.117 10	0.002 28	5.307 21	0.103 52	0.326 18	0.004 08	1 922	35	1 870	17	1 820	20
89	144	441	0.33	0.113 35	0.002 14	5.179 16	0.097 60	0.327 69	0.003 35	1 854	33	1 849	16	1 827	16
90	178	185	0.96	0.054 62	0.002 39	0.385 11	0.016 84	0.050 76	0.000 80	398	103	331	12	319	5
92	109	255	0.43	0.120 12	0.003 29	5.988 52	0.142.97	0.349 44	0.004 67	1 958	48	1974	21	1932	22
93	61 56	296	0.20	0.119 /4	0.002.63	5.954 11	0.13103	0.356 49	0.004 21	1 954	34 27	1 969	19	1 965	20
94	30 49	393	0.14	0.115.96	0.002.51	5.667.00	0.114.01	0.338 30	0.004 33	1 895	21	1 945	10	1 9/4	21
95	40 57	502 78	0.10	0.113.90	0.002.24	0.382.16	0.115.20	0.55015	0.004 37	376	142	320	10	325	21
90	257	520	0.75	0.052.64	0.003.52	0.382 10	0.022.00	0.03170	0.001 20	370	70	305	0	200	1
98	78	390	0.49	0.052.04	0.001.04	4 872 88	0.094 58	0.305.14	0.000.02	1 933	32	1 798	16	1 717	20
99	44	267	0.16	0 119 08	0.002.34	5 918 08	0.113.82	0.356.14	0.004.00	1 942	35	1 964	17	1 964	19
100	120	259	0.10	0.119.00	0.002.33	6 023 81	0.116.86	0.364.91	0.004.07	1 929	35	1 979	17	2.005	19
101	180	409	0.44	0.114 51	0.002 24	5.410 43	0.102 80	0.338 55	0.004 17	1 872	35	1 887	16	1 880	20
102	22	128	0.17	0.117 22	0.002 80	5.930 05	0.133 14	0.363 49	0.004 99	1915	47	1 966	20	1 999	24
103	53	166	0.32	0.111 52	0.002 76	5.305 24	0.124 44	0.333 47	0.005 01	1 824	40	1 870	20	1 855	24
104	168	280	0.60	0.104 30	0.002 27	4.415 46	0.093 00	0.303 44	0.003 61	1 702	41	1 715	17	1 708	18
105	125	345	0.36	0.124 10	0.002 37	6.237 87	0.109 78	0.360 47	0.003 80	2 017	33	2 010	15	1 984	18
106	29	273	0.11	0.117 44	0.002 32	5.501 16	0.103 82	0.335 77	0.003 60	1918	35	1 901	16	1 866	17
107	77	271	0.28	0.116 72	0.002 40	5.643 46	0.114 54	0.346 85	0.004 48	1 906	37	1 923	18	1 920	21
108	153	221	0.69	0.045 92	0.003 00	0.135 90	0.008 30	0.021 71	0.000 44			129	7	138	3
109	303	546	0.55	0.130 60	0.002 87	6.849 86	0.147 31	0.375 43	0.004 24	2 106	33	2 0 9 2	19	2 0 5 5	20
110	63	611	0.10	0.119 44	0.002 84	5.738 32	0.129 26	0.344 50	0.004 07	1 948	43	1 937	20	1 908	20
111	129	163	0.79	0.110 92	0.003 07	4.746 20	0.127 27	0.307 49	0.004 49	1 815	50	1 775	23	1 728	22
112	48	425	0.11	0.118 27	0.003 58	5.461 76	0.161 25	0.331 28	0.005 23	1 931	54	1 895	25	1 845	25
113	51	301	0.17	0.117 74	0.003 52	5.398 06	0.143 21	0.322 14	0.004 44	1 922	21	1 885	23	1 800	22
114	523	356	1.47	0.119 04	0.003 08	5.539.08	0.13831	0.333 97	0.004 41	1 943	46	1 907	22	1 858	21
115	45	259	0.16	0.12133	0.003 12	5.950 50	0.15180	0.352.09	0.004 89	19/6	46	1 969	22	1 945	23
110	01	135	0.45	0.055.59	0.002.51	0.52592	0.022.59	0.008 95	0.001 23	428	20	428	15	430 1 779	21
11/	61	304	0.51	0.113.38	0.002.80	5.095.85 5.765.86	0.11010	0.31/30	0.004.20	1 900	30	1 0 3 3	19	1 006	21 10
110	82	437	0.19	0 121 10	0.002.00	5 569 18	0 124 45	0 329 98	0.003.84	1 973	41	1 911	20	1 838	19
120	63	660	0.10	0.118 97	0.002 71	5.211 34	0.116 70	0.314 87	0.003 91	1 943	41	1 854	19	1 765	19

表 2 样品 TW0003-2 碎屑锆石 LA-ICP-MS U-Pb 年龄测试结果

Tab. 2 Sample TW0003-2 clastic zircon LA-ICP-MS U-Pb age test results

测试点	元 (1)	含重 0 ⁻⁶)	Th/U	同位素比值			年龄(Ma)								
	Th	U	111/0	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ
1	390	627	0.62	0.118 94	0.002 41	5.786 29	0.106 15	0.354 15	0.004 35	1 940	36	1 944	16	1954	21
2	307	715	0.43	0.11741	0.003 09	5.605 15	0.095 55	0.332 39	0.003 49	1917	48	1 917	15	1 850	17
3	168	367	0.46	0.11971	0.002 65	5.670 00	0.095 84	0.343 43	0.003 61	1 954	34	1 927	15	1 903	17
4	24	147	0.17	0.055 70	0.002 53	0.299 61	0.012 86	0.040 09	0.000 74	439	97	266	10	253	5
5	62	193	0.32	0.055 61	0.003 89	0.282 75	0.020 00	0.036 94	0.000 84	435	157	253	16	234	5
6	57	109	0.53	0.049 70	0.002 74	0.298 35	0.015 46	0.043 62	0.000 74	189	125	265	12	275	5
8	235	368	0.64	0.105 41	0.001 76	4.483 39	0.087 74	0.306 43	0.003 93	1 721	27	1 728	16	1 723	19
9	64	122	0.53	0.113 62	0.002 86	5.311.37	0.101 44	0.326 16	0.004 37	1 858	45	18/1	16	1 820	21
10	189	263	0.72	0.122 76	0.002 24	5.863.97	0.10776	0.344 92	0.00387	1 998	32	1 956	16	1910	19
11	93	238	0.39	0.117/92	0.002 33	5.679 53	0.11274	0.346 91	0.004 01	1 925	31	1 928	17	1920	19
12	5	160	0.03	0.052 70	0.002 89	0.30725	0.015 26	0.042 13	0.000 68	317	124	272	12	266	4
13	217	1015	0.21	0.129 14	0.002 50	5.8/120	0.104 49	0.321 38	0.00397	2 087	34	1957	15	1 796	19
14	56	99	0.57	0.115.21	0.002 38	5.264 02	0.106.05	0.330 53	0.004 01	1 883	32	1 863	17	1 841	19
15	116	89	1.30	0.164 49	0.003 30	10.323 35	0.21845	0.450 73	0.00611	2 502	34	2 464	20	2 399	27
16	241	162	1.49	0.1155/	0.002 //	4.941 82	0.093 68	0.300 14	0.003 54	1 889	38	1 809	16	1 692	18
1/	43	94	0.46	0.051 88	0.003 /1	0.285 28	0.018 41	0.039 80	0.000 89	280	105	255	15	252	3
18	20	273	0.07	0.05129	0.002 19	0.296 22	0.012.08	0.042.03	0.000 64	254	98	263	9	265	4
19	26	28	0.92	0.113 51	0.003 49	5.289 /4	0.162.68	0.329 58	0.005 44	1 85 /	56 20	1 86 /	26	1 836	26
20	224	4/2	0.48	0.11945	0.002 55	5.323.03	0.108 /5	0.32117	0.003 42	1 948	39	18/3	18	1 /95	1/
21	5/	289	0.20	0.118 /5	0.002.95	6.118 91	0.150.01	0.3/115	0.0045/	1 939	44	1 993	21	2 0 3 5	22
22	09	202	0.20	0.11//5	0.002.82	5.5/14/	0.131 03	0.341 18	0.004 /8	1 922	43	1912	20	1 892	23
25	250	303	0.85	0.051.06	0.002.02	0.280 43	0.01148	0.040 / 3	0.000 63	245	91	250	9	257	4
24	05	2//	0.24	0.11//0	0.002.36	5.852.04	0.110.99	0.358 17	0.003 83	1921	30	1954	1/	19/4	18
25	144	/82	0.18	0.056 19	0.00217	0.296 66	0.010 /6	0.0381/	0.000.65	461	85	264	8	241	4
20	180	207	0.57	0.121 30	0.00217	5.470 55 0.277 41	0.105 58	0.324 84	0.004.08	19/0	32 106	1 890	1/	1813	20
27	41	207	0.20	0.048 55	0.002.08	0.2//41	0.01118	0.042.05	0.000 68	128	20	249	9 10	205	4
20	230	1.092	0.07	0.10245	0.002.85	11.515.59	0.21949	0.301.33	0.000 42	1 961	21	2 349	16	2 020	10
29	80 422	020	0.07	0.115 /0	0.001 98	4.439 14	0.085.21	0.281 00	0.003 48	1 801	22	1 /25	10	1 399	16
30	435	929	0.47	0.121.20	0.002.55	5.002 20 6 121 01	0.000 90	0.31708	0.005 30	1 01/	33	1 020	20	2 004	24
22	74	125	0.42	0.12120	0.002.00	5.026.95	0.13949	0.304 /0	0.003 15	1 9/4	24	1 995	17	2 004	17
32	/4	200	0.20	0.117 14	0.002.27	5 868 81	0.113 10	0.303 49	0.003 03	1 915	54 41	1 905	20	2 008	20
33	45	641	0.54	0.120.55	0.002.80	1738 27	0.13379	0.333 40	0.00423	1 905	32	1 774	15	1 685	15
36	67	140	0.15	0.051.65	0.002.05	4.756.27	0.032 41	0.23072	0.002.92	222	121	2/3	13	252	5
30	30	149	0.45	0.052.06	0.002 90	0.270.90	0.013 41	0.039.82	0.000 85	287	101	245	10	232	5
38	51	103	0.17	0.032.00	0.00240	5 699 85	0.012.24	0.038 //	0.000 74	1 961	101	1 031	20	1 927	23
30	207	379	0.55	0.120.24	0.003 13	0.282.26	0.132.12	0.041.12	0.00472	217	72 87	252	8	260	23 1
40	54	338	0.55	0.126.03	0.001 00	6 212 10	0.151.48	0.361.57	0.000.05	2044	15	2.006	21	1 990	22
40	67	333	0.10	0.120.05	0.003 23	5 974 05	0.131 40	0.348.27	0.004 00	2 0 1 0	41	1 972	21	1 926	20
42	96	518	0.19	0.129.69	0.002.59	5 235 53	0.147.57	0.315.32	0.004.21	1 951	34	1 858	19	1 767	18
43	129	164	0.79	0.054.20	0.002.79	0 294 04	0.014.19	0.040.00	0.000.68	389	119	262	11	253	4
44	145	316	0.46	0.121.21	0.002.50	5 484 28	0 114 32	0 326 52	0.003.55	1 976	37	1 898	18	1 822	17
45	332	688	0.48	0.118.36	0.002.25	5 222 83	0.101.51	0.317.82	0.003.29	1 932	33	1 856	17	1 779	16
46	500	702	0.71	0 119 06	0.002.23	5 424 01	0 105 27	0 327 62	0.003.15	1 943	33	1 889	17	1 827	15
47	27	55	0.49	0.059 32	0.004 57	0.313 12	0.020.02	0.039.93	0.000 98	589	136	277	15	252	6
48	210	222	0.95	0 121 80	0.002.65	5 395 57	0.115.67	0 319 29	0.003.71	1 983	39	1 884	18	1 786	18
49	25	71	0.36	0.137.15	0.003 27	8.241 22	0.219.30	0.432.08	0.00711	2 192	41	2 258	24	2 3 1 5	32
50	71	329	0.22	0.122.37	0.003 12	6.111.86	0.144 26	0.351.03	0.004.04	1 991	45	1 992	21	1 940	19
51	118	110	1.07	0.056 73	0.003 50	0.300 16	0.017 58	0.039 15	0.000 79	480	137	267	14	248	5
52	159	239	0.66	0.17072	0.003 81	11.562 81	0.257 09	0.486 63	0.005 72	2 565	37	2 570	21	2 5 5 6	25
54	182	317	0.58	0.120 06	0.002 38	5.596 88	0.113 75	0.334 33	0.003 51	1 957	35	1 916	18	1 859	17
55	59	162	0.37	0.050 22	0.003 46	0.265 46	0.017 46	0.038 91	0.001 01	206	166	239	14	246	6
56	21	41	0.51	0.117 32	0.003 14	5.748 55	0.149 77	0.354 67	0.005 79	1917	16	1 939	23	1957	28
57	120	255	0.47	0.053 01	0.001 99	0.297 85	0.010 70	0.040 83	0.000 59	328	85	265	8	258	4
58	100	116	0.86	0.052 11	0.002 96	0.270 32	0.014 52	0.038 06	0.000 69	300	131	243	12	241	4
59	64	262	0.24	0.118 15	0.002 95	5.739 37	0.111 26	0.341 46	0.003 87	1 929	45	1 937	17	1 894	19

														续	表 2
	元素含量										在龄(M				
测试点	(1	0 ⁻⁶)	Th/U			问世示						-+ M2 (MG			
	Th	U		207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ
60	79	124	0.64	0.100 64	0.002 27	3.618 71	0.084 44	0.258 03	0.003 38	1 636	42	1 554	19	1 480	17
61	38	732	0.05	0.053 47	0.001 59	0.299 40	0.008 75	0.040 37	0.000 60	350	69	266	7	255	4
62	70	124	0.56	0.055 09	0.002 88	0.302 36	0.014 42	0.040 56	0.000 82	417	117	268	11	256	5
63	110	163	0.67	0.097 10	0.002 35	3.513 27	0.079 89	0.260 70	0.003 18	1 569	45	1 530	18	1 493	16
64	68	185	0.37	0.05239	0.002.04	0.255 54	0.009 98	0.035 41	0.000 55	302	8/	231	8	224	3
65	163	296	0.55	0.11318	0.002 10	4.28/24	0.07769	0.2/211	0.002 94	1 851	34	1 691	15	1 3 3 1	15
00 67	/0	250	0.58	0.105.51	0.003 12	5 740 88	0.181 80	0.450 /9	0.005 18	2 490	32 22	2 455	1/	2 399	10
68	69	230 531	0.28	0.113 40	0.00217	5.749 88 4 838 30	0.104.50	0.338 /9	0.003 /0	1 007	22 28	1 939	10	1 970	16
69	301	293	1.03	0.119.43	0.002.85	4.838 30 5 994 32	0.09815	0.265 58	0.003.45	1 933	30	1 975	17	1 986	16
70	98	326	0.30	0 120 48	0.002.37	4 703 87	0.115.50	0.281.15	0.003 19	1 965	40	1 768	19	1 597	16
70	69	251	0.30	0.12040	0.002.72	5 414 67	0.100 45	0.334.72	0.003 84	1 906	42	1 887	20	1 861	19
72	143	263	0.54	0.110.04	0.002 42	4.895.84	0.105.07	0.320 76	0.003 49	1 811	39	1 802	18	1 793	17
73	191	1 001	0.19	0.113 98	0.002 33	5.138 72	0.105 17	0.324 70	0.003 57	1 865	37	1 843	17	1 813	17
74	94	361	0.26	0.114 62	0.002 27	4.982 77	0.095 43	0.313 38	0.003 31	1 874	35	1 816	16	1 757	16
75	423	444	0.95	0.114 45	0.002 10	4.995 48	0.088 70	0.314 14	0.002 69	1 872	33	1 819	15	1 761	13
76	70	202	0.35	0.09617	0.002 04	3.422 13	0.068 17	0.256 77	0.002 59	1 551	40	1 509	16	1 473	13
77	132	139	0.95	0.167 05	0.003 42	10.702 34	0.204 11	0.462 37	0.004 95	2 528	34	2 498	18	2 4 5 0	22
78	218	655	0.33	0.117 85	0.002 17	5.018 73	0.095 59	0.306 45	0.003 33	1 924	33	1 822	16	1 723	16
79	34	641	0.05	0.112 77	0.002 15	4.809 27	0.089 12	0.307 16	0.003 49	1 856	35	1 787	16	1 727	17
80	24	26	0.89	0.122 78	0.004 05	6.322 31	0.203 28	0.374 88	0.00720	1 998	58	2 0 2 2	28	2 0 5 2	34
81	40	338	0.12	0.114 61	0.002 59	4.917 61	0.101 37	0.308 80	0.003 38	1 874	41	1 805	17	1 735	17
82	94	145	0.65	0.106 90	0.002 53	4.105 72	0.092 39	0.277 03	0.003 25	1 747	44	1 655	18	1 576	16
83	54	94	0.57	0.11935	0.003 04	5.706 81	0.117 64	0.337 66	0.004 01	1 947	45	1 932	18	1 875	19
84	100	122	0.82	0.174 97	0.003 37	11.457 36	0.207 68	0.471 58	0.004 77	2 606	33	2 561	17	2 4 9 0	21
86	74	256	0.29	0.053 02	0.002 09	0.275 04	0.010 49	0.037 72	0.000 61	328	89	247	8	239	4
87	164	428	0.38	0.051 52	0.001 42	0.288 52	0.00/84	0.040 49	0.000 51	265	65	257	6	256	3
88	/1	101	0.44	0.05/34	0.003 63	0.335 22	0.018 12	0.042 39	0.000 89	506	136	294	14	268	6
89	103	13/	0.75	0.105.28	0.003 12	5 050 04	0.210.85	0.4/0/3	0.005 55	2 500	32 40	2 493	18	2 48 /	24
90	42	144	0.29	0.113.51	0.00247	5 383 67	0.13/49	0.322.34	0.00041	1 850	40 31	1 829	18	1 801	31 18
92	76	206	0.20	0.113.55	0.002.28	5 333 16	0.110.36	0.340 95	0.003 69	1 857	35	1 874	17	1877	18
93	69	135	0.57	0.115.55	0.002.24	5 068 77	0.107 70	0.314.67	0.003.87	1 902	38	1 831	18	1 764	19
94	81	85	0.95	0.18674	0.004 11	12,974 82	0.440 75	0.494 48	0.01076	2714	36	2 678	32	2 590	46
96	118	225	0.53	0.120.98	0.002 14	6.089.81	0.113 46	0.361.53	0.004 21	1 972	32	1 989	16	1 989	20
97	85	140	0.61	0.050 87	0.003 30	0.294 96	0.01931	0.042 32	0.000 88	235	155	262	15	267	5
98	128	878	0.15	0.117 00	0.001 95	5.578 12	0.090 51	0.341 56	0.003 22	1911	30	1 913	14	1 894	15
99	107	187	0.57	0.153 40	0.002 91	8.953 01	0.165 28	0.418 32	0.004 55	2 384	32	2 3 3 3	17	2 2 5 3	21
100	34	114	0.30	0.118 35	0.002 71	5.345 23	0.111 69	0.325 01	0.004 38	1 932	36	1 876	18	1814	21
101	210	536	0.39	0.120 62	0.002 57	4.926 49	0.096 84	0.292 55	0.003 31	1 965	37	1 807	17	1 654	17
102	61	129	0.47	0.133 37	0.002 83	6.956 52	0.153 20	0.374 24	0.005 47	2 1 4 3	37	2 106	20	2 049	26
103	119	320	0.37	0.113 53	0.002 18	4.644 17	0.088 63	0.293 46	0.003 40	1 857	35	1 757	16	1 659	17
104	116	243	0.48	0.123 90	0.002 35	6.178 06	0.116 95	0.358 60	0.004 39	2 013	29	2 001	17	1 976	21
105	268	738	0.36	0.117 28	0.002 44	5.156 80	0.088 18	0.309 95	0.003 25	1917	38	1 846	15	1 740	16
106	38	56	0.68	0.120 07	0.003 04	5.506 69	0.139 19	0.331 38	0.004 89	1 957	40	1 902	22	1 845	24
107	108	406	0.26	0.135 82	0.002 49	6.229 75	0.115 43	0.330 31	0.003 27	2 1 7 6	32	2 009	16	1 840	16
108	47	134	0.35	0.12096	0.002 70	5.297 65	0.119 41	0.315 12	0.003 58	1 972	39	1 868	19	1 766	18
109	31	52	0.60	0.118 52	0.003 15	5.434 15	0.145 09	0.332 64	0.005 12	1 944	47	1 890	23	1 851	25
110	69 77	114	0.61	0.120.69	0.002.92	6.287 12	0.159.09	0.376.99	0.005 22	1 966	42	2017	22	2 062	24
111	200	160	0.48	0.120.56	0.00278	6.124 47	0.148 25	0.36716	0.004 58	1 965	41	1 994	21	2016	22
112	589 75	5/0	1.05	0.123.38	0.002.02	5./55.66 7.242.06	0.12945	0.33724	0.004.38	2 006	5/ 20	1 940	20	18/3	21
115	75 70	920	0.09	0.133.09	0.002.92	1.242 90	0.100 85	0.393 19	0.004 40	2 1 3 9	28 22	2 142 1 812	20 14	2 1 3 8 1 756	∠0 16
114	40 01	122	0.05	0.114.20	0.002.09	4.200 43 5 7/0 27	0.09515	0.313.02	0.003.24	1 009	33 42	1 015	20	1 006	20
115	21 47	40	1 1 8	0.12075	0.002.80	4 887 84	0 133 53	0 324 55	0.004 14	1 806	+∠ 52	1 800	20	1 812	20 28
117	54	138	0 39	0.057.63	0.003.05	0.307.69	0.015 77	0.038 91	0.00073	517	117	272	12	246	5
118	43	418	0.10	0.118.25	0.002.22	4.871 19	0.118 59	0.296 19	0.005 11	1 931	34	1 797	21	1.672	25
120	51	575	0.09	0.121 21	0.002 40	5.579 70	0.110 89	0.331 21	0.003 79	1 976	35	1 913	17	1 844	18

表 3 样品 TW0701 碎屑锆石 LA-ICP-MS U-Pb 年龄测试结果

Tab. 3 Sample TW0701 clastic zircon LA-ICP-MS U-Pb age test results

	元素	含量				同位素	比值					年龄(Ma)		
测试点	(1	0-0)	Th/U	207 206				207 220				207 225		201 220	
	Th	U		²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ
1	156	183	0.85	0.051 61	0.002 39	0.326 92	0.011 88	0.043 42	0.000 70	333	103	287	9	274	4
2	256	261	0.98	0.046 09	0.002 30	0.136 57	0.006 58	0.021 94	0.000 38	400	-283	130	6	140	2
3	238	392	0.61	0.050 42	0.001 /8	0.318 52	0.01142	0.045 //	0.000 /4	213	81	281	9	288	2 21
4	40	90 195	0.48	0.115 /5	0.002.23	0.188 11	0.134 92	0.3838/	0.004 54	1 892	34 02	2 003	19	2 094	21
5	262	185	0.55	0.052.24	0.001 97	0.37720	0.013 84	0.052.21	0.000 /5	295	92 70	323 287	10	328 287	2
7	01	182	0.75	0.031 84	0.001 70	0.320.88	0.00913	0.045.00	0.000.37	132	122	207	12	320	7
8	46	233	0.30	0.113.28	0.002.32	0.302 74 4 954 23	0.01349	0.030 91	0.001 19	1854	34	1 812	12	1 763	17
10	984	1 238	0.20	0.049.94	0.002.13	0.318.07	0.00748	0.045.87	0.000 45	191	28	280	6	289	4
11	24	53	0.45	0.057 79	0.003 53	0.580 25	0.02947	0.072 28	0.001 68	520	131	465	19	450	10
12	131	618	0.21	0.049 68	0.001 58	0.302 16	0.008 50	0.043 92	0.000 59	189	74	268	7	277	4
13	92	136	0.67	0.053 68	0.003 36	0.312 82	0.018 59	0.041 86	0.000 86	367	143	276	14	264	5
14	111	693	0.16	0.050 96	0.001 40	0.301 97	0.008 01	0.042 24	0.000 46	239	63	268	6	267	3
15	106	272	0.39	0.055 42	0.001 68	0.558 26	0.014 65	0.071 21	0.000 91	428	67	450	10	443	5
16	176	717	0.25	0.052 42	0.001 35	0.330 56	0.008 11	0.045 33	0.000 54	306	59	290	6	286	3
17	53	77	0.69	0.055 71	0.003 13	0.395 98	0.018 86	0.049 79	0.001 06	439	126	339	14	313	7
18	85	221	0.38	0.057 15	0.002 21	0.343 43	0.012 85	0.043 47	0.000 70	498	90	300	10	274	4
19	86	190	0.45	0.052 55	0.002 49	0.299 49	0.013 07	0.041 49	0.000 84	309	107	266	10	262	5
20	70	175	0.40	0.049 90	0.002 03	0.357 00	0.013 86	0.051 88	0.000 83	191	92	310	10	326	5
21	78	131	0.60	0.056 24	0.003 31	0.335 49	0.015 96	0.043 29	0.000 94	461	131	294	12	273	6
22	82	507	0.16	0.053 20	0.001 60	0.308 12	0.009 11	0.041 79	0.000 54	345	67	273	7	264	3
23	74	101	0.73	0.050 32	0.002 58	0.364 15	0.018 49	0.052 46	0.000 98	209	119	315	14	330	6
24	60	263	0.23	0.118 26	0.002 16	6.124 94	0.114 81	0.371 47	0.003 72	1 931	32	1 994	16	2 0 3 6	18
25	352	419	0.84	0.055 24	0.001 47	0.544 09	0.013 71	0.071 07	0.000 76	420	59	441	9	443	5
26	235	282	0.83	0.125 76	0.002 24	6.753 25	0.143 65	0.386 30	0.006 77	2 0 3 9	31	2 080	19	2 106	31
27	39	66	0.59	0.095 40	0.002 27	3.497 73	0.082 93	0.264 16	0.003 10	1 536	40	1 527	19	1 511	16
28	166	232	0.72	0.051 34	0.002 05	0.320 30	0.012 20	0.045 29	0.000 72	257	93	282	9	286	4
29	41	270	0.15	0.049 86	0.001 76	0.275 14	0.010 13	0.039 86	0.000 53	187	114	247	8	252	3
30	128	287	0.45	0.051 14	0.001 93	0.304 55	0.010 62	0.043 03	0.000 56	256	82	270	8	272	3
31	156	129	1.20	0.114 49	0.002 51	5.319 64	0.118 96	0.334 58	0.003 83	1 872	40	1 872	19	1 861	19
32	85	164	0.52	0.052 90	0.002 16	0.305 30	0.011 98	0.042 45	0.000 74	324	93	271	9	268	5
33	145	336	0.43	0.114 05	0.002 19	5.417 26	0.101 82	0.342 36	0.003 89	1 865	34	1 888	16	1 898	19
34	156	499	0.31	0.160 89	0.002 72	9.874 25	0.167 37	0.441 76	0.004 62	2 465	29	2 4 2 3	16	2 358	21
35	37	97	0.38	0.051 69	0.002 57	0.343 63	0.015 65	0.049 49	0.000 89	272	118	300	12	311	5
37	146	848	0.17	0.050 34	0.001 14	0.303 31	0.007 13	0.043 35	0.000 51	209	47	269	6	274	3
38	149	762	0.20	0.051 59	0.001 29	0.294 60	0.007 24	0.041 20	0.000 51	333	57	262	6	260	3
39	100	400	0.25	0.112 49	0.002 04	4.937 19	0.087 42	0.316 09	0.003 60	1 840	33	1 809	15	1 771	18
40	34	211	0.16	0.054 80	0.003 37	0.321 82	0.014 87	0.042 98	0.000 92	467	169	283	11	271	6
41	93	1 851	0.05	0.050 58	0.001 16	0.353 62	0.008 00	0.050 22	0.000 62	220	52	307	6	316	4
42	131	223	0.59	0.050 40	0.001 93	0.300 60	0.011 08	0.043 60	0.000 65	213	89	267	9	275	4
43	50	67	0.74	0.171 14	0.003 94	10.823 91	0.255 48	0.445 91	0.007 02	2 569	38	2 508	22	2 377	31
44	98	148	0.66	0.109 98	0.002 10	4.483 59	0.090 72	0.294 52	0.003 49	1 799	34	1 728	17	1 664	17
45	78	297	0.26	0.052 02	0.001 78	0.277 30	0.008 75	0.038 30	0.000 53	287	78	249	7	242	3
46	42	283	0.15	0.054 28	0.002 33	0.314 68	0.013 70	0.042 23	0.000 66	383	96	278	11	267	4
47	70	456	0.15	0.051 76	0.001 63	0.297 00	0.009 35	0.041 67	0.000 57	276	68	264	7	263	4
48	87	579	0.15	0.049 91	0.001 54	0.292 55	0.009 03	0.042 22	0.000 52	191	72	261	7	267	3
49	91	180	0.51	0.055 87	0.002 33	0.369 24	0.015 00	0.047 91	0.000 71	456	94	319	11	302	4
50	137	131	1.05	0.052 91	0.003 35	0.286 09	0.016 39	0.039 15	0.000 72	324	144	255	13	248	4
52	23	297	0.08	0.113 73	0.003 69	5.483 92	0.170 82	0.34768	0.005 76	1 861	53	1 898	27	1 924	28
53	278	548	0.51	0.050 57	0.002.00	0.268 08	0.01012	0.038 95	0.000 89	220	91	241	8	246	6
54	97	245	0.40	0.05337	0.002.93	0.303 41	0.016.08	0.041 85	0.00077	543	124	269	13	264	5
55 57	59 127	528 724	0.18	0.115 /2	0.002 86	5./95/0	0.13921	0.35986	0.004.04	1 891	40	1 945	21	1981	19
50 57	133	105	0.18	0.050.59	0.001 81	0.3292/	0.01012	0.04210	0.000.95	4/8	12	289	ð 1.4	200	5
51	00 40	215	0.82	0.051.00	0.003 39	0.201.59	0.01/39	0.039.23	0.000.82	322	130	232	14 0	248	د ∡
50 50	40 204	213	0.13	0.031.80	0.001.88	0.292 01	0.010.30	0.040.08	0.000 69	2/0	00 154	201	0	251	4
59	204	341	0.02	0.000 00	0.005 54	0.2//04	0.01/30	0.03707	0.000 00	255	1.54	249	14	201	4

2025 年

														续	表 3
测试点	元素含量 (10 ⁻⁶)		Th/U	同位素比值											
0.1 P. ()		II.	. 11/0	²⁰⁷ Ph/ ²⁰⁶ Ph	1 σ	²⁰⁷ Ph/ ²³⁵ L	10	²⁰⁶ Pb/ ²³⁸ L1		²⁰⁷ Ph/ ²⁰⁶ Ph	1σ	²⁰⁷ Pb/ ²³⁵ L1	1 σ	²⁰⁶ Pb/ ²³⁸ L1	- <u>Ι</u> σ
60	132	241	0.55	0.052.18	0.002.27	0.290.51	0.011 79	0.040 70	0.000 67	300	100	259	9	257	4
61	157	592	0.27	0.053 18	0.001 60	0.294 39	0.008 44	0.040 06	0.000 48	345	67	262	7	253	3
62	89	156	0.57	0.054 30	0.002 58	0.307 09	0.013 63	0.040 48	0.000 67	383	107	272	11	256	4
63	151	375	0.40	0.050 09	0.001 84	0.298 04	0.010 14	0.041 70	0.000 58	198	81	265	8	263	4
64	139	402	0.34	0.113 45	0.002 01	4.344 93	0.079 44	0.275 35	0.003 17	1 855	27	1 702	15	1 568	16
65	139	234	0.59	0.052 37	0.001 99	0.331 73	0.011 67	0.046 33	0.000 75	302	87	291	9	292	5
66	139	822	0.17	0.050 66	0.001 29	0.286 09	0.00748	0.040 57	0.000 46	233	59	255	6	256	3
67	99	551	0.18	0.052 66	0.001 52	0.298 59	0.007 93	0.041 00	0.000 53	322	67	265	6	259	3
68	22	35	0.63	0.102 16	0.002 91	4.372 24	0.122 93	0.310 48	0.005 19	1 665	53	1 707	23	1 743	26
69	67	635	0.11	0.116 72	0.002 04	5.662 31	0.094 73	0.347 80	0.003 44	1 906	31	1 926	14	1 924	16
70	153	886	0.17	0.051 20	0.001 56	0.296 31	0.007 96	0.040 78	0.000 48	250	64	264	6	258	3
71	28	406	0.07	0.050 54	0.001 91	0.281 52	0.009 85	0.040 39	0.000 59	220	87	252	8	255	4
72	63	155	0.41	0.051 95	0.002 88	0.296 44	0.014 61	0.040 92	0.000 72	283	128	264	11	259	4
74	593	455	1.30	0.051 72	0.001 80	0.319 42	0.011 75	0.044 86	0.000 97	272	80	281	9	283	6
75	78	243	0.32	0.049 18	0.002 15	0.250 87	0.010 21	0.037 09	0.000 66	167	102	227	8	235	4
76	659	878	0.75	0.055 24	0.001 48	0.319 07	0.008 25	0.041 47	0.000 49	420	59	281	6	262	3
77	89	598	0.15	0.051 93	0.001 68	0.278 89	0.009 22	0.038 76	0.000 65	283	74	250	7	245	4
78	249	531	0.47	0.056 92	0.001 74	0.512.51	0.015 28	0.064 72	0.000 83	487	67	420	10	404	5
79	379	397 529	0.96	0.054.35	0.001 98	0.322.39	0.01148	0.042 80	0.000 61	387	81	284	9	270	4
80	372	528 250	0.71	0.059.06	0.002.29	0.320 00	0.012.04	0.039 94	0.000 55	209	83 50	287	9 10	252	3 12
81	82	110	0.32	0.074 38	0.002.20	0 272 22	0.048.08	0.105 05	0.002 13	1037	120	221	10	9/4	12
02 83	112	119	0.70	0.053.27	0.002.93	0.372.22	0.017 /0	0.049.39	0.000 99	433	1120	321	10	312	5
84	88	200	0.02	0.050.27	0.002.01	0.292.48	0.012.81	0.03013	0.000.00	206	111	261	10	270	5
85	118	200	0.53	0.052.07	0.002 42	0.202 48	0.012.01	0.042.00	0.000 80	200	111	201	11	270	5
86	159	366	0.55	0.052.07	0.001 72	0.572.22	0.01101	0.07049	0.000.98	550	65	459	11	439	6
87	112	113	0.99	0.052 31	0.003 33	0.291 14	0.017 43	0.039 81	0.000 80	298	146	259	14	252	5
88	915	1 992	0.46	0.051 97	0.001 40	0.143 29	0.004 05	0.019 82	0.000 28	283	63	136	4	126	2
89	192	163	1.18	0.053 60	0.003 16	0.298 59	0.016 62	0.041 07	0.000 72	354	133	265	13	259	4
90	61	271	0.22	0.051 42	0.002 70	0.313 28	0.014 67	0.042 56	0.000 60	261	88	277	11	269	4
91	40	322	0.12	0.072 69	0.001 75	1.253 39	0.027 72	0.124 55	0.001 47	1 006	44	825	13	757	8
92	76	198	0.38	0.121 98	0.002 76	6.020 95	0.130 46	0.355 97	0.004 27	1 987	39	1 979	19	1 963	20
93	164	856	0.19	0.052 28	0.001 47	0.310 28	0.008 30	0.042 93	0.000 55	298	65	274	6	271	3
94	42	386	0.11	0.052 09	0.001 55	0.289 96	0.008 98	0.040 27	0.000 54	300	73	259	7	254	3
95	66	109	0.61	0.097 73	0.002 40	3.569 69	0.084 66	0.263 90	0.003 17	1 581	42	1 543	19	1 510	16
96	95	313	0.30	0.054 71	0.001 99	0.319 67	0.011 33	0.042 29	0.000 53	467	81	282	9	267	3
97	131	158	0.83	0.053 25	0.002 55	0.306 37	0.014 43	0.042 17	0.000 78	339	114	271	11	266	5
98	79	297	0.27	0.121 97	0.002 53	5.439 41	0.117 95	0.320 86	0.003 84	1 987	37	1 891	19	1 794	19
100	73	182	0.40	0.11697	0.002 84	5.039 72	0.11991	0.310 65	0.003 74	1 910	44	1 826	20	1 744	18
101	318	794	0.40	0.052 10	0.001 80	0.274 94	0.008 95	0.037 39	0.000 54	300	80	247	7	237	3
102	89	197	0.45	0.048 12	0.002 47	0.264 25	0.012 25	0.040 99	0.000 89	106	115	238	10	259	5
103	163	647	0.25	0.052.85	0.001 89	0.28776	0.00911	0.038 44	0.000 49	324	114	257	27	243	3
104	24	83	0.28	0.183 93	0.004 96	12.094 93	0.34757	0.4/4 04	0.009 49	2 689	44	2612	27	2 501	42
105	231	620 566	0.37	0.054 66	0.001.60	0.319 52	0.010.03	0.042 24	0.0005/	398	//	282	8	267	4
100	110	200	0.12	0.049.56	0.001 09	0.277.09	0.00914	0.040.00	0.000.30	105	80 112	249	11	237	5
107	118	180	0.55	0.050.04	0.002 /1	0.392.00	0.013 10	0.030 84	0.000.92	434	112	285	10	320 287	5
100	122	352	0.05	0.137.83	0.002.30	6 369 93	0.012.39	0.045.00	0.000.81	272	30	203	20	1.842	23
109	254	592 595	0.37	0.137.83	0.003.09	0.309.93	0.14340	0.041.40	0.004 73	187	<i>59</i> 78	2 020	20 7	262	23 4
112	128	293	0.44	0.04834	0.002.02	0 276 17	0.010.58	0 040 26	0 000 84	122	100	2.37	8	254	5
113	2 120	1 626	1.30	0.054 70	0.001 68	0.153 24	0.004 82	0.020.06	0.000 39	467	73	145	4	128	2
114	282	288	0.98	0.055 44	0.002 59	0.324 14	0.014 75	0.042.02	0.000 87	432	106	285	11	265	5
115	137	241	0.57	0.055 67	0.002 22	0.598 47	0.022 04	0.074 19	0.001 27	439	89	476	14	461	8
116	75	117	0.64	0.055 50	0.004 31	0.308 69	0.022 46	0.040 53	0.000 90	432	174	273	17	256	6
117	121	385	0.31	0.054 82	0.002 12	0.336 36	0.012 15	0.044 29	0.000 71	406	92	294	9	279	4
118	180	345	0.52	0.054 04	0.003 07	0.287 53	0.013 69	0.038 33	0.000 76	372	128	257	11	242	5
119	96	162	0.60	0.121 14	0.002 36	5.741 52	0.111 59	0.340 57	0.003 98	1 973	34	1 938	17	1 889	19
121	303	999	0.30	0.055 17	0.001 36	0.330 55	0.008 50	0.043 24	0.000 59	420	54	290	6	273	4

Fig. 4 U-Pb age covariance plot and age distribution histogram of zircon fragments in the study area

243~321 Ma(皮桥辉等, 2010; 于延秋, 2011; 胡鸿飞等, 2013; 吴亚飞等, 2013), 亦与研究区内的沉积碎屑在 年代学方面显示很好的相关性。此外,本次还获得了 部分 824~859 Ma 的锆石年龄, 与该隆起 816~805 Ma 的变质酸性火山岩(彭润民等, 2010)对应, 利用索伦 山隆起和狼山-白云鄂博隆起锆石年龄分布情况与本 次所获得的样品 TW0701 碎屑锆石年龄分布特征对比 可以看出(图 6c、图 6d), 下白垩统巴彦花组上部砂岩 碎屑锆石年龄表现为一个主峰和一个次峰(图 6c), 这 与其周边的索隆山隆起和狼山-白云鄂博隆起的锆石 年龄分布相近(图 6d),显示了两者之间具有较好的亲 源性。坳陷西部的宝音图隆起发育的岩浆岩主要为 经变质的基性岩、中性岩和部分酸性岩,这些变质岩 浆岩的原岩年代学研究显示其主要形成于古元古代 (徐备等,2000;孙立新等,2013;滕飞等,2019),其 年龄主要表现出一个1700~1900 Ma的主峰和一个 2400~2600 Ma次峰(图 6b),与本次所获得的巴彦花 组下部砂岩碎屑锆石年龄分布特征相近(图 6a),对比

其锆石形态特征及锆石 Th/U 特征,可以发现宝音图 隆起可能是巴彦花组下部砂岩物源的主要供给区。此外,巴彦花组下部砂岩碎屑锆石年龄分布特征显示 其还具有一个 200~300 Ma 的次峰,该峰所指示的特征与索伦山隆起和狼山-白云鄂博隆起的锆石年龄分

布特征相近,表明以上两个隆起区极大可能为该组下 部也提供了部分物源。

综上所述,川井坳陷具有多物源特征,其中巴彦 花组下部物源可能主要来自于现今地理位置西部的 宝音图隆起,少部分来自于索伦山隆起与狼山-白云 鄂博隆起;巴彦花组上部物源可能主要来自于索伦山 隆起与狼山-白云鄂博隆起,指示早白垩时期研究区 内沉积碎屑物质来源发生相应变化,为进一步研究川 井坳陷下白垩统巴彦花组沉积碎屑物质来源及相应 时期古环境变化提供了有力依据。

4.2 对川井坳陷砂岩型铀矿勘查的意义

对于砂岩型铀矿而言,其成矿物质主要来源于具 有较高放射性U元素含量的中酸性岩浆岩、古老变质 岩系(李姣莉等,2023)。通过对川井坳陷周边各隆起 的研究认为,其U含量为3.2×10⁻⁶~5.1×10⁻⁶,Th/U为 4.1~5.2,且具有明显的U迁出特征,是坳陷内铀矿的 重要铀源(彭云彪等,2018)。结合上述对下白垩统巴 彦花组物源的讨论,可以认为该组具有较好的铀矿成 矿潜力。通过对研究区多个机械岩心钻孔的综合测

Tab. 4 Chronology research results of uplifts around the study area									
隆起区	岩性	测试方法	年龄(Ma)	数据来源					
	辉长岩	SHRIMP锆石U-Pb、Ar-Ar	295~298	Miao et al., 2008					
	辉长岩、斜长花岗岩	SHRIMP锆石U-Pb	$284 \sim 288$	Jian et al., 2010					
	纯橄岩	SHRIMP锆石U-Pb	354~333	Jian et al., 2012					
索伦山隆起	辉长岩、玄武岩	SHRIMP锆石U-Pb	278.5 273.7	Chen et al., 2012					
	玄武岩	LA-ICP-MS锆石U-Pb法	$246 \sim 261$	Chu et al., 2013					
	基性岩	LA-ICP-MS锆石U-Pb法	277	王炎阳等, 2014					
	玄武岩、辉长岩	LA-ICP-MS锆石U-Pb法	276~273	柳志华等,2020					
	辉长闪长岩	LA-ICP-MS锆石U-Pb法	273.9	皮桥辉等, 2010					
	变质酸性火山岩	SHRIMP锆石U-Pb	816.9~805	彭润民等, 2010					
狼山—白云鄂博隆起	花岗闪长岩、 黑云母花岗岩	锆石U-Pb法	243~272	于延秋, 2011					
	白云母二长花岗岩	LA-ICP-MS锆石U-Pb法	259.4	吴亚飞等, 2013					
	闪长岩	TMS锆石U-Pb法	321~304	胡鸿飞等, 2013					
	刻上舟间止当	Sm-Nd全岩等时线	2 485	谷友笙 2000					
	科区用内力石	Rb-Sr全岩等时线	623	休留守,2000					
空立团路扫	变质基性岩	LA-ICP-MS锆石U-Pb法	895.5	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○					
土日凹陲爬	石英岩	LA-ICP-MS锆石U-Pb法	1 284 、 1 319 、 1 395	除 & 守, 2019					
	基性火山岩	Sm-Nd全岩等时线	2 496 2 486	ひ 立 年 年 2012					
	片麻状二长花岗岩	SHRIMP锆石U-Pb	1 672	亚亚利守,2013					

表 4 研究区周边各隆起岩石年代学研究成果

a.样品 TW0003-1 和 TW0003-2 碎屑锆石年龄直方图; b.宝音图隆起岩浆岩年龄直方图(数据源自孙立新等, 2013; 膝飞等, 2019); c.样品 TW0701 碎屑锆石年龄直方图; d.索伦山隆起和狼山—白云鄂博隆起岩浆岩年龄直方图, (数据源自 Miao et al., 2008; Jian et al., 2010; 皮桥辉等, 2010; 彭润民等, 2010; Chen et al., 2012; Jian et al., 2012; Chu et al., 2013; 吴亚飞等, 2013; 王炎阳等, 2014; 柳志华等, 2020)

图6 下白垩统巴彦花组砂岩碎屑锆石与潜在源区锆石年龄直方图

Fig. 6 Ages histogram of detrital zircons and potential source zircons from the lower cretaceous Bayanhua formation sandstones

井(表 5)发现,巴彦花组整体ω_(II)≥0.5×10⁻⁴,其下部 ω_(U)≥3×10⁻⁴, 与该组上部相比有较高的ω_(U), 指示研 究区富铀层为巴彦花组下部(图7)。这是由于下白垩 统巴彦花组砂体发育,水动力较强,且U元素相对其 他元素活泼,在氧化环境下U元素极易发生氧化反应, 进而使得其随水发生迁移。川井地区早白垩世经历 了干旱、温湿、半干旱过渡性气候、干旱4个阶段(陈 功等,1997)。在温湿气候阶段,研究区巴彦花组下部 以河流相--河湖相沉积为主,致使在该时期形成厚度 40~60m富含有机质碳屑、碳化植物碎屑及少量黄铁 矿的湖相沉积,其良好的还原性为随水动力发生迁移 至此的富U碎屑物中U元素的富集提供了有利的环 境(徐阳等, 2020)。巴彦花组上部主要为干旱氧化沉 积环境下形成的灰色、灰白色及局部灰黄色的碎屑岩, 这种还原-氧化环境的变化为U元素的迁移和富集提 供了良好的地球化学环境。其次,巴彦花组上部-二 连组下部发育的稳定砖红泥岩与巴彦花组下部泥岩

表 5 研究区钻孔综合测井数据表

Tab. 5 Comprehensive logging data of boreholes in the study area

钻孔编号	深度(m)	$\omega_{(U)}(10^{-4})$	数据来源
170000	$55 \sim 78$	≥0.5	本研究
1ZK0003	80~103	≥2.0	本研究
1ZK0005	$57 \sim 65$	≥0.5	本研究
	$70{\sim}72$	≥0.5	本研究
1ZK0701	80~84	≥3.0	本研究
	51~53	≥0.5	本研究
1ZK0702	$72\sim79$	≥0.5	本研究
	92~96	≥1.0	本研究
1740.00	32~40	≥0.5	本研究
1ZK0705	65~77	≥0.8	本研究

和上部砂岩构成了稳定的泥-砂-泥结构为铀成矿提 供了有利成矿空间(李成元等, 2023)。通过对巴彦花

图7 研究区已施工钻孔剖面图

Fig. 7 Cross section of drilled holes constructed in the research area

组碎屑锆石的研究表明,其碎屑物的物源主要为川井 坳陷周边各隆起具有较高放射性U元素含量的中酸 性岩浆岩和古老变质岩系,这为铀成矿提供了丰富的 成矿物质来源。因此,可以认为该组是研究区内一个 良好的找矿目的层。

综合以上特征,对比二连盆地其他坳陷,川井坳 陷砂岩型铀矿整体勘查程度相对较低。但通过近几 年的勘查成果显示,该区具有多个矿化点或异常区, 研究区及其周边可能具有砂岩型铀矿的资源潜力。

5 结论

(1)川井地区早白垩世巴彦花组碎屑锆石年龄显示,其主要包含晚二叠世—晚石炭世和古元古代两个 年龄峰值。

(2)巴彦花组上、下段具有不同的物质来源,其下 部主要由前寒武酸性岩浆岩为其提供物源,其上部主 要由晚二叠世—晚石炭世索伦山隆起与狼山-白云鄂 博隆起等为其提供沉积物质来源。

(3研究区内钻孔综合测井数据显示,巴彦花组整体ω_(U)≥0.5×10⁻⁴,其下部ω_(U)≥3×10⁻⁴,指示区内主要含矿层位于巴彦花组下部,为后续区内砂岩型铀矿勘查方向提供了依据。

致谢:本文写作得到了中国地质大学(北京)申 俊峰教授和中国地质调查局呼和浩特自然资源综合 调查中心矿产资源调查室副主任杨彪的帮助与指导, 在此表示由衷的感谢;感谢匿名审稿人对本文提出 的宝贵建议与意见。

参考文献(References):

- 陈功,邓金贵,张克芳,等.二连盆地及邻区铀成矿地质条件及 成矿远景评价[J].中国核科技报告,1997,1-12.
- CHEN Gong, DENG Jingui, ZHANG Kefang, et al. Evaluation on Uranium Mineralizing Geological Conditions and Prospect in Erlian Basin and Its Adjacent Area[J]. China Nuclear Science and Technology Report, 1997, 1–12.
- 崔永谦,刘喜恒,孙朝辉,等.内蒙古二连盆地深层地球物理特 征和上古生界的地质结构[J].地质通报,2011,30(2-3): 265-272.
- CUI Yongqian, LIU Xiheng, SUN Zhaohui, et al. The Deep physical geographic characteristics and Neopaleozoic geological structural exploration of Erlian basin, Inner Mongolia, China[J]. Gelolgical Bulletin of China, 2011, 30(2–3): 265–272.
- 代新宇,周斌,李新林,等.西昆仑奇台达坂北中新世石英二长 岩侵入岩年代学、地球化学及其构造意义[J].西北地质, 2024,57(4):191-205.
- DAI Xinyu, ZHOU Bin, LI Xinlin, et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology, 2024, 57(4): 191–205.
- 冯雪东,吕洪波,张海春,等.乌拉特后旗测老庙坳陷早白垩世 古流向分析[J].地质论评,2017,63(2):277-286.
- FENG Xuedong, LV Hongbo, ZHANG Haichun, et al. An Analysis on the Early Cretaceous Paleocurrent Direction in the Celaomiao Depression, Urad Rear Banner, Inner Mongolia, China[J]. Geological Review, 2017, 63(2): 277–286.
- 耿建珍,李怀坤,张健,等. 锆石 Hf 同位素组成的 LA-MC-ICP-MS 测定[J]. 地质通报, 2011, 30(10): 1508−1513.
- GENG Jianzhen, LI Huaishem, ZHANG Jian, et al. Zircon Hf iso-

2025年

tope analysis by means of LA-MC-ICP-MS[J]. Geological Bulleetin of China, 2011, 30(10): 1508–1513.

- 耿元生,杨崇辉,万渝生.吕梁地区古元古代花岗岩浆作—来自同位素年代学的证据[J].岩石学报,2006,22(2):305-314.
- GENG Yuansheng, YANG Chonghui, WAN Yusheng. Paleoproterozoic granitic magmatism in the Lvliang area, North China Craton: constraint from geochronology[J]. Acta Petrologica Sinica, 2006, 22(2): 305–314.
- 胡鸿飞,张永全,胡华斌,等.内蒙古滴水沟闪长岩体地球化学特征及其地质意义[J].现代地质,2013,27(6):1308-1315.
- HU Hongfei, ZHANG Yongquan, HU Huabin, et al. Geochemical Characteristics of Dishuigou Diorite in Inner Mongolia and Its Geological Significance[J]. Geoscience, 2013, 27(6): 1308– 1315.
- 黄广文,薛完文,潘家永,等.伊犁盆地蒙其古尔砂岩型铀矿源 区体系与构造背景分析——来自碎屑锆石 U-Pb 年代学证 据[J].大地构造与成矿学,2018,42(6):1108-1141.
- HUANG Guangwen, XUE Wanwen, PAN Jiayong, et al. Provenance and Tectonic Setting of Sandstones in the Mengqiguer Sandstone -tyoe Uranium Deposit, Yili Basin: Evidence from Zircon U-Pb Chronology[J]. Geotectonica et Metallogenia, 2018, 42(6): 1108–1141.
- 李保侠,郑克文,魏观辉.二连盆地川井坳陷铀成矿环境及成矿 有利地段研究[J].铀矿地质,2002,18(2):77-84.
- LI Baoxia, ZHEN Kewen, WEI Guanhui. Study of uranium metal logenetic circumstance and metal logenetic prospective area selection in Chuanjin depression, Erlian basin[J]. Uranium Geology, 2002, 18(2): 77–84.
- 李成元, 薄海军, 李钢柱, 等. 川井坳陷砂岩型铀矿含矿地层孢 粉组合及古气候意义[J]. 地质学报, 2023, 97(4): 1262-1277.
- LI Chengyuan, BO Haijun, LI Gangzhu, et al. Palynomorph assemblage of ore-bearing strata for sandstone type uranium depoist in Chuanjing depression and its paleoclomatic signifcance [J]. Acta Geologica Sinica, 2023, 97(4): 1262–1277.
- 李洪军,申科峰,聂逢君,等.二连盆地中新生代沉积演化与铀 成矿[J].东华理工大学学报(自然科学版),2012,35(4): 302-309.
- LI Hongjun, SHEN Kefeng, NIE Fengjun, et al. Sedimentary evolution in meso-cenozoic and uranium mineralization of Erlian basin[J]. Journal of East China Institute of Technology (Natural Science), 2012, 35(4): 302–309.
- 李姣莉,王建强,彭恒,等.鄂尔多斯盆地南部下白垩统宜君组 碎屑锆石锆石 U-Pb 年龄及物源意义[J]. 沉积学报, 2023, 41(5): 1609-1623.
- LI Jiaoli, WANG Jianqiang, PENG Heng, et al. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin[J/OL]. Acta Sedimentologica Sinica, 2023, 41(5): 1609–1623.
- 李夔洲,侯明才,赵子霖,等.扬子陆块北缘大洪山地区莲沱组 物源分析:来自沉积学和碎屑锆石 U-Pb 年代学的证据 [J/OL]. 沉积学报,2023,1-17.DOI: 10.14027/j.issn.1000-0550.2023.095.
- LI Kuizhou, HOU Mingcai, ZHAO Zilin, et al. Provenance analysis

of the Liantuo Formation in Dahongshan area, the notrhern Yangtze Block: evidence from sedimentology and detrital zircon U-Pb chronology[J/OL]. Acta Sedimentologica Sinica, 2023, 1–17. DOI: 10.14027/j.issn.1000-0550.2023.095.

- 李彤, 俞礽安, 杨桐旭, 等. 二连盆地西部白彦花地区砂岩型铀 矿地质特征及控矿因素分析[J]. 华北地质, 2022, 45(4): 38-47.
- LI Tong, YU Reng'an, YANG Tongxu, et al. Geological characteristics and ore control factors of sandstone-type uranium deposits in Baiyanhua area of Western Erlian Basin[J]. North China Geology, 2022, 45(4): 38–47.
- 李伟涛, 李子颖, 康世虎, 等. 二连盆地哈达图铀矿床铀的赋存 状态研究[J]. 地质论评, 2019, 65(S1): 157-158.
- LI Weitao, LI Ziying, KANG Shihu, et al. Study on uranium occurrences in Hadatu uranium deposit, Erlian Basin[J]. Geological Review, 2019, 65(S1): 157–158.
- LI Wenguo. Lithostratigraphy of Inner Mongolia[M]. Wuhan: China University of Geosciences Press, 1996.
- 李西得,孙祥,邱林飞,等.川井坳陷赛汉组沉积物源分析及其 对砂岩型铀成矿的控制作用[J].南华大学学报(自然科学 版),2022,36(1):66-71.
- LI Xide, SUN Xiang, QIU Linfei, et al. Sediment Source Analysis of Saihan Formation in Chuanjing Depression and Its Impact on Sandstone Type Uranium Mineralization[J]. Journal of University of South China (Science and Technology), 2022, 36(1): 66–71.
- 李先平,张少华,李林波,等.二连盆地早白垩世断陷及基底构造的耦合性[J].地质科学,2015,50(1):88-99.
- LI Xianping, ZHANG Shaohua, LI Linbo, et al. Coupling of faulted sags to basement in the Early Cretaceous Erlian Basin[J]. Chinese Journal of Geology, 2015, 50(1): 88–99.
- 刘波,杨建新,彭云彪,等.二连盆地中东部含铀古河谷构造建 造及典型矿床成矿模式研究[J].矿床地质,2017,36(1): 126-142.
- LIU Bo, YANG Jianxin, PENG Yunbiao, et al. Study of structure and formation in uranium-bearing paleo-valley and typical metallogenic models in eastern part of Erlian Basin[J]. Mineral Deposits, 2017, 36(1): 126–142.
- 刘波,杨建新,秦彦伟,等.二连盆地中东部赛汉组古河谷砂岩 型铀矿床控矿成因相研究[J].地质与勘查,2016,52(6): 1037-1047.
- LIU Bo, YANG Jianxin, QIN Yanwei, et al. Research on the ore-controlling genetic facies of the sandstone tpye uranium deposits in the paleovalley of Saihan Formation of the Erlian Basin[J]. Geology and Exploration, 2016, 52(6): 1037–1047.
- 刘佳林,刘武生,虞航,等.二连盆地巴彦乌拉铀矿区花岗岩锆 石 U-Pb 年龄和 Hf 同位素特征及地质意义[J].地质通报, 2020,39(8):1285-1295.
- LIU Jialin, LIU Wusheng, YU Hang, et al. Zircon U-Pb ages and Hf isotopic compositions of the granites from Bayanwula area and their geological significance[J]. Geological Bulletin of China, 2020, 39(8): 1285–1295.
- 刘昊,崔军平,金玮,等.松辽盆地东部地区花岗岩地球化学特征及其地质意义[J].西北地质,2024,57(2):46-58.

- LIU Hao, CUI Junping, JIN Wei, et al. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin[J]. Northwestern Geology, 2024, 57(2): 46–58.
- 刘佳林,刘武生,虞航,等.二连盆地中部白垩系赛汉组碎屑锆 石 U-Pb 年代学及地质意义[J].地质论评,2019,65(S1): 73-74.
- LIU Jialin, LIU Wusheng, YU Hang, et al. U-Pb geochronology of detrital zircons from the Cretaceous Saihan formation in the middle of the Erlian Basin and its geological implications[J]. Geological Review, 2019, 65(S1): 73–74.
- 柳志华,顾雪祥,章永梅,等.内蒙古索伦山蛇绿岩锆石 U-Pb 年 代学、地球化学特征及其地质意义[J].现代地质,2020, 34(3):399-417.
- LIU Zhihua, GU Xuexiang, ZHANG Yongmei, et al. Zircon U-Pb Geochronology, Geochemistry Characteristics and Geological Significance of the Solonker Ophiolite, Inner Mongolia[J]. Geoscience, 2020, 34(3): 399–417.
- 苗全芸,漆家福,肖阳,等.二连盆地乌尼特坳陷伸展构造特征 及成盆演化[J].中国地质,2016,43(6):2036-2045.
- MIAO Quanyun, QI Jiafu, XIAO Yang, et al. Extensional structures and basin evolution of the Wunite depression in Erlian Basin[J]. Geology in China, 2016, 43(6): 2036–2045.
- 苗全芸,漆家福,肖阳,等.二连盆地乌尼特坳陷早白垩世构造 特征—深部构造与浅部构造的关联[J].地质科学,2015, 50(2):553-563.
- MIAO Quanyun, QI Jiafu, XIAO Yang, et al. Early Cretaceous structural feature of the Wunite depression in Erlian Basin: A connection between deep-level and shallow-level structures[J]. Chinese Journal of Geology, 2015, 50(2): 553–563.
- 聂逢君,李满根,邓居智,等.内蒙古二连裂谷盆地"同盆多类型"铀矿床组合与找矿方向[J].矿床地质,2015,34(4): 711-729.
- NIE Fengjun, LI Mangen, DENG Juzhi, et al. Multiple type uranium deposit assemblage and uranium exploration in Erlian rift Basin, Inner Mongolia[J]. Mineral Deposits, 2015, 34(4): 711–729.
- 彭润民, 翟裕生, 王建平, 等. 内蒙狼山新元古代酸性火山岩的 发现及其地质意义[J]. 科学通报, 2010, 55(26): 2611-2620.
- PENG Runming, ZHAI Yusheng, WANG Jianping, et al. Discovery of Neoproterozoic acid volcanic rock in the western section of Langshan, Inner Mongolia, and its geological significance[J]. Chinese Science Bulletin, 2010, 55(26): 2611–2620.
- 彭云彪,刘波,秦彦伟,等.二连盆地川井坳陷构造演化对砂岩 型铀矿成矿作用的约束[J].地质与勘探,2018,54(5):917-928.
- PENG Yunbiao, LIU Bo, QIN Yanwei, et al. Constraints of tectonic evolution on sandstone-type uranium metallogenesis in the Chuanjin depression, Erlian basin[J]. Geology and Exploration, 2018, 54(5): 917–928.
- 彭云彪, 鲁超. 二连盆地乌兰察布坳陷西部赛汉塔拉组下段砂 岩型铀矿成矿模式[J]. 西北地质, 2019, 52(3): 46-57.
- PENG Yunbiao, LU Chao. Metallogenic Model of Sandstone-Type Uranium Deposits in the Lower Section of Saihantala Formation, Western Ulanchabu Depression, Erlian Basin[J]. North-

western Geology, 2019, 52(3): 46-57.

- 皮桥辉,刘长征,陈岳龙,等.内蒙古霍各乞海西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质,2010, 29(3):437-451.
- PI Qiaohui, LIU Changzheng, CHEN Yuelong, et al. Formation epoch and genesis of intrusive rocks in Huogeqi orefield of Inner Mongolia and their relationship with copper mineralization[J]. Mineral Deposits, 2010, 29(3): 437–451.
- 漆家福,赵贤正,李先平,等.二连盆地早白垩世断陷分布及其 与基底构造的关系[J].地学前缘,2015,22(3):118-128.
- QI Jiafu, DIAO Xianzheng, LI Xianping, et al. The distribution of Early Cretaceous faulted sags and their relationship with basement structure within Erlian Basin. [J]. Earth Science Frontiers, 2015, 22(3): 118–128.
- 宋景明,金凤鸣,王玉青,等.二连盆地重磁异常地质意义及上 古生界结构认识[J].石油地球物理勘探,2012,47(S1): 140-146.
- SONG Jingming, JIN Fengming, WANG Yuqing, et al. Geological implications of gravity and magnetic anomalies in Erlian Basin and understanding of Upper Paleozoic structures[J]. Oil Geophysical Prospecting, 2012, 47(S1): 140–146.
- 孙立新,赵凤清,王惠初,等.内蒙古狼山地区宝音图地块变质 基底的锆石 U-Pb 年龄及构造意义[J].地质学报,2013, 87(2):197-207.
- SUN Lixin, ZHAO Fengqing, WANG Huichu, et al. Zircon U Pb Geochronology of Metabase Rocks from the Baoyintu Block in the Langshan Area Inner Mongolia and Its Tectonic Significance[J]. Acta Geologica Sinica, 2013, 87(2): 197–207.
- 滕飞,滕学建,刘洋,等.内蒙古宝音图-霍各乞地区宝图岩群的 时代约束及构造属性[J].地球科学,2019,44(1):161-178.
- TENG Fei, TENG Xuejian, LIU Yang, et al. Geochronological Constraint on the Baoyintu Group and Its Tectonic Significance in Baoyintu-Huogeqi Area, Inner Mongolia[J]. Earth Science, 2019, 44(1): 161–178.
- 王炎阳,徐备,程胜东,等.内蒙古克什克腾旗五道石门基性火 山岩锆石 U-Pb 年龄及其地质意义[J].岩石学报,2014, 30(7):2055-2061.
- WANG Yanyang, XU Bei, CHENG Shengdong, et al. Zircon U-Pb dating of the mafic lava from Wudaoshimen, Hexigten, Inner Mongolia and its geological significance[J]. Acta Petrologica Sinica, 2014, 30(7): 2055–2061.
- 卫三元,秦明宽,李月湘,等.二连盆地晚中生代以来构造沉积 演化与铀成矿作用[J].铀矿地质,2006,22(2):76-81.
- WEI Sanyuan, QIN Mingkuan, LI Yuexiang, et al. Tectono sedimentary evolution of Erlian basin since Late Mesozoic and sandstone hosted uranium metallogensis[J]. Uranium Geology, 2006, 22(2): 76–81.
- 吴亚飞,曾键年,曹建劲,等.内蒙古东升庙海西期岩体锆石 U-Pb 年龄及 Hf 同位素特征 [J]. 地质科技情报,2013,32(6):22-30.
- WU Yafei, ZENG Jiannian, CAO Jianjin, et al. Zircon U-Pb Ages and Hf Isotopes of Hercynian Intrusion in Dongshenmiao, Inner Mongolia[J]. Geological Science and Technology Information, 2013, 32(6): 22–30.

- 徐备, 刘树文, 王长秋, 等. 内蒙古西北部宝音图群 Sm-Nd 和 Rb-Sr 地质年代学研究[J]. 地质论评, 2000, 46(1): 86-90.
- XUBei, LIU Shuwen, WANG Changqiu, et al. Sm-Nd, Rb-Sr Geochronology of the Baoyintu Group in Northwestern Inner Mongolia[J]. Geological Review, 2000, 46(1): 86–90.
- 徐阳,凌明星,薛硕,等.鄂尔多斯盆地双龙地区砂岩型铀矿富 集、迁移和成矿机制[J].大地构造与成矿学,2020,44(5): 937-957.
- XU Yang, LING Mingxing, XUE Shuo, et al. Enrichment, Transportation and Ore Forming Mechanism of Sandstone-type Uranium Deposits in Shuanglong Area, Ordos Basin[J]. Geotectonica et Metallogenia, 2020, 44(5): 937–957.
- 杨济远,李杰,白春东,等.冀西北宣化盆地侏罗纪九龙山组凝 灰岩形成时代、构造环境及地质意义[J].西北地质,2023, 56(6):314-328.
- YANG Jiyuan, LI Jie, BAI Chundong, et tal. Formation Age, Tectonic Setting and Geological Significance of The Jurassic Jiulongshan Formation Tuff in Xuanhua Basin, Northwest Hebei[J]. Northwestern Geology, 2023, 56(6): 314–328.
- 于延秋,郭守钰,王立峰.内蒙古狼山浩日格山海西期花岗岩体 特征与形成环境[J].世界地质,2011,30(3):345-351.
- YU Yanqiu, GUO Shouyu, WANG Lifeng. Characteristics and formation environment of Hercynian granites in Haorigeshan of Langshan, Inner Mongolia[J]. Global Geology, 2011, 30(3): 345–351.
- 张国仁, 江淑娥, 杨占兴, 等. 辽宁寒岭—偏岭平移断裂带特征 及其形成动力机制[J]. 地学前缘, 2004, 11(3): 183-192.
- ZHANG Guoren, JIANG Shu'e, YANG Zhanxing, et al. The features for mechanism of the Hanling-Pianling strike slip fault zone in Liaoning Province, Northeast China[J]. Earth Science Frontiers, 2004, 11(3): 183–192.
- 张以明,刘震,付升,等.二连盆地基底特征及演化新认识[J]. 石油地球物理勘探,2019,54(2):404-416.
- ZHANG Yiming, LIU Zhen, FU Sheng, et al. New understandings of the basement characteristics and evolution process of Erlian Basin[J]. Oil Geophysical Prospecting, 2019, 54(2): 404–416.
- 赵兴齐,秦明宽,范洪海,等.内蒙古二连盆地中部古河道型铀 矿床中烃类流体特征与铀成矿关系[J].地球学报,2019, 40(3):405-415.
- ZHAO Xingqi, QIN Mingkuan, FAN Honghai, et al. Relationship between Uranium Mineralization and Hydrocarbon Fluids Characteristics in Paleo-channel Uranium Deposits of Central Erlian Basin, Inner Mongolia[J]. Acta Geoscientica Sinica, 2019, 40(3): 405–415.

周瑞.华北中北部晚古生代末期-早中生代沉积与构造作用的

关系研究 [D]. 太原: 太原理工大学, 2019.

- ZHOU Rui. Study on the Relationship between Sedimentation and Tectonism of Late Paleozoic- Early Mesozoic Sediments in the North-central North China Craton[D]. Taiyuan: Taiyuan University of Technology, 2019.
- Chen Bin, Jahn Bor-ming, TIAN Wei. Evolution of the Solonker suture zone: Constraints from zircon U–Pb ages, Hf isotopic ratios and whole-rock Nd–Sr isotope compositions of subductionand collision-related magmas and forearc sediments [J]. Journal of Asian Earth Sciences, 2009, 34(3): 245–257.
- Chen Chen, Zhang Zhicheng, Guo Zhaojie. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia[J]. Science China Earth Sciences , 2012, 55(1): 39–52.
- Chu Hang, Zhang Jinrui, Wei Chunjing. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia[J]. Chinese Science Bulletin, 2013, 58(28–29): 3580–3587.
- Jian Ping, Alfred Kröner, Brian F Windley. Carboniferous and Cretaceous mafic–ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral "Hegenshan ophiolite"[J]. Lithos, 2012, 142–143 : 48–66.
- Jian Ping, Liu Dunyi, Alfred Kröner, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1-2): 169–190.
- Miao Laicheng, Fan Weiming, Liu Dunyi, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5–6): 348–370.
- Ren Qiang, Zhang Shihong, Wu Huaichun, et al. Further paleomagnetic results from the ~155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol–Okhotsk suture[J]. Gondwana Research, 2016, 35: 180–191.
- Wang Yongchao, Dong Shuwen, Shi Wei, et al. The Jurassic structural evolution of the western Daqingshan area, eastern Yinshan belt, North China[J]. International Geology Review, 2017, 59(15): 1885–1907.
- Wu Fuyuan, Sun Deyou, Ge Wenchun, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1–30.