第 24 卷第 3 期 2015 年 6 月 Vol. 24 No. 3

Jun. 2015

文章编号:1671-1947(2015)03-0193-07

中图分类号 :P588.12 ;P597

文献标志码 :A

内蒙古扎兰屯方家沟岩体锆石 U-Pb 年龄及地球化学特征

郭 威¹²,吴新伟¹²,张渝金¹²,江 斌¹²,张 超²,钱 程²,陈会军² 1. 吉林大学 地球科学学院,吉林 长春 130061;

2. 中国地质调查局 沈阳地质调查中心(沈阳地质矿产研究所) 辽宁 沈阳 110034

摘 要:方家沟地区二长花岗岩中锆石颗粒的晶体内部结构清晰,振荡生长环带发育和较高的 Th/U 比值(0.99~3.10),反映了岩浆成 因特征. LA-ICP-MS 锆石 U-Pb 定年结果为(152.9±2.2)Ma. 岩石 SiO₂ 含量 73.06%~76.25%,里特曼指数(σ)2.51~2.63,具有高钾钙碱 性特征,呈过铝质特点. ΣLREE/ΣHREE 比值和(La/Yb)_N比值分别为 6.21~10.43 和 4.98 ~12.18,为轻稀土富集、重稀土亏损型. δEu 值 0.52~0.72,为中弱亏损. 以上特征表明方家沟岩体为过铝质高分异 I 型花岗岩. 其成因可能是由于造山后的拉张环境使得地壳减薄, 促使软流圈的物质上涌和幔源岩浆的底侵作用,导致地壳的温度升高,减压熔融形成二长花岗岩.

关键词 :方家沟岩体 ;二长花岗岩 ,锆石 U-Pb ,年龄 ,地球化学 ;内蒙古

DOI:10.13686/j.cnki.dzyzy.2015.03.005

ZIRCON U-Pb DATING AND GEOCHEMISTRY OF THE FANGJIAGOU PLUTON IN ZHALANTUN AREA, INNER MONGOLIA

GUO Wei^{1,2}, WU Xin-wei^{1,2}, ZHANG Yu-jin^{1,2}, JIANG Bin^{1,2}, ZHANG Chao², QIAN Cheng², CHEN Hui-jun²
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang 110034, China

Abstract : The Fangjiagou monzogranite pluton shows a typical magmatic origin with its clear crystal interior structures of zircon, developed oscillatory growth zonation and high Th/U ratio of 0.99–3.10. The LA-ICP-MS zircon U-Pb dating is (152.9±2.2) Ma. The rock is peraluminous, belonging to high-K calc-alkali series, with SiO₂ content of 73.06% – 76.25% and Rittman index (σ) of 2.51–2.63. The ratios of Σ LREE/ Σ HREE and (La/Yb)_N are respectively 6.21–10.43 and 4.98–12.18, with enrichment in LREEs and depletion in HREEs. The δ Eu values range from 0.52 to 0.72. The features above indicate that the Fangjiagou pluton belongs to peraluminous highly fractionated I-type granite, which may be formed due to the crust melting by temperature rising and pressure reducing in post-orogenic extensional environment, with crust thinning, materials from asthenosphere upwelling and mantle-derived magma underplating.

Key words : Fangjiagou pluton; monzogranite; zircon U-Pb dating; geochemistry; Inner Mongolia

大兴安岭地区中生代岩浆岩的形成年龄及其形 成时的区域地球动力学背景一直是地学研究的热点 问题之一^[1-7].内蒙古扎兰屯地区位于大兴安岭中北 段,其方家沟侵入岩岩体较为发育.岩体呈条带状、团 块状、不规则状沿北东向分布于根多河东岸,岩性主 体为浅肉色中粒二长花岗岩.前人对扎兰屯地区及部 分周边年代地质学和地球化学都有一定的研究^[7-8], 却没有对扎兰屯附近方家沟地区进行年代地质学和地 球化学的研究.故方家沟尚缺乏可靠的同位素年代学 制约.本文以方家沟侵入岩岩体作为研究对象,通过对 二长花岗岩样品的锆石 U-Pb 年龄确定方家沟侵入岩 岩体的形成时代,并通过对其岩相学、地球化学及年代

收稿日期 2015-03-31 修回日期 2015-06-06. 编辑 张哲.

基金项目:中国地质调查局区域地质调查项目"内蒙古1:5万济沁河林场等4幅区"(1212011120664);"内蒙古1:5万南燕窝沟等4幅 区调"(12120113053900).

作者简介 郭威(1987—),硕士研究生,吉林大学地球科学学院,矿物学、岩石学、矿床学专业,通信地址 辽宁省沈阳市皇姑区黄河北大街 280 号, E-mail:290129333@qq.com

学研究 对其岩浆源区及成因类型进行讨论.

1 区域地质背景与岩体地质

扎兰屯地区位于古亚洲洋构造域与环太平洋构造 域交汇处,大兴安岭主脊断裂中北段,属于西伯利亚古 板块大陆边缘向南增生部分一级构造单元.中新生界 属滨太平洋地层区大兴安岭-燕山分区中生代火山-侵入岩带,是中国东部大陆环太平洋火山活动带的重 要组成部分.受全球两大构造域影响,区域构造线方向 以北东、北北东向为主(图1).

方家沟晚侏罗世侵入岩体位于扎兰屯地区西南部 约80km处,呈北东向展布,主体岩性为浅肉色中粒二 长花岗岩,出露面积68.49km²,占测区总面积的4.9%. 本期次花岗岩侵入上石炭-下二叠统格根敖包组,又 被早白垩世花岗闪长岩侵入^[9-10].岩体中含有少量团 块状暗色闪长质包体.

二长花岗岩新鲜面呈浅肉色,中粒花岗结构,块状构造.岩石由石英(30%左右)、钾长石(45%左右)、斜 长石(25%左右)组成.钾长石,他形粒状,由微斜长石 组成,格子双晶隐约显示,包含斜长石交代净边结构, 粒度2~5 mm;斜长石,半自形板状,聚片双晶宽窄不 一,环带发育,属中长石,部分晶面边缘钠化,粒度 1.5~5 mm;石英,他形粒状,晶面干净,波状消光,粒度 1.5~5 mm. 局部地段相变过渡为粗中粒二长花岗岩和 中细粒二长花岗岩. 副矿物组合主要为锆石、磷灰石、 磁铁矿、赤褐铁矿、钛铁矿、榍石、绿帘石.

锆石颜色多为黄色,个别棕色,自形双锥柱状-长 柱状居多,少量受力破损呈断柱状、碎块状,个别双锥 柱状,多数透明,个别不透明,多数为金刚光泽,少数油 脂光泽,晶内气液及固相包裹体发育,粒径大部分在 0.05~0.12 mm,少量 0.12~0.23 mm.

2 分析方法

用于锆石定年的样品为采自天然露头的新鲜样 品. 样品的破碎和锆石的挑选工作由河北省廊坊市科大 矿物分选技术股份有限公司完成. 锆石激光剥蚀等离 子体质谱(LA-ICP-MS)U-Pb 同位素分析在中国地质 科学院国家地质实验测试中心完成. 本次实验所采用 的激光束斑直径为 20 μm , 普通铅校正采用 Anderson^[11] 的方法 ,详细实验测试过程可参见文献[12]. 年龄计算 采用国际标准程序 Isoplot(ver3.0). 本文所测试的锆石 颗粒均具有清晰的岩浆型振荡环带结构 , 表明这些锆 石为岩浆结晶成因.

样品的主量元素和痕量元素分析在国土资源部东 北矿产资源监督检测中心完成.主量元素采用 X 射线 荧光光谱法(XRF),痕量元素的分析则采用电感耦合

图 1 扎兰屯根多河地区地质简图

(据文献[10]修改)

Fig. 1 Simplified geological map of Genduohe area in Zalantun

(Modified from Reference [10])

1—中-上泥盆统大民山组(M-U Devonian Daminshan fm.) 2—下石炭统红水泉组(L. Carboniferous Hongshuiquan fm.) 3—上石炭-下二叠统格根敖包组 (U. Carboniferous-L. Permian Gegen ´aobao fm.) 4—二长花岗岩(monzogranite) 5—正长花岗岩(syenogranite) 5—断裂(fault) 7—采样位置(sampling location) 等离子质谱法(ICP-MS)完成. 主量元素分析精度和准确度优于 5%, 微量元素的分析精度和准确度一般优于 10%.

3 分析结果

3.1 锆石 U-Pb 定年结果

锆石 U-Pb 测定数据列于表 1 根据这些数据所做

的 U-Pb 谐和图如图 2 所示. 其结果以 ²⁰⁶Pb/²³⁸U 年龄 计算,年龄误差为 1σ.

测年样品采自根多河林场东岸(122°03′50″N, 47°45′06″E),岩性为中细粒二长花岗岩(2011RZ23), 主要矿物为斜长石(30%)+碱性长石(40%)+石英 (25%),另有少量锆石、磷灰石、磁铁矿、赤褐铁矿、钛 铁矿、榍石、绿帘石等副矿物.代表性锆石的阴极发光

	表 1 方家沟二长花岗岩 2011RZ23 样品锆石 LA-ICP-MS U-Pb 分析结果	
Table 1	LA-ICP-MS zircon U-Pb data of monzogranite of sample 2011RZ23 from Fangjiagou pluto	on

	同位素比值								年龄 /Ma								
测点	U/Th	²⁰⁶ Pb/ ²³⁸ U	Ι 1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	$^{207}\text{Pb}/^{235}\text{U}$	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁸ Pb/ ²³² Th	1σ
2011RZ23_1	1.679	0.023	0.000	0.173	0.007	0.054	0.002	0.008	0.000	145.100	3.070	162.100	5.710	369.900	76.450	156.000	3.240
2011RZ23_2	1.338	0.024	0.001	0.172	0.005	0.052	0.001	0.008	0.000	154.900	3.170	160.700	4.220	264.400	59.690	153.100	2.720
2011RZ23_3	2.240	0.022	0.001	0.159	0.011	0.053	0.003	0.008	0.000	143.400	3.520	149.400	10.070	329.600	141.480	151.900	5.540
2011RZ23_4	2.219	0.024	0.000	0.166	0.004	0.050	0.001	0.007	0.000	152.500	3.080	155.500	3.410	203.300	51.480	149.700	2.580
2011RZ23_5	2.462	0.025	0.001	0.166	0.004	0.048	0.001	0.008	0.000	158.300	3.190	155.500	3.360	101.600	51.780	153.700	2.640
2011RZ23_6	2.708	0.024	0.001	0.162	0.004	0.049	0.001	0.008	0.000	154.600	3.130	152.100	3.560	156.400	54.980	153.900	2.760
2011RZ23_7	1.603	0.024	0.001	0.165	0.005	0.050	0.001	0.007	0.000	153.800	3.140	155.300	4.130	196.400	61.240	147.500	2.670
2011RZ23_8	1.634	0.023	0.000	0.160	0.005	0.052	0.002	0.007	0.000	146.400	3.040	150.300	4.770	287.800	70.580	148.500	2.920
2011RZ23_9	2.551	0.023	0.000	0.163	0.005	0.051	0.002	0.008	0.000	147.300	3.040	153.000	4.640	261.500	68.050	158.000	3.230
2011RZ23_10	0.986	0.025	0.001	0.165	0.006	0.051	0.002	0.008	0.000	157.600	3.280	155.000	5.100	246.100	73.510	152.700	2.840
2011RZ23_11	1.370	0.024	0.001	0.156	0.006	0.047	0.002	0.007	0.000	151.900	3.160	147.400	5.030	49.400	79.100	141.800	2.780
2011RZ23_12	2.252	0.021	0.000	0.139	0.006	0.045	0.002	0.006	0.000	131.500	2.810	131.800	5.470	0.100	30.540	127.400	3.090
2011RZ23_13	1.418	0.024	0.001	0.154	0.007	0.048	0.002	0.008	0.000	153.200	3.310	145.700	6.370	90.700	99.700	151.600	3.390
2011RZ23_14	1.442	0.021	0.001	0.162	0.011	0.055	0.003	0.008	0.000	135.900	3.280	152.000	9.710	401.300	132.940	161.000	4.600
2011RZ23_15	1.090	0.023	0.000	0.163	0.004	0.050	0.001	0.008	0.000	149.700	3.040	153.700	3.910	183.800	58.940	155.200	2.660
2011RZ23_16	1.477	0.022	0.001	0.166	0.011	0.055	0.003	0.006	0.000	140.000	3.320	155.500	9.530	407.300	127.880	122.900	3.810
2011RZ23_17	2.314	0.024	0.001	0.163	0.006	0.050	0.002	0.008	0.000	151.800	3.140	153.400	4.940	196.900	72.720	160.800	3.3200
2011RZ23_18	1.872	0.025	0.001	0.169	0.005	0.050	0.001	0.008	0.000	159.000	3.260	158.600	4.680	199.900	67.160	156.300	3.000
2011RZ23_19	1.122	0.024	0.001	0.244	0.009	0.076	0.002	0.008	0.000	155.600	3.270	221.800	6.980	1100.600	61.550	155.200	3.030
2011RZ23_20	1.364	0.023	0.000	0.258	0.008	0.081	0.002	0.007	0.000	143.600	2.980	233.500	6.520	1213.700	54.540	150.700	2.860
2011RZ23_21	1.714	0.026	0.001	0.168	0.004	0.048	0.001	0.008	0.000	164.300	3.300	157.500	3.630	88.300	56.130	156.500	2.680
2011RZ23_22	1.831	0.024	0.001	0.165	0.007	0.051	0.002	0.008	0.000	151.100	3.220	154.900	6.300	248.600	89.540	159.500	3.630
2011RZ23_23	1.875	0.026	0.001	0.178	0.004	0.051	0.001	0.008	0.000	165.600	3.330	166.100	3.730	229.200	52.700	161.100	2.750
2011RZ23_24	2.306	0.024	0.000	0.165	0.004	0.050	0.001	0.008	0.000	152.600	3.060	155.500	3.290	172.300	50.360	158.600	2.660
2011RZ23_25	3.099	0.023	0.000	0.158	0.006	0.049	0.002	0.008	0.000	145.800	3.040	148.800	5.230	146.200	79.480	164.300	3.780
2011RZ23_26	2.678	0.024	0.000	0.159	0.004	0.048	0.001	0.008	0.000	153.400	3.080	149.700	3.530	94.600	57.190	153.400	2.730
2011RZ23_27	1.022	0.023	0.000	0.157	0.004	0.049	0.001	0.007	0.000	149.300	3.010	147.700	3.580	128.200	57.130	144.700	2.420
2011RZ23_28	3.080	0.025	0.001	0.168	0.005	0.049	0.001	0.008	0.000	161.000	3.250	157.900	3.940	159.200	58.340	159.200	2.990
2011RZ23_29	1.583	0.025	0.001	0.180	0.007	0.055	0.002	0.008	0.000	158.400	3.340	167.800	6.220	412.700	79.280	167.100	3.520
2011RZ23_30	2.211	0.025	0.001	0.166	0.005	0.049	0.001	0.008	0.000	156.200	3.160	155.600	4.080	139.500	61.210	157.200	2.890
2011RZ23_31	2.137	0.025	0.001	0.167	0.005	0.049	0.001	0.008	0.000	159.800	3.240	156.400	4.250	145.100	63.210	161.200	3.000
2011RZ23_32	1.476	0.023	0.001	0.151	0.006	0.048	0.002	0.007	0.000	149.000	3.150	142.700	5.660	107.100	89.780	148.900	3.150
2011RZ23_33	2.288	0.023	0.001	0.161	0.009	0.049	0.003	0.008	0.000	147.500	3.310	151.800	8.090	125.700	117.750	157.400	4.560
2011RZ23_34	2.492	0.024	0.000	0.158	0.006	0.048	0.002	0.008	0.000	150.900	3.110	149.100	4.840	89.200	75.720	155.200	3.250
2011RZ23_35	1.646	0.025	0.001	0.161	0.007	0.050	0.002	0.008	0.000	159.300	3.390	151.700	6.240	194.500	91.230	156.000	3.510

图像(图 3)显示 :锆石均为内部结构较清晰的自形晶, 并发育有岩浆成因的振荡型环带. 锆石 U-Pb 测年结 果显示 35 个锆石的 Th/U 比值为 0.99~3.10,指示锆 石具岩浆成因.

图 3 方家沟岩体二长花岗岩中锆石 CL 图像 Fig. 3 CL images of selected zircons in monzogranite from Fangjiagou pluton

由表 1 和锆石 U-Pb 年龄谐和图(图 2)可知,在经 过 Pb 校正之后,方家沟侵入岩体的二长花岗岩中岩 浆锆石的分析结果大部分位于谐和线及其附近区域, 且各分析点分布得较为集中 ,35 个分析点²⁰⁶Pb/²³⁸U 年 龄范围在(140±3)~(165.6±3) Ma,得出其加权平均值 年龄为(152.9±2.2) Ma(MSWD=3.5).结合被测锆石具 岩浆锆石的特征,我们将该年龄解释为岩体的侵位年 龄,表明方家沟侵入岩体的二长花岗岩的侵位时代为 晚侏罗世.

3.2 地球化学特征

方家沟岩体的主量元素和微量元素分析结果见表 2.

样品号	PM422YQ3	PM422YQ5	PM422YQ7	PM422YQ10	2011RZ23
SiO ₂	76.25	73.86	74.76	74.53	73.06
${\rm TiO}_2$	0.15	0.25	0.22	0.19	0.24
Al_2O_3	12.36	13.37	13.14	13.06	13.62
FeO	0.81	1.10	0.70	1.10	1.28
$\mathrm{Fe_2O_3}$	0.69	1.11	0.96	0.65	1.02
MnO	0.03	0.07	0.07	0.09	0.10
MgO	0.2	0.29	0.2	0.2	0.26
CaO	0.39	0.40	0.39	0.36	0.63
Na ₂ O	3.40	4.36	4.20	3.95	4.33
K_2O	5.03	4.38	4.80	5.07	4.63
P_2O_5	0.03	0.05	0.05	0.04	0.06
LOI	0.59	0.52	0.43	0.53	0.49
Total	100.69	100.38	100.54	100.40	100.33
K ₂ O+Na ₂ O	8.43	8.74	8.99	9.02	8.96
K ₂ O/Na ₂ O	1.48	1.01	1.14	1.28	1.07
A/CNK	1.062	1.065	1.034	1.04	1.032
Ba	275.77	500.98	577.94	498.03	544.39
Rb	124.78	121.91	129.97	135.92	127.12
Zr	104.22	180.79	164.64	155.12	154.41
\mathbf{Sr}	70.58	72.42	89.37	60.11	276.06
Nb	17.38	16.29	14.98	14.46	13.69
Ni	2.84	4.95	0.23	0.95	9.64
Co	0.5	2.87	0.72	0.42	0.71
Cr	8.81	5.55	5.57	3.6	5.71
La	14.84	10.38	24.26	21.31	35.86
Се	43.44	15.05	55.28	18.46	74.22
Pr	4.40	3.60	7.40	6.27	8.72
Nd	14.95	12.58	25.45	22.58	32.61
Sm	3.05	2.46	4.40	4.03	6.35
Eu	0.62	0.91	0.75	0.92	0.69
Gd	2.72	2.38	4.29	3.66	5.14
Tb	< 0.5	< 0.5	0.55	0.51	0.83
Dy	3.18	2.93	2.67	3.10	4.93
Ho	0.70	0.66	0.51	0.62	1
Er	1.48	1.40	1.33	1.70	2.69
Tm	0.44	0.40	0.28	0.34	0.46
Yb	2.14	1.85	1.43	1.67	2.91
Lu	0.31	0.27	0.20	0.24	0.43
Y	21.07	17.95	13.68	17.48	26.48
Th	6.97	6.26	5.10	7.24	6.46
Σree	92.26	54.87	128.81	85.40	176.84
LREE/HREE	3.45	3.02	5.53	4.65	4.58
(La/Yb) _N	6.94	5.60	16.98	12.78	12.32
δEu	0.65	1.14	0.53	0.72	0.36

含量单位:主要元素为%,微量元素为10-6.

表 2 方家沟岩体二长花岗岩主量元素和微量元素成分 Table 2 Major and trace element compositions of selected monzogranite samples from Fangjiagou pluton

~0.25% Al2O3 12.36% ~13.62% MgO 0.2% ~0.29% CaO $0.36\% \sim 0.63\%$ K₂O 4.38% ~ 5.07%. 全碱 (Na₂O + K₂O) = 8.43%~9.02% K₂O/Na₂O =1.01~1.48(均大于1属 I 型 花岗岩). ANK-ACNK 图解(图 4a)表明,方家沟岩体 主要为过铝质 ACNK 主要介于 1.03~1.07 之间 (均小 于 1.1 属 I 型花岗岩). 在 K₂O-SiO₂ 图解(图 4b)上 样 品均落于高钾钙碱性范围内.本文研究的岩体以二长 花岗岩为主 暗色矿物有黑云母和角闪石 绝大部分样 品 CIPW 标准矿物中出现标准刚玉(C)分子,且含量小 于1% 常见暗色矿物为黑云母和普通角闪石 且副矿 物组合中出现榍石而未见富铝矿物,这些都表明了 I 型花岗岩的特征. Al_2O_3 和 P_2O_5 的含量随着 SiO₂的增 多而减少 Chanppell 等认为在 I 型花岗岩中, 随着结 晶过程的进行,磷灰石的分离结晶将导致 P₂O₅ 含量持 续减少.本区的二长花岗岩随着 SiO2 含量逐渐增加,

本区二长花岗岩 SiO2 含量73.06%~76.25% ,TiO2 0.15%

P2O5 与之呈负相关关系,说明方家沟地区的二长花岗 闪长岩具有 I 型花岗岩特征. 岩石化学高硅 .低铁、镁. 由于 A 型花岗岩在特征上和高分异性 I 型花岗岩近 似,根据判别图解(图 5a)进行初步判定,结果投影点 落入 I 型花岗岩区. 在 R1-R2 构造环境判别图解(图 5b)中也可发现,本期岩石投影点位于造山期后.综上 所述 本期花岗岩应属于非造山 I 型花岗岩.

稀土元素测试结果显示 稀土元素总量(ΣREE)在 85.40×10⁻⁶~128.81×10⁻⁶ 低于陆壳平均值(154.7×10⁻⁶); 反映轻重稀土元素分馏程度的 SLREE/SHREE 比值 和(La/Yb) 比值分别为 6.21~10.43 和 4.98~12.18 ,为 轻稀土富集、重稀土亏损型. 经球粒陨石标准化后的稀 土元素配分模式(图 6a) Er、Yb 呈弱的负异常 δEu 值 在 0.52~0.72 之间,为中弱亏损型.说明源区岩浆发生 过斜长石的分离结晶,导致残余熔体中 Eu 的亏损.

1000

2015年

(据文献[13-14])

Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for the Fangjiagou pluton (After References [13-14])

从微量元素球粒陨石标准化蛛网图(图 6b)上看, 方家沟侵入岩岩体具有贫 Ba、Nb、Ce、P,富 K、Pb、Th、 Nd 的特点;曲线为右倾型,Nb 显负异常,表明其与消 减有关.

4 讨论

4.1 方家沟侵入岩体的形成时代

前人对扎兰屯地区的整体作过初步的年代学研究^[7],以及对扎兰屯地区局部地质年代学研究^[8],而缺 乏对方家沟地区可靠的同位素地质年代学的约束.本 文所测定的方家沟侵入岩体中的锆石多呈自形双锥柱 状-长柱状,发育振荡环带结构(图3),且Th/U比值较 高,表明所测试的锆石为岩浆成因,所获得的年龄代表 了方家沟岩体的形成时代.定年结果表明,方家沟侵入 岩体的成岩年龄为(152.9±2.2) Ma.新的年代学资料 表明,方家沟侵入岩体形成于晚侏罗世.

4.2 岩石成因类型及构造环境讨论

研究认为花岗岩最流行的成因是地壳物质的部分 熔融,对于碱性花岗岩也提出难熔残余地壳物质部分 熔融的模式^[13-16].近年来认为它们也可通过富集型大 陆岩石圈地幔的熔融或地幔源岩浆与地壳物质的 混合形成^[17-18].一般认为花岗岩的成因与其地质构造 背景密切相关,不同的构造背景形成不同类型的花岗 岩,本区域 SiO₂ 含量较高(73.57%~76.91%) Na₂O 含 量也都大于 2.8%(达 3.37%~4.33%),碱的含量也较高 (8.36%~8.96%),ACNK 主要介于 1.03~1.07 之间,明 显富铝. 轻稀土富集、重稀土亏损型 δEu 值在 0.52~ 0.72 之间,为中弱亏损型.这些特征与 I 型花岗岩的特征相符,又根据 Ce-SiO₂ 判别图解^[19](图 5a)确认该区域二长花岗岩为 I 型花岗岩.

不同构造环境条件下形成的花岗岩的组成和特征 彼此不同,因此提出了花岗岩的构造环境分类,不同类 型的花岗岩分别对应不同的地球动力学环境和源区. 而方家沟晚侏罗世侵入岩多沿格根敖包组背斜核部侵 位,明显受控于北东向多期活动的基底断裂.本区域样 品在 R1-R2 构造判别图解(图 5b)中落入了造山后的 构造区域,属于典型的拉张环境下形成的造山后花岗 岩.

关于花岗岩的形成主要有岩浆分异和地壳岩石部 分熔融两种观点. Bowen 认为花岗岩石由玄武岩经历 过分异演化形成[20] 但是后来的研究表明大面积的花 岗岩主要出露于大陆地壳中 在大洋中很少见 这就与 玄武岩在大陆和大洋均广泛存在不相吻合,并且在大 陆花岗岩广泛出露区,很少见到同时代的玄武岩或辉 长岩. 这就说明了花岗岩应该有独立的起源,并且与地 壳有着密切的联系,花岗岩主要是地壳深熔论已被广 泛认同. 花岗质岩体相对富集 LREE 及大离子亲石元 素 Rb、Ba、K 等, 亏损不相容元素 Nb、Ta、Ti, 暗示其具 有壳源岩浆的特征. 具有较高 Ba/Nb 和 Ba/La 比值 其 值分别为 Ba/Nb:15.87~39.77,平均值为 31.88(幔源 岩石 ~ 9.0, 売源岩石 ~ 54) :Ba/La: 15.18~48.28, 平均 岩的比值介于壳源与幔源之间.上述地球化学特征不 能用单一的壳源与幔源岩浆演化来解释,其应该具有

1000

壳幔混合的特征,各微量元素比值的差异显示岩浆源 区的不均一性及复杂性.根据前人对花岗岩成因的总 结和对周边岩体的研究,作者推测方家沟地区与古太 平洋板块的俯冲有着密切的关系^[8],由于造山后的拉 张环境使得地壳减薄,促使软流圈的物质上涌和幔源 岩浆的底侵作用,导致壳幔混合熔融形成方家沟地区 的高分异性 I 型花岗岩.

5 结论

通过对方家沟岩体二长花岗岩的锆石 U-Pb 年代 学、岩石地球化学研究,可以得出如下结论:

(1)方家沟岩体的二长花岗岩中的锆石为岩浆成 因 ,LA-ICP-MS U-Pb 定年结果为(152.9±2.2) Ma ,表 明其形成时代为晚侏罗世.

(2)方家沟岩体的二长花岗岩为过铝质 I 型花岗 岩. 根据构造判别推测,方家沟地区的二长花岗岩是由 于造山后的拉张环境使得地壳减薄,促使软流圈的物 质上涌和幔源岩浆的底侵作用,壳幔混合熔融形成方 家沟地区的高分异性 I 型二长花岗岩.

致谢: 衷心感谢中国地质科学院国家地质实验测 试中心胡明月在锆石 LA- ICP- MSU- Pb 分析中给予 的支持.

参考文献:

- [1]林强,葛文春,吴福元,等.大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报,2004,20(3):403—412.
- [2]秦涛. 内蒙古扎兰屯地区二叠纪岩体地球化学、年代学及构造意义 研究[D]. 长春. 吉林大学, 2014.
- [3]隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的 锆石 U-Pb 年龄、地球化学特征及成因[J].岩石学报,2007,23(2): 461—480.
- [4]王兴安,徐仲元,刘正宏,等.大兴安岭中部柴河地区钾长花岗岩的 成因及构造背景,岩石地球化学、锆石 U-Pb 同位素年代学的制约 [J].岩石学报,2012,28(8):2647—2655.
- [5]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生

[J]. 岩石学报, 1999, 15(2): 181-189.

- [6]吴福元 ,李献华 杨进辉 ,等. 花岗岩成因研究的若干问题[J]. 岩石 学报, 2007, 23(6): 1217—1238.
- [7]张彦龙,葛文春,柳小明,等.大兴安岭新林镇岩体的同位素特征及 其地质意义[J].吉林大学学报 地球科学版,2008,38(2):177—186.
- [8]吴新伟 郭威 涨渝金 ,等.内蒙古扎兰屯地区新立屯岩体锆石 U-Pb 年龄及地球化学特征[J].地质与资源,2013,22(6):464—470.
- [9]张渝金,吴新伟,杨雅军,等.内蒙古扎兰屯地区晚古生代格根敖包 组地层的发现及其地质意义[J].地质与资源,2014,23(3):272—275.
- [10]张渝金,吴新伟,江斌,等.大兴安岭中段扎兰屯地区格根敖包组碎 屑锆石 U-Pb 年代学、地球化学特征及其地质意义[J]. 吉林大学学 报 地球科学版, 2015, 45(2): 404—416.
- [11]Anderson T. Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb[J]. Chemical Geology, 2002, 192: 59—79.
- [12]范晨子 胡明月 赵令浩 ,等. 锆石铀-铅定年激光剥蚀-电感耦合等 离子体质谱原位微区分析进展[J]. 岩矿测试, 2012, 31(1): 29—46.
- [13]Boynton W V. Cosmochemistry of the rare earth elements: Meteorite strdies[C]//Henderson P, ed. Rare Earth Element Geochemistry. New York: Elsevier, 1984, 63—114.
- [14]Thompson A B. Fertility of crustal rocks during anatexis[J]. Trans R Soc Edinburgh: Earth Sci, 1996, 87: 1—10.
- [15]Collins W J, Bearns S D, White A J R. Nature and origin of A-type granites with particular reference to Southeastern Australia[J]. Contrib Minelal Petml, 1982, 80: 189—200.
- [16]Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and Petrogenesis [J]. Contrib Mineral Petrol, 1987, 95: 407—419.
- [17] Jung S, Mezger K, Hocmes S. Petrology and geochemistry of syn- to postcollisional metaluminous A-type granites: A major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Damara Blet, Namibia[J]. Lithos, 1998, 45: 147-175.
- [18]Goodenough K M, Upton B G J, Ellam R M. Geochemical evolution of the Ivigtut granite, South Greenland: A fluorine-rich "A-type" intrusion [J]. Lithos, 2000, 51: 205—221.
- [19]秦涛. 内蒙古扎兰屯地区二叠纪岩体地球化学、年代学及构造意义 研究[D]. 长春: 吉林大学, 2014.
- [20]Bowen N L. The evolution of igneous rocks[M]. Princeton University Press, 1928.