Vol. 23 No. 1 Feb. 2014

文章编号:1671-1947(2014)01-0062-06

中图分类号 :P618.31 ;P611

文献标识码 :A

辽宁抚顺地区太古宙条带状硅铁建造地球化学特征及成因

任立国, 王希军, 徐丽丽, 王 敏, 刘熙忠 (辽宁省第十地质大队 辽宁抚顺 113004)

摘 要 经过近几年对抚顺地区铁矿的勘查找矿工作 发现抚顺地区太古宙硅铁建造的矿石类型及地理分布,与横贯抚顺地区的浑河 深大断裂存在某种特定的位置关系,这种关系具有普遍的规律性.作者在总结抚顺地区数个太古宙硅铁建造矿石特征的基础上,从分 析多个硅铁建造矿床的地球化学特征入手,探讨其成矿的环境、过程,从而提出抚顺地区太古宙硅铁矿床的成矿模式,即海底火山喷 气、热水-成矿流体洋底环流-沉积-变质重结晶的成矿模式.在中新太古代时期,浑河断裂作为当时的海底扩张带(或洋中脊) 经过 海底扩张作用.形成浑河裂谷.海底断裂附近频繁的火山活动,沿浑河断裂不断涌出的地下喷气、热水,萃取海底的拉斑玄武岩中的铁 元素.形成富含铁、硅的热水溶液,这种热水溶液称之为成矿流体.成矿流体经过洋底环流作用,向两侧运移,在合适的环境下堆积成 岩.该种岩石后来遭受区域变质作用和构造-岩浆热事件多重作用改造,发生变质重结晶成矿. 关键词,太古宙,条带状硅铁建造,浑河断裂,成矿模式,辽宁抚顺

DOI:10.13686/j.cnki.dzyzy.2014.01.009

GEOCHEMISTRY AND GENESIS OF THE ARCHEAN BANDED FERROSILICON FORMATION IN FUSHUN, LIAONING PROVINCE

REN Li-guo, WANG Xi-jun, XU Li-li, WANG Min, LIU Xi-zhong (No. 10 Geologic Brigade of Liaoning, Fushun 113004, Liaoning Province, China)

Abstract: The ore types and distribution of the Archean ferrosilicon formation in Fushun region is specifically related to the trans-Fushun Hunhe deep fault. Based on the characteristic of the ores in the ferrosilicon formation, the authors analyze the geochemistry of a few deposits, with the metallogenic background and process, to set up the ore-forming model of the Archean ferrosilicon formation in the region, i.e. the model of submarine volcanic exhalation/hot water-ore fluid submarine circulation-sedimentation-metamorphic recrystallization.

Key words : Archean; banded ferrosilicon formation; Hunhe fault; ore-forming model; Fushun, Liaoning Province

辽宁抚顺地区太古宙条带状硅铁建造赋存于太 古宙变质上壳岩中,其中石棚子组、红透山组、通什村 组是其主要赋存层位.

1 区域地质背景

1.1 地层

抚顺地区地处中朝准地台()胶辽台隆()铁 岭-靖宇()台拱之上,区内以太古宙变质深成侵入 岩及残留其中的变质上壳岩为主体格架,共同构成了 古老的结晶基底. 抚顺地区太古宙变质上壳岩可划分景家沟组、石 棚子组、红透山组、通什村组.

1)景家沟组(Arj)

主要由麻粒岩、斜长角闪岩及含石榴磁铁石英岩 组成.时线同位素年龄为 30.179±20.1 Ma^[1]. 原岩为泥砂 质、泥灰质沉积为主,夹少量火山岩的陆源碎屑岩建造. 遭受麻粒岩相变质作用.

2)石棚子组(Ars)

主要由斜长角闪岩、变粒岩、浅粒岩、条带状磁铁 石英岩、底部夹有科马提岩组成. Sm-Nd 等时线同位

E-mail//WXJ18811992@163.com

作者简介:任立国(1965—),男,地质矿产高级工程师,从事地质矿产勘查工作,通信地址 辽宁省抚顺市东洲区绥化路东段 133 号,

岩、英安 抚顺地区

素年龄为 2648 Ma[®]. 原岩为拉斑玄武岩、流纹岩、英安 岩夹少量正常沉积岩的基性一酸性为主体的钠质火山 建造为特征. 遭受角闪岩相变质作用.

3) 红透山组(Arh)

主要由斜长角闪岩、变粒岩、浅粒岩、磁铁石英岩 组成.斜长角闪岩 Sm-Nd 等时线同位素年龄为 2844.37±47.29 Ma. 原岩为拉斑玄武流纹岩、英安岩和 沉积岩.遭受一期绿片岩—绿帘角闪岩相变质作用.

4)通什村组(Art)

主要由角闪斜长片麻岩、黑云斜长片麻岩夹薄层 斜长角闪岩和条带状磁铁石英岩等组成.其典型岩石 为(石榴)黑云斜长片麻岩,变质年龄为2702±0.161 Ma(全岩 Rb-Sr)[®].进而说明通什村组的原岩应早于 2702±0.161 Ma 形成,遭受了一期绿片岩—绿帘角闪 岩相变质作用,原岩为中基性—中酸性火山岩及少量 碎屑岩.

1.2 太古宙岩浆岩

1) 鞍山旋回岩浆岩

本旋回岩浆岩特点可见表 1.

2)太古宙变质深成岩

太古宙变质深成岩形成于晚太古代,广泛分布于抚顺地区,现已经变质形成各类片麻岩.根据不同岩石 类型岩相学、岩石化学、地球化学、岩石构造学以及变 质变形作用,认为太古宙变质深成岩是一套复式 TTG 杂岩组合.其原始岩石为:英云闪长岩、花岗闪长岩、奥 长花岗岩、二长花岗岩.U-Pb 法同位素年龄值为 2534~2554 Ma[®].

1.3 构造

1)构造变形期次

抚顺地区在早前寒武纪时期经受了两次重要的 地壳运动影响,即鞍山运动和吕梁运动,构成了2个 变形旋回.据此区域构造变形可划分为2期4个变 形幕^[1].

鞍山旋回期,主要由3个塑性程度不同的变形幕 构成.第一幕变形是在深部层次的麻粒岩相条件下的 剧烈塑性流动变形作用,其变形是以剧烈塑性流动或 顺层剪切滑动为主,以原始层理(AS₀)或顺层片理 (AS₀)为变形面,形成顺层片理片麻理(AS₁)、片内无 根褶皱和顺层滑动韧性变形带.第二幕变形作用是在 高角闪岩相—角闪岩相条件下发生的,这期变形作用 可以分为2个阶段:第一阶段是在麻粒岩相—高角闪 岩相条件下发生的强塑性流动变形作用,形成了区域 性透入分布的轴面片理(AS₂),第二阶段是古老变质深 成侵入体沿东西向构造带侵入.第三幕变形作用是在 角闪岩相条件下发生的较弱塑性变形.

吕梁旋回期,是发生在地壳中浅部层次、相当于绿 片岩相条件下的变形作用.该变形旋回期间本区明显 抬升.第四幕变形是以形成脆性断裂为主.

2) 浑河断裂

抚顺-营口超岩石圈断裂带与二界沟岩石圈断裂 共同控制古近纪下辽河裂谷边界,至章党一带汇合为 一条断裂带(汇合后,抚顺-草市段称浑河断裂),向北 东与辉发河、敦化-密山断裂相连,沿三江平原过黑龙 江延入俄罗斯境内,全长千余公里.浑河断裂在辽宁境 内长达160 km,是延深超过几十公里的巨型断裂.后 期又多次活动,表现出不同活动性及方式.断裂走向 70°,呈北东—北北东向,倾向北西,倾角40~60°.断裂 带宽1~5 km,带内见有50 m宽的挤压破碎带,见有紫

表 1 太古宙岩浆岩一览表 Table 1 Archean magmatic rocks

岩体名称	分布地区	主要岩性	同位素年龄	备注
紫苏花岗岩	清原县西景家沟西至中心屯	含黑云紫苏变斑状花岗岩、含黑云二辉变斑状 花岗岩、二辉花岗岩等	2680 Ma	U-Pb 法
红石砬子花岗岩	清原县大侯家窝棚	粉红色二长花岗岩	2550 Ma	U–Pb 法
狍子沟花岗岩	清原县斗虎屯燕小堡	变质黑云斜长花岗岩、变质石英闪长岩	2510 Ma	U–Pb 法
摩离红花岗岩	摩离红凸起中段	灰白色中粗粒斜长花岗岩	2624 Ma	U–Pb 法
清原花岗岩	清原县城南	二长花岗岩、斜长花岗岩、云英闪长岩	2675 Ma	U–Pb 法
橄榄岩-辉长岩	清原栏木桥、乌金伙洛、岗山、团山子、 万宝钵及新宾县四道堡子	橄榄岩、辉长岩		

同位素年龄为 1985 年辽宁地矿局第十地质队在北三家-英额门幅 1/5 万区调时测定数据.

●辽宁省地质矿产勘查局.1/5万区域地质调查报告(大苏河等六幅).1996.
 ❷长春地质学院同位素实验室,1989.

浑河断裂最晚于中太古代出现,后又经历了多旋 回长期活动.其证据是浑河断裂控制了太古宙变质上 壳岩、条带状硅铁建造及块状硫化物矿床的分布.浑 河断裂自太古宙出现,后又经历了多旋回长期活动, 是一条在辽宁省地质发展历史中起到了主要控制作 用的断裂.

2 抚顺地区太古宙硅铁建造分布特征

抚顺地区太古宙条带状硅铁矿床在地理分布、矿 石类型与浑河断裂都有密切的关系.

2.1 太古宙条带状硅铁建造的类型

抚顺地区太古宙条带状硅铁建造根据围岩组合可 分为镁铁质火山岩硅铁建造和镁铁质火山岩—长英质 火山岩硅铁建造两种类型^{[2]177}. 矿体呈透镜状、似层状. 1)镁铁质火山岩硅铁建造,产于斜长角闪岩(角闪岩) 中,岩石组合较为单一,主要为斜长角闪岩(少量角闪 岩)、角闪石英岩、磁铁角闪石英岩. 斜长角闪岩常为矿 体的顶底板,斜长角闪岩原岩恢复为岛弧拉斑玄武岩. 2)镁铁质火山岩—长英质火山岩硅铁建造,主要由斜 长角闪岩、角闪斜长片麻岩、黑云变粒岩、角闪变粒岩、 浅粒岩组成. 斜长角闪岩常为矿体底板. 黑云变粒岩恢 复原岩为英安岩,角闪变粒岩恢复原岩为安山岩,浅粒 岩恢复原岩为凝灰岩.

2.2 太古宙条带状硅铁建造的矿石特征

抚顺地区太古宙条带状硅铁建造的矿石类型,按 照矿石矿物成分可分为磁铁石英岩型和磁铁角闪石英 岩型.

2.2.1 磁铁角闪石英岩特征

矿石为条纹-条带状磁铁角闪石英岩,甚至达到 磁铁石英角闪岩.矿石多为中细粒变晶结构,磁铁矿呈 他形粒状,常集中聚积.部分与石英、角闪石呈等粒、不 等粒彼此镶嵌.条纹条带分别由磁铁矿、石英和角闪石 相间构成.矿石构造以条纹-条带状构造为主,块状构 造为辅.

磁铁角闪石英岩型矿石铁元素以氧化物相和硅酸 盐相为主.主要矿物成分为磁铁矿、角闪石和石英.

矿石矿物成分为金属与非金属矿物.金属矿物有磁铁矿、赤铁矿、假象赤铁矿.其中以磁铁为矿为主,呈 黑色,粒状,自形晶或半自形晶,有强金属光泽,强磁 性,含量10%~35%.非金属矿物有石英、角闪石、绿泥 石、透闪石与磷灰石.其中以石英、角闪石为主.石英为 白色或透明,玻璃光泽,他形粒状,含量15%~45%.角 闪石呈长柱状,局部蚀变为绿泥石,含量较高,为15% ~30%.磁铁矿、角闪石与石英两者紧密镶嵌或分异成 黑白相同的条带.

根据对铁矿石的物相分析,矿石硅酸铁(siFe)、磁性铁(mFe)含量较高,而碳酸铁(cFe)、氧化铁(oFe)含量均低(详见表2).

2.2.2 磁铁石英岩特征

磁铁矿和石英呈黑白相间中细粒变晶结构, 致密块 状及条带状构造. 一般条带间距宽度介于 1~3 mm 之间. 按条带宽窄分为小条带(>3 mm)与细条带(1~2 mm)两 种. 细粒浸染状矿石的金属矿物颗粒大于 2 mm. 矿石 一般为微粒浸染, 金属矿物颗粒在 2~0.2 mm, 个别呈 乳浊状浸染矿,金属矿物颗粒小于 0.2 mm.

磁铁石英岩型矿石铁元素以氧化物相为主,主要 矿物成分为磁铁矿和石英.磁铁矿呈铁黑色,具金属光 泽,他形半自形粒状集合体,多与石英彼此镶嵌,呈条 纹条带分布,粒径0.2~1.5 mm,含量一般20%~45%.脉 石矿物以石英为主.石英,细粒,含量50%~70%.角闪 石次之,细粒,含量较少(<5%).另外常见有辉石、石榴 石、绿泥石、黄铁矿等.

根据对铁矿石的物相分析,矿石磁性铁含量很高, 而硅酸铁、碳酸铁、氧化铁含量均很低(详见表 2).

表 2 木奇北沟矿石物相分析结果表 Table 2 Phase analysis for the ore from Mugibeigou

矿石类型	样品号	cFe	siFe	mFe	oFe
磁铁石英岩	H1	1.65	0.70	30.00	0.00
磁铁石英岩	H2	1.75	0.35	33.60	0.00
磁铁角闪石英岩	Н3	1.70	16.00	22.10	0.78
磁铁角闪石英岩	H4	0.80	10.30	20.10	0.04
磁铁角闪石英岩	Н5	1.20	11.05	20.00	0.007

含量单位:%.

2.3 太古宙条带状硅铁建造的分布特征

抚顺地区太古宙硅铁建造矿床很发育,近几年陆 续发现了数个中型矿床,找矿潜力很大.经过综合分析 研究其分布规律,发现太古宙硅铁建造的分布及矿石 类型与浑河断裂具有一定的联系,即距离浑河断裂 较近的矿床(<20 km),矿石类型以磁铁角闪石英岩 为主,围岩以斜长角闪岩为主,岩石组合为角闪质岩 石,属于镁铁质火山岩硅铁建造.距离浑河断裂远的 矿床(>20 km),矿石类型以磁铁石英岩为主,围岩以 角闪斜长片麻岩、变粒岩为主,属于镁铁质火山岩-长 英质火山岩硅铁建造(见表 3).

矿床名称	矿床规模	矿床规模 矿石类型		围岩组合	恢复原岩	距浑河断裂距离	备注
松岗铁矿	小型	磁铁角闪石英岩	通什村组	角闪斜长片麻岩	安山质凝灰岩	18 km	
景毛铁矿	中型	磁铁石英岩	通什村组	黑云角闪斜长片麻岩	安山质凝灰岩	20 km	
萝卜坎铁矿	中型	磁铁石英角闪岩	通什村组	角闪岩、斜长角闪岩	拉斑玄武岩	12 km	
峡河 - 救兵	小型	磁铁石英岩	通什村组	黑云斜长片麻岩	安山质凝灰岩	30 km	
塔二丈-养树	小型	磁铁石英岩	5英岩 通什村组 黑云斜长片麻岩 安山质凝灰岩		20 km		
黑背-北太阳	小型	磁铁石英岩	磁铁石英岩 通什村组 黑云斜长片麻岩		安山质凝灰岩	22 km	ار میں
高官铁矿	中型	磁铁石英岩	通什村组	黑云斜长片麻岩	安山质凝灰岩	36 km) ⊯⊂ ≂□
油坊–窑沟	中型	磁铁角闪石英岩	通什村组	角闪岩、角闪斜长片麻岩	拉斑玄武岩、安山质凝灰岩	14 km	断殺
石棚子铁矿	小型	磁铁角闪石英岩	石棚子组	角闪变粒岩、斜长角闪岩	安山岩、拉斑玄武岩	16 km	네미(푸)
傲牛铁矿	中型	磁铁石英岩	通什村组	角闪斜长片麻岩、黑云变粒岩	安山质凝灰岩、英安岩	33 km	
上夹河铁矿	小型	磁铁角闪石英岩	石棚子组	斜长角闪岩	拉斑玄武岩	13 km	
木奇北沟	中型	磁铁角闪石英岩	石棚子组	斜长角闪岩、角闪岩	拉斑玄武岩	16 km	
小莱河铁矿	中型	中型 磁铁角闪石英岩		斜长角闪岩	拉斑玄武岩	16 km	
大东沟铁矿	中型	磁铁角闪石英岩	石棚子组	斜长角闪岩、角闪岩	拉斑玄武岩	18 km	
北杂木–沔阳沟	小型	磁铁角闪石英岩	红透山组	斜长角闪岩	拉斑玄武岩	4 km	
吕家堡铁矿	小型	磁铁角闪石英岩	红透山组	角闪斜长片麻岩	安山质凝灰岩	10 km	
下甸子铁矿	中型	磁铁石英岩	红透山组	斜长角闪岩	拉斑玄武岩	16 km	浑河
蛤蟆塘–丁堡	中型	磁铁角闪石英岩	红透山组	角闪变粒岩、斜长角闪岩	安山岩、拉斑玄武岩	18 km	断裂
二道沟铁矿	中型	磁铁角闪石英岩	石棚子组	角闪岩、角闪变粒岩	拉斑玄武岩、安山岩	10 km	北部
井家沟铁矿	中型	磁铁角闪石英岩	石棚子组	角闪岩、角闪变粒岩	拉斑玄武岩、安山岩	10 km	
清原北山-长山堡	小型	磁铁角闪石英岩	红透山组	斜长角闪岩	拉斑玄武岩	3 km	

表 3 抚顺地区太古宙硅铁矿床分布特点

 Table 3
 Features of the Archean ferrosilicon deposits in Fushun

3 抚顺地区太古宙硅铁建造地球化学特征

3.1 岩石化学特征

抚顺地区太古宙条带状硅铁建造的岩石化学,呈现高硅、铁,低铝,贫钾、钠、钛、锰、磷的特征. 全铁含量 30.70%~40.96%, Fe₂O₃ 16.35%~37.62%, FeO 14.25%~ 25.83%, SiO₂ 41.15%~48.89%, Al₂O₃ 0.28%~3.04%, K₂O 0.00%~0.61%, Na₂O 0.04%~0.70%. 区内主要矿床的矿石化学成分见表 4.

与岩浆成因的内生铁矿石相比,太古宙硅铁建造铁矿石的 SiO₂+Fe₂O₃+FeO 含量高,而 MgO、CaO、TiO₂

含量低. 内生铁矿石 MgO、CaO、TiO₂ 含量较高. 与陆源 沉积铁矿相比,太古宙硅铁建造铁矿石的 SiO₂+Fe₂O₃+ FeO 含量高,而 Al₂O₃ 含量低. 陆源沉积铁矿的 Al₂O₃ 含量很高. 因此,太古宙硅铁建造既不是岩浆成因,也 不是陆源沉积成因.

本区太古宙条带状硅铁建造 Al/(Al+Fe+Mn)比值 极低(<0.03),与海底喷流成因的燧石或热水系统喷口 附近的 SiO₂ 堆积物比值接近,而明显小于页岩和正常 沉积硅质岩的比值,指示太古宙硅铁建造原岩可能为 热水成因.

	Table 4 Analysis result of major elements in ore													
矿床	SiO ₂	TiO ₂	AI_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO	Na₂O	K ₂ O	P_2O_5	H ₂ O	TFe	
傲牛	43.56	0.01	2.36	37.62	14.55	0.07	1.95	2.02	0.05	0.03	0.12	0.08	36.19	
黑背	45.85	0.13	1.54	33.79	15.55	0.04	0.49	1.68	0.38	0.00	0.24	0.38	35.69	
小莱河	41.15	0.02	0.28	32.64	23.33	0.04	1.55	0.10	0.04	0.08	0.03	0.90	40.96	
萝卜坎	48.89	0.15	3.02	22.88	20.77	0.10	1.50	2.63	0.63	0.07	0.24	0.61	32.14	
尖山子	46.67	0.28	3.04	16.35	25.83	0.16	3.21	2.27	0.70	0.27	0.29	0.09	30.30	
木奇北沟	42.59	0.27	2.21	21.73	24.14	0.15	3.15	3.33	0.25	0.24	0.61	0.26	36.47	
下甸子	48.07	0.14	1.74	28.49	14.25	0.10	1.55	3.10	0.28	0.08	0.10	0.00	30.70	
一道沟	46.67	0.28	3.04	16.35	25.76	0.16	3.21	2.27	0.70	0.27	0.09	0.00	31.21	

表 4 矿石常量元素分析结果 ble 4 Analysis result of major elements in o

含量单位:%.

3.2 微量元素特征

抚顺地区太古宙条带状硅铁建造的微量元素,含 量大多低于该元素的地壳丰度值(表5). 矿床中Sc、 Ti、V、Co、Mn、Sr、Zr等元素含量较低,与远源火山沉积 铁矿微量元素特征相似,反映其为海洋化学沉积的地 球化学特征. 元素 Co/Ni<1,具有沉积岩特征. Cr/Ni>1, Ti/V>1及 Sr/Ba<1,说明物质来源与火山作用关系密 切^{[2]190}. 钛、锰、磷含量相对较高,说明与海洋关系密切. 物源与处于拉张状态的洋中脊玄武岩有关,且无陆壳 污染.

3.3 稀土元素特征

稀土元素在地球中的丰度从下地幔—上地幔— 地壳,REE 总量不断增高.抚顺地区太古宙硅铁建造 中铁矿石稀土元素总量很低(表 6)^{[2]191}, SREE 一般 为 8.82×10⁻⁶~17.6×10⁻⁶ Eu/Sm=0.33~0.36 Eu/Eu*=1.00~ 1.09,正铕异常微弱不明显,此为太古宙海洋沉积物的 特点^{[3]178}. REE 分布呈倾斜型,La/Sm>1,La/Lu>1及 La/Yb>1,说明LREE 相对较富集,HREE 相对亏损稀 土元素内部分馏作用明显.Sm/Nd=0.2,说明其原岩为沉 积岩,推测其物质来源可能为深部—上地幔.Ce/Ce*<1, 显示微弱负铈异常,说明岩石形成环境为还原环境,与 海洋沉积物亏损铈特征相似. 抚顺地区太古宙硅铁建造中铁矿石稀土元素特 征,在总体上与现代海底扩张带(或洋中脊)火山喷气 或热水成因的矿床特征相近.

4 太古宙条带状硅铁建造成因特征

太古宙是一个地壳薄、地热梯度陡、火山-岩浆活 动强烈而频繁的环境. 其洋壳更薄、海底火山活动更剧 烈而频繁,并有玄武岩浆大量喷出.抚顺地区的浑河断 裂于中太古代已经形成 作为当时板块的薄弱地带 不 断发生扩张运动,形成浑河裂谷.在浑河裂谷发展处于 鼎盛时期 即中晚元古代 浑河断裂成为浑河裂谷体系 的海底扩张带或洋中脊.由于火山活动强烈、频繁.沿 浑河断裂间歇不断涌出的火山喷气及热水与海水混 合. 由于温度升高,水-岩反应强度增高,海底岩石物 质的活化增大,热水交代萃取海底玄武岩石铁、硅等, 形成富含铁、硅的热水溶液、铁和氧化硅主要来自基性 火山带的喷流和热液源. 热水溶液在对流作用下,由于 海底洋中脊附近水深 静水压力大 致使热水向两侧环 流运移,随着热水温度的降低,由于硅酸铁形成温度 高 因此硅酸铁首先沉淀下来 同时一部分氧化铁及二 氧化硅先后沉淀,在浑河断裂较近范围内形成含硅酸 铁、氢氧化铁燧石岩或硅质岩. 富含氧化铁及二氧化硅

表 5 矿石微量元素分析结果 Table 5 Analysis result of microelements in ore

序号	矿床	Ti	Mn	Р	Ba	Cr	Co	Cu	Zn	Ga	Li	Ni	Sr	Th	V	Sc	Bi	Cd	Zr
1	傲牛	85.06	407.1	814.6	17.83	4.36	2.0	14.21	110.5	54.0	1.85	3.0	12.41	11.82	7.0	6.39	11.36	2.3	15.26
2	黑背				64.4	80.3	6	13	53			27	17.8	1.98					
3	小莱河	112.3	272.6	911.9	13.95	5.36	2.0	44.04	160.9	50.3	0.4	3.0	8.87	10.92	7.0	6.09	9.0	1.70	13.45
4	萝卜坎	337.6	580.0	796.1	5.57	7.34	4.0	11.54	94.3	51.8	1.64	15.0	6.46	11.09	7.0	6.17	10.03	1.88	13.25
5	尖山子			0.00			0.001	0.007				0.0015							
6	木奇	0.01		0.20		0.001	0.001	0.005				0.001			0.000				
7	下甸子			0.10			0.001	0.007				0.003							
8	二道沟			0.088			0.003	0.0093				0.0028							

1~4 矿床微量元素含量单位为 10-6 其余为 10-2.

表 6 矿石稀土元素分析结果

Table 6 Analysis result of REE in ore

矿区	La	Ca	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Σ REE	LREE	HREE	LREE/HREE	Eu/Sm	La/Yb	La/Lu	Eu/Eu*
傲牛	2.30	5.14	2.22	0.45	0.15	0.52	0.48	0.29	0.34	0.10	12.09	10.36	1.73	5.99	0.33	4.57	4.68	1.00
黑背	2.88	7.24	3.98	0.70	0.25	0.75	0.66	0.52	0.53	0.09	17.60	15.05	2.55	5.91	0.36	5.43	32.00	0.07
小莱河	1.60	3.95	1.44	0.30	0.10	0.26	0.42	0.31	0.31	0.10	8.82	7.39	1.43	6.17	0.33	3.47	3.78	1.03
萝卜坎	1.64	4.56	1.74	0.41	0.15	0.43	0.47	0.34	0.35	0.10	10.19	8.59	1.60	5.24	0.37	3.17	3.15	1.09

含量单位:%.

的溶液呈胶体状态继续运移,由于物理化学条件的变化,氧化铁及二氧化硅在更远的地方沉淀,除胶体沉淀外,可能有生物化学沉淀,形成含氢氧化铁燧石岩或硅 质岩.含铁燧石岩或硅质岩形成后,在太古宙末,由于 剧烈的区域变质作用和强烈的构造-岩浆热事件,使 含铁燧石岩或硅质岩发生重新结晶而成矿,形成磁铁 角闪石英岩和磁铁石英岩.

4.1 铁、硅进入成矿流体的方式

成矿物质进入水体的方式主要为海底火山喷气、 热水. 其次由于海底火山喷气、热水,形成 pH 值呈酸 性的热水环境,温度增高,加速了含矿热水萃取海底拉 斑玄武岩中的铁、硅元素,从而形成了富含硅、铁的成 矿流体.

4.2 原生条带的成因

现代试验证明,如果将铁、硅同时加入水体中,当 成矿水体中铁浓度大于 160 mg/L 时会妨碍 SiO₂ 的沉 积,当水体中铁、硅浓度均较大时,由于铁质凝结速度 快,先沉积下来,然后硅质慢慢沉积下来,形成一对 铁-硅条带.因此一次火山喷发喷气活动输入海水中 铁、硅后,形成一对铁硅质条带,多次火山喷气活动,就 生成了厚大的条带状铁矿石^{[3]211-213}.

4.3 硅、铁质的形成条件

SiO₂ 的溶解度随 pH 值的增大而增高,当 pH=5 时 SiO₂ 的溶解度为 109 mg/L,当 pH=6 时 SiO₂ 的溶 解度为 218 mg/L. 因此当 pH 值降低时 SiO₂ 将发生沉 淀. 在高温水中 SiO₂ 以含水亚稳结晶质和非结晶质形 式存在. 当温度降至 250°C 时,单晶首先饱和晶出,而 非晶质仍处于非饱和状态. 在 100~200 °C 时,非晶质 才沉淀^[4].

高价铁在 pH>3 的酸性介质中即发生 Fe(OH)₃ 沉 淀 ,二价铁在 pH=5 时以 Fe(OH)₂ 形式沉淀析出. 当溶 液的 pH 值升高到 6~7 时 ,如果溶液中富含 CO₂ ,铁将 以 FeCO₃ 形式沉淀^[4].

5 找矿方向

由于磁铁角闪石英岩在熔化试验中最为稳定,在 温度为800~900°C,压力1500×10⁵ Pa的条件下不熔 化.斜长角闪岩在同等温度压力条件下仅有20%熔化. 当温度达到1038°C时,其熔化可达30%.而黑云斜长 片麻岩在 800°C 时,岩石中 40%熔化.当温度达到 850°C 时,其熔化可达 90%^{[3]15}.因此,在今后的找矿工 作中,要注意寻找与角闪质岩石为围岩的太古宙硅铁 建造,其矿石自然类型为磁铁角闪石英岩.因为磁铁角 闪石英岩比磁铁石英岩更能耐高温熔化,而磁铁角闪 石英岩围岩为角闪质岩石,磁铁石英岩围岩主要为黑 云斜长片麻岩,角闪质岩石比黑云斜长片麻岩也更能 耐高温熔化.因此角闪质岩石作为良好的保护层,对磁 铁角闪石英岩起到更好的保护作用.保存到现在的磁 铁角闪石英岩型矿床普遍比磁铁石英岩型矿床规模 大,矿体多呈似层状.而磁铁石英岩型矿床受后期的构 造-岩浆热事件的改造比较强烈,矿体多呈透镜状、扁 豆状,规模较小.

6 结论

抚顺地区太古宙条带状硅铁建造,成矿过程大概 可分为4个阶段:第一阶段为海底火山喷气、热水形成 富含硅、铁的热水溶液,即成矿流体;第二阶段成矿流 体洋底环流;第三阶段沉积成岩;第四阶段变质重结晶 成矿.成因模式为海底火山喷气、热水-成矿流体洋底 环流-沉积-变质重结晶的成矿模式.由于浑河断裂活 动频繁而剧烈,导致海底火山活动产生的喷气、热水是 铁、硅物质的主要来源.当时大气及水体处于缺氧还原 条件下,成矿流体在海底洋流环流作用下,可以长期积 累和运移,在适当的温度、压力、pH、Eh环境下沉积成 岩.铁矿当时是氢氧化铁和胶体 SiO₂(蛋白石类)先后 或同时沉积.后来遭受区域变质作用,使氢氧化铁脱水 和重结晶变成磁铁矿,胶体 SiO₂ 变成石英,结果使原 来隐晶质的铁质燧石岩变成磁铁石英岩.

参考文献:

- [1] 张秋生. 辽东半岛早期地壳与矿床[M]. 北京 地质出版社, 1988: 102.
- [3]周世泰. 鞍山-本溪地区条带状铁矿地质[M]. 北京:地质出版社, 1994.
- [4]韩吟文,马振东,等.地球化学[M].北京地质出版社,2011:110.