1993年

锑矿化和金一锑矿化的形成条件

1 概述

锑与金在热液成矿过程中关系密切,通常,所有金矿床都显示一定程度的锑矿化和金一锑矿化。锑异常是多数金矿床的显著特征。不了解热液成矿过程中锑、金和硫化物中硫富集的知识,就无法认识这些元素在矿化期间的行为,也无法阐明锑对金的活化及形成金一锑矿化的作用。

对 50 个锑矿床进行的温压地球化学研究表明,锑硫化物在 250°C 以下,主要是在 200—75°C 沉淀成矿,相应的成矿压力通常为 200×10°—600×10°Pa。

已研究的金一锑矿床产于中生代巨厚的硅铝质陆源建造中,矿床受构造岩相带的断裂控制,矿体在主断裂带或(和)矿化破碎带中呈穿切这些带的板状脉和透镜状脉产出,在层间裂隙中呈梯状脉和整合脉产出。围岩的热液蚀变有硅化、碳酸盐化、绢云母化、迪开石化和黄铁矿化。

主要矿物为石英和辉锑矿,有时为辉铁锑矿和自然金;次要矿物为黄铁矿、毒砂、铁白云石、含铁白云石、白云母和迪开石,含少量的闪锌矿、脆硫锑铅矿、黄铜矿、硫锑铊铜矿、辉锑镍矿、锑黄铁矿、方锑金矿、自然锑、锑华 红锑矿、蒙脱石和高岭石。

对该类矿床的成因,有几种观点。

- 1)早期含金石英低硫化物和晚期锑低硫化物在空间上的一致性造成的一种多相含矿建造 (heterogeneous formations)。
- 2) 博格 (Berger) 认为金一锑矿床是变质热液矿床。随着褶皱和岩基的形成黑色页岩套中金和锑活化,金一锑矿床构成一种单一金矿复合体。
- 3) 奈克拉索夫指出金一锑矿是以一种含矿岩浆中结晶出来的。这种含矿岩浆是以闪长玢岩、辉绿岩及煌斑岩为代表的基性岩浆。

在构造学、矿物学、地球化学和温压地球化学的详细研究使包括作者在内的一些研究者 提出了与上述不同的观点,认为金一锑矿床在成因上是单相的,并县有独立的矿石组合,部 分金可能来源于早期低硫化物组合金矿床,部分金可能来源于金锑矿化带,一些独立的构造 带中含金量较高。已经发现这些矿化形成于在时间上非常接近的两个阶段,即石英阶段和辉 锑矿阶段。第一阶段形成铁白云石一石英、黄铁矿一黄铜矿和复硫化物组合,而第二阶形成 辉锑矿一辉铁锑矿和金一辉锑矿组合。

本文1993年5月收到; 邵晓东编辑.

关于矿床成因方面的很多问题,特别是矿化形成的物理化学条件、物质来源、活化因素 以及金、锑联合迁移等问题仍然有争论。

2 流体包裹体研究

金一锑矿床脉石矿物中所含包裹体可分三类,即气一水包裹体,气一水一液态 CO2 三相 包裹体和液态 CO。单相包裹体。原生两相包裹体的均一温度为 240—350°C, 三相包裹体伴随 着水溶液中 CO。的溶解作用也在此温度范围开始均一化。金一石英一辉锑矿组合中包裹体均 一温度对应的压力为 700×10⁻⁵—1800×10⁵Pa。

对脉石矿物流体包裹体进行 H₂O、CO₂、Na、K、CI、H₂S、Au 和 Sb 含量测定,结果表 明,以富含CO₂为显著特征,CO₂含量为5-10m,H₂S为-10⁻²m,Sb 为5×10⁻³m;Au 平 均为 5×10-5m; 而 Cl-、K+含量很低。

3 热液中锑和金迁移

1) Sb₂S₃-H₂O-II₂S 体系

对该体系进行离子平衡研究,在100-300℃条件下,得出了下列反应的温度平衡常数: $Sb_2S_3(C)+HS^-(sol)=HSb_2S_4^-(sol)$

 $\log K^{T} = -8.83 + 9.2 \times 10^{-3} T^{-1} - 21.66 \times 10^{-5} T^{-2}$

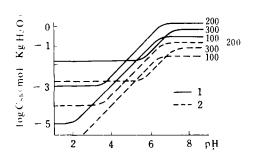


图 1 在 100-300°C 时硫化物溶液中 Sb₂S₃ 溶解度曲线

1-H₂S 浓度 0.1m; 2-H₂S 浓度 0.01m

在 200°C 时, 平衡常数最大 (logK^T= +0.90),锑的溶解度也最大,而300℃时, $\log K^{T} = +0.60$ 。图 1 显示了温度、pII 值 及II₂S浓度对锑溶解度的影响。

级,这是因为锑硫化物的存在对溶液起到

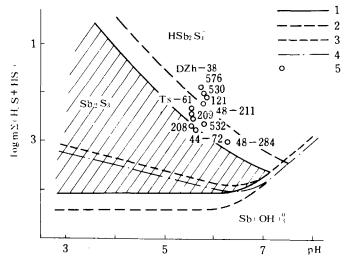


图 2 200℃ 时辉锑矿与锑的络合物平衡稳定区间 1-锑密度为 10-2m 时辉锑矿的稳定界限; 2-锑密度为 10-2.5m 已经发现,在含锑 H2S 溶液中,金的 时辉锑矿的稳定界限,3一锑密度为10 'm时 HSb2Sī和 溶解度比在只含金的溶液中增加一个数量 Sb (OH) §共存界线; 4-锑密度为 10-2m 时 HSb2S; 和 Sb (OH) } 共存界线; 5-辉锑矿组合体中脉石矿物包裹体特征 了外加硫源的作用。当溶液中锑浓度增加时,金的溶解度成比例地增加,这是因为在酸性条

件下,锑与金可以形成 HAuSbS。这种密切的化学联系是金一锑组合经常出现的原因。

2) H₂O-CO₂-NaCl -Sb₂S₃-S体系

成矿溶液中锑氯络合物密度仅为 10⁻⁹—10⁻⁷m, 锑主要以硫氢络合物和氢氧络合物的形式存在。

成矿溶液中锑的存在形式受温度影响(表),这是因为温度下降一方面导致锑溶解度降低, 另一方面也使 pH 值减小。图 2 表示了辉锑矿与锑的硫氢络合物和氢氧络合物对应于 pH 值及 硫密度的平衡稳定区间。

the suite I what and it is in the feeling of the second of					
t (°C)	H ₂ S+HS	H ₂ Sb ₂ S?	HSb ₂ S₁	Sb (OH) ₂	pH _{eale}
		Specimen	DZH-16		
300	5×10 ⁻²	2×10 ⁻⁵	3.9×10 ⁻²	2.4×10-2	6. 03
200	5×10 ⁻²	1.3×10 ⁻⁴	6.3×10 ⁻²	3×10-7	5. 55
100	10-4	1.7×10 ⁻⁵	2.5×10 ⁻³	5×10 ⁻¹⁴	5. 20
,	•	Specimen	Chv — 211	'	
300	6×10-3	10-5	3×10-4	2×10-3	6. 25
200	6×10 ⁻³	3×10 ⁻⁴	2×10 ⁻³	2×10 ⁻⁶	5. 56
100	10-5	3×10-7	10 ⁹	10-10	5. 23

表 热液中锑的络合物密度随温度变化表 (密度: m)

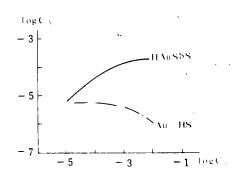


图 3 锑密度对溶液中硫氢和 金一锑密度的影响

3) H₂O-CO₂-NaCl-S-Au-Sb 体系 对该体系重点研究了热液中锑对金迁移的影响。

图 3 表明,金的溶解度和溶液中锑密度呈函数关系。当锑密度低于 10⁻⁵m 时,金全部呈 Au(HS)½形式迁移,溶液中金的最大密度为 10⁻⁵m;当锑密度增到 10⁻²m 时,Au(HS)½含量下降,但溶液中金的总量上升两个数量级。

图 4 显示了金一锑矿床流体成分演化规律,在低硫化物组合形成时期(均一温度为 350—380°C),金主要呈 Au (HS);形式迁移,在金一锑组合形成期间(约 200°C),随温度下降,锑的硫氢络合物和金锑络合物逐渐成为主要的迁移形式。当温度恒定,压力从

 $1800 \times 10^5 \text{ Pa}$ 降到 $700 \times 10^5 \text{ Pa}$ 时,导致溶液沸腾, CO_2 逃逸出来,也有利于其它挥发性组分 (特别是 H_2S) 进入气相,硫密度的下降导致锑的硫氢络合物和金一锑络合物分解,沉淀形成 辉锑矿和自然金的多次溶解和沉淀作用形成了富金一锑矿床。

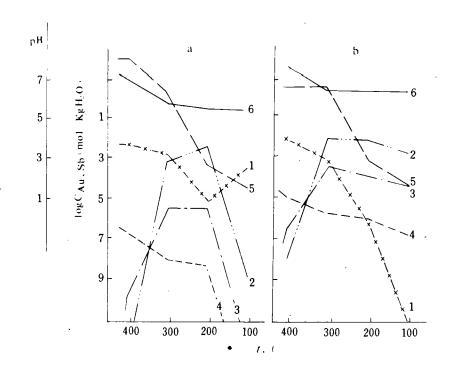


图 4 金一锑矿床热液成分演化曲线 1—锑的氢氧络合物; 2—锑的硫氢络合物; 3—复杂金一锑络合物; 4—金的硫氢络合物; 5—CO2密度 (m); 6—pH值

上述研究表明, 锑主要以氢氧络合物和硫氢络合物形式迁移, 而金在高温时呈硫氢络合物形式迁移, 温度低于 300°C 时则呈金一锑复杂络合物形式迁移。

温度在 200° C 左右时,金和锑形成复合矿床的主要原因是 a. 温度下降,硫活度减小,辉锑矿发生沉淀,金一锑络合物也相继发生分解; b. 温度、压力下降,沸腾的流体中 H_2S 密度降低。

彭艳东摘译自《Geochemistry International》 July 1991, No•7 P86-95 苏养正校