第 25 卷第 5 期 2016 年 10 月 Vol. 25 No. 5 Oct. 2016

文章编号:1671-1947(2016)05-0407-17

GEOLOGY AND RESOURCES 中图分类号 :P541

文献标志码 :A

东北亚活动大陆边缘中生代构造格架主体特点

张允平¹² 宋维民¹³ 那福超¹ 鲍庆中¹ 汪 岩¹

1. 中国地质调查局 沈阳地质调查中心(沈阳地质矿产研究所) 辽宁 沈阳 110034; 2. 中国地质调查局 发展研究中心,北京 100037;3. 东北大学 研究生院,辽宁 沈阳 110004

摘 要 东北亚是全球板块构造活动最复杂地区之一. 中生代活动大陆边缘构造格架主体特点是 ,东部为陆缘增生带 ,包含碰撞造 山带和增生造山带两种类型 ,西部为陆缘活化带 ,包含西伯利亚古陆东部活化区(北段) ,东蒙古-兴安-吉黑活化区(中段)和中-朝 古陆东部活化区(南段). 整体构造格架具有东西分带 ,南北分段 ,由北东向南逐渐发展的特点. 华北-蒙古-兴安地区中侏罗晚期— 早白垩世初的沉积-火山-沉积磨拉石 ,属东北亚中生代活动大陆边缘构造演历进程的组成部分 ,是构造体制转换的标志之一. 关键词 :东北亚 ;中生代 ,板块构造 ;大陆边缘

DOI:10.13686/j.cnki.dzyzy.2016.05.001

CHARACTERISTICS OF THE TECTONIC FRAMEWORK OF NORTHEAST ASIAN MESOZOIC ACTIVE CONTINENTAL MARGIN

ZHANG Yun-ping¹², SONG Wei-min¹³, NA Fu-chao¹, BAO Qing-zhong¹, WANG Yan¹

1. Shenyang Institute of Geology and Mineral Resources , CGS , Shenyang 110034 , China ;

2. Development and Research Center, CGS, Beijing 100037, China; 3. Graduate School, Northeastern University, Shenyang 110004, China

Abstract: Northeast Asia is one of the most complex areas of plate tectonic activities in the world. The eastern continental margin accretion zone involves two types , i.e. , collisional orogenic belt and accretionary orogen belt. The western margin reactivation zone contains Eastern Siberia ancient land reactivation region (north) , East Mongolia-Xing'an-Jihei reactivation region (middle) , and eastern Sino-Korea ancient land reactivation region (south). The overall structural framework of the Northeastern Asian Mesozoic active continental margin is characterized by zonation from east to west , segments from north to south , and development from northeast to south. The late Middle Jurassic-early Early Cretaceous sedimentary-volcanic-sedimentary molasse in North China-Mongolia-Xing'an Region , which is a component part of the Northeast Asian Mesozoic activite continental margin in its evolutionary process , is one of the indicators of tectonic system transition.

Key words : Northeast Asia ; Mesozoic ; plate tectonic ; continental margin

东北亚泛指亚洲东北部地区,即北极拉普捷夫海 以南,白令海峡-千岛海沟-日本海沟-南海海沟轴线 以西,俄罗斯西伯利亚安哥拉古陆-蒙古杭盖隆起-中 国鄂尔多斯盆地西缘以东,秦岭-大别一线以北的广 大地区. 中生代以来,东北亚地区经历了欧亚和北美大陆 板块、鄂霍次克海微板块,及其与古(含南阿纽伊洋,法 拉隆、库拉和伊泽纳奇板块)-今太平洋及菲律宾海板 块之间的相互作用和影响,因此,东北亚活动大陆边缘 也是全球中生代板块构造演化最为复杂的构造区之

收稿日期 2016-07-08. 编辑 张哲.

基金项目:中国地质调查局项目"太平洋构造域北段构造格局、演化历史研究和1:250万构造图编制"(DD20160343-09);"古亚洲构造域东段构造格 局、演化历史研究和1:250万构造图编制"(DD20160343-08).

作者简介 张允平(1951—),男,研究员,主要从事大地构造、区域地质与区域成矿规律研究,通信地址 辽宁省沈阳市皇姑区黄河北大街 280 号 E-mail//syzhyp@qq.com

 一.本文试图以区域地质特征、重大构造-岩浆事件关 联性为分析基础,以板块构造和区域构造演化进程为 主线,概述东北亚活动大陆边缘中生代构造格架主体 特点.

1 东北亚中生代活动大陆边缘构造分区

根据板块构造离散、汇聚和转换边界图^[1]、欧亚东 部构造图^[2]、亚欧地质图^[3]、板块边界数字模型^[4]和国 际亚洲地质图^[5],及东北亚与邻区的有关文献资料,可 以将东北亚概略划分为3个大地构造区,即欧亚板块 构造区、北美板块构造区和太平洋-菲律宾海板块构 造区(图1).其中 欧亚板块构造区与北美板块构造区 之间,以 South Anyui Suture-Grechishkin Suture 为界 线;欧亚板块构造域与太平洋-菲律宾海板块构造区 之间,以千岛海沟-日本海沟-南海海沟(Nankai trough)主轴为界线.

东北亚中生代活动大陆边缘属欧亚大陆板块构造 单元的组成部分,其中生代活动大陆边缘地质构造演 化属滨太平洋(包括古、今太平洋)构造域演化历史的 一部分.东北亚中生代活动大陆边缘与主陆区之间的 界线,大致沿俄罗斯西伯利亚古陆东部的勒拿河前陆 盆地西缘,向南大致经贝加尔湖西-蒙古杭盖隆起东, 到中国鄂尔多斯盆地-四川盆地东缘一线.

东北亚中生代活动大陆边缘由西部陆缘活化带 (区)和东部陆缘增生带(区)构成,二者之间的界线大 体以威尔霍扬斯克褶皱-逆冲带西缘断裂为界,向南 沿斯塔诺夫隆起东南缘北土库林格尔断裂带,色楞格 褶皱带和杭盖-肯特浊积岩盆地南侧向西,达蒙古中 部巴彦洪格尔蛇绿混杂岩带转向东,沿图瓦-蒙古地 块、额尔古纳-玛门地块、布列亚-佳木斯地块北缘南 土库林格尔断裂带向东,再沿俄罗斯远东哈巴罗夫斯 克-中国那单哈达跃进山断裂带-俄罗斯滨海边疆区 撒玛卡增生带西缘断裂延伸过日本海,经日本美浓-丹波增生带北侧断裂向南延伸.

界限以西为晚三叠世前汇聚-拼合形成的古欧亚 大陆东缘活化带(区),以西伯利亚古陆、华北古陆及晚 前寒武纪末—古生代褶皱带交织中间地块为基底.晚 三叠世以来主要表现为大陆地壳累进增加固结作用和 中生代构造-岩浆作用的叠加.由于陆缘活化带(区) 基底和盖层结构特征,及中生代构造-岩浆活动特点 的差异,由北向南明显可以分为西伯利亚古陆东部活 化区、东蒙古-兴安-吉黑活化区和华北古陆东部活化 X.

界限以东为晚三叠世以来陆壳增生带(区)。由欧 亚大陆和北美大陆板块、鄂霍次克海微板块与古-今 太平洋板块之间相互作用形成.其中 1)古大陆及其与 古太平洋板块之间相互作用形成的构造单元主要有 . 威尔霍扬斯克-楚科奇复合造山系,包括北美板块北 极-北楚科奇西缘的新西伯利亚-北楚科奇褶皱-逆冲 带,南阿纽伊碰撞缝合带和欧亚板块东缘威尔霍扬-柯雷马造山系(后者包括阿玛隆-柯雷马超地体和威 尔霍扬褶皱-逆冲带);蒙古-鄂霍次克造山系;锡霍 特-阿林-萨哈林(库页岛)-北海道造山系,包括锡霍 特-阿林-丹波-美浓陆缘增生造山带、萨哈林-北海道 碰撞造山带 需霍次克海微板块、鄂霍次克-楚科奇和 锡霍特-阿林陆缘火山-深成岩带.2)欧亚大陆与现今 太平洋-菲律宾海板块之间相互作用形成的主要构造 单元主要有 堪察加-克利亚克增生造山系 旧本列岛 增生造山带:亚洲东缘新生代弧-盆系,包括千岛-东 北日本列岛弧、西南日本-琉球列岛弧、鄂霍次克海千 岛洼地、鞑靼海槽(裂谷)、日本海盆地和冲绳海槽(裂 谷).

东北亚活动大陆边缘陆壳增生带(区)与北美活动 大陆边缘白令海-阿拉斯加陆缘增生区之间,以堪察 加半岛东侧的 Grechishki 缝合带为界,向北沿转换断 层与南阿纽伊缝合线相交.界限以西,为晚白垩—上新 世形成的堪察加-克利亚克造山系和陆缘火山-深成 岩带;界限以东,为北美大陆边缘增生带的白令海残余 盆地与阿留申弧-沟系.

东北亚活动大陆边缘陆壳增生带(区)与现今太平 洋-菲律宾海板块之间的界线,以千岛海沟-日本海 沟-南海海沟为界.其中需要特别指出的是,太平洋板 块与东亚大陆边缘陆壳增生带(区)之间的界线,仅为 日本 ISTL 以北的日本海沟段,南海海沟是东亚大陆边 缘与菲律宾海板块之间的界线.

2 东北亚中生代活动大陆边缘主要造山系

中国地质出版社 2006 年出版地球科学大辞典(基础学科卷)^[6]中,对东北亚造山系词条的定义是,北美大陆与古亚洲大陆碰撞而形成的中生代造山系.包括上扬斯克--楚科奇造山带、蒙古-鄂霍次克造山带和北山-内蒙古--吉林造山带.经历了印支和燕山两个旋回的演化,主造山作用发生在中一晚侏罗世,属于早燕山造山系.北山-内蒙古--吉林造山带由同名的拗拉槽发

图 1 东北亚活动大陆边缘主要构造单元分布略图 (据文献[3])

Fig. 1 Geotectonic unit subdivision of Northeast Asian active continental margin

(Based on Reference [3])

①东亚活动大陆边缘与主陆区界线 (boundary between NE Asian active continental margin and main continent); ②太平洋与大陆板块界线(boundary between Pacific plate and continental plate); ③主板块之间碰撞-缝合带 (collision-suture zone between main plates); ④陆缘活化带与陆缘增生带界线 (boundary between continental marginal activation belt and accretion belt); ⑤陆缘活化带各区/段界线 (boundary between sections in continental marginal activation belt); ⑥中生代与新生代陆缘增生带界线(boundary between Mesozoic and Cenozoic continental marginal activation belts); ⑦东亚大陆边缘主要 走滑断裂(major strike-slip fault in NE Asian active continental margin)

展而成 叠加在同名的晚华力西造山带、温都尔庙加里 东造山带和中朝克拉通北缘之上,主造山作用发生在 印支造山旋回,但紧接其后的中—晚侏罗世仍有大规 模的地壳缩短,形成总体向南的逆掩推覆构造.大青 山-燕山-辽西一带近东西走向的逆掩断层系统构成 其南部边界.将亚洲东缘造山系定义为,亚洲大陆与西 太平洋古陆碰撞形成的造山系,其中绝大部分位于中 国国境之外,其中,主造山作用发生在侏罗纪末—白垩 纪初(日本佐川造山带)或晚白垩世(锡霍特造山带), 属中、晚燕山期造山系,包括锡霍特造山带、佐川造山 带、萨哈林-北海道造山带和长乐-南澳剪切带等.

任纪舜先生^[7]同时认为,西太平洋沟-弧-盆体系 是最新的一个构造系统,形成于新近纪到第四纪,属晚 喜马拉雅沟-弧-盆系.由于西太平洋沟-弧-盆系的强 烈改造,亚洲东缘造山系的面貌在一些地方已难以辨 认,但亚洲东部强烈的中生代构造-岩浆-成矿作用, 却雄辩地证明这一宏伟的造山系曾确实存在.

笔者基本认同前述定义和对东亚大陆边缘大地构 造特征认识的高度概括,并认为,从东亚活动大陆边缘 的层面,研究东北亚中生代活动大陆边缘构造格架的 主体特点,对深入理解中国东北地区区域地质调查成 果,研究中国东部区域成矿作用和成矿规律的工作有 益.

东北亚中生代活动大陆边缘位于环太平洋构造域 北段,大地构造单元诸多,造山系统结构复杂,是中生 代以来,欧亚和北美大陆板块与古(包括南阿纽伊洋、 法拉隆、库拉和伊泽纳奇板块)-今太平洋板块(太平 洋板块、菲律宾海板块)之间相互作用形成.根据造山 作用类型,可概略划分为东北亚碰撞造山系和东北亚 陆缘增生造山系两类.

限于篇幅,为了便于讨论晚三叠世以来东北亚活 动大陆边缘板块构造演化特点,及其对中国东-北部 地区构造演化的影响,本文主要根据区域地质构造单 元关联性和重大构造-岩浆事件,对东亚中生代活动 大陆边缘造山系统的主体特点进行概述.

2.1 东北亚中生代碰撞造山系

东北亚碰撞造山系,包括:1)威尔霍扬斯克-楚科 奇复合造山系,形成于南阿纽伊洋俯冲-消亡-洋盆闭 合期间,古欧亚大陆东部边缘增生带(J₂₋₃)与北美大陆 板块之间的碰撞作用(J₃—K₁);2)蒙古-鄂霍次克造山 系,形成于蒙古-鄂霍次克洋俯冲-消亡-闭合期间, 西伯利亚大陆南部边缘增生带(P₂—J₁)与蒙古-北中国 之间碰撞作用(J₂₋₃)和蒙古-兴安褶皱-逆冲作用(J_{2*}— K_{1初});3)亚洲东缘复合造山系,形成于伊泽纳奇(包括 库拉)洋盆俯冲-消亡-闭合期间,欧亚大陆东部边缘 增生作用(J₂₋₃),及鄂霍次克海微板块与欧亚大陆东部 增生带之间的碰撞作用(K_{1*}—K₂).

2.1.1 威尔霍扬斯克-楚科奇复合造山系

威尔霍扬斯克-楚科奇造山系属于复合造山系

(图 2a). 从大陆造山带理念看,该复合造山系包括,隶 属欧亚板块东缘的威尔霍扬斯克-柯雷马造山系 隶 属北美板块西缘的新西伯利亚-北楚科奇褶皱-逆冲 带,以及两大陆板块之间的南阿纽伊碰撞-缝合带,经 历了中一晚侏罗世(西伯利亚克拉通与柯雷马-阿玛 龙超地体)、晚侏罗一早白垩世(欧亚大陆东部增生边 缘与北美大陆板块)两次碰撞造山作用过程.其中 威 尔霍扬斯克--柯雷马造山系又由柯雷马--阿玛龙复合 地体和威尔霍扬斯克褶皱-逆冲带构成,其西邻西伯 利亚克拉通东部的勒拿河前陆盆地,东南部叠加发育 晚白垩世威尔霍扬斯克-楚科奇陆缘火山-深成岩带: 东南毗邻中—新生代堪察加-科里亚克陆缘增生造山 系.威尔霍扬斯克褶皱-逆冲带主要由西伯利亚被动 大陆边缘下—中古生界和里菲期陆源碳酸盐岩沉积与 前石炭——中侏罗统碎屑岩层序构成,向东北,陆架沉积 逐渐变为陆缘隆起和边缘海盆地沉积的晚二叠——下侏 罗 Kular-Nera 板岩带 (黑色板岩). 威尔霍扬斯克-柯 雷马造山系形成于柯雷马-阿玛隆复合地体与西伯利 亚克拉通之间的碰撞[8] ,造山系自西向东被划分为前 陆逆冲带、主带和后带. 前陆逆冲带发育石炭——侏罗纪 碎屑楔和白垩纪含煤磨拉石沉积:主带由二叠—三叠 纪浊积岩及 147~154 Ma 和 100~140 Ma 两个时段的 同造山期花岗岩构成;主带与后带之间发育蛇绿混杂 岩 其蛇绿岩的侵位时代由滑混堆积(Olistostrom)时代 (Bathonian-Callovian) 确定. 后带的柯雷马-阿玛隆复 合地体由克拉通块体、岛弧地体及其间的蛇绿岩、各种 年龄浊积岩、滑塌堆积和片岩构成,并在中-晚侏罗世 绿片岩相变质作用条件下发育逆冲和推覆构造.由于 柯雷马--阿玛隆地块含有太古宙麻粒岩,也被认为是 微大陆 : 地块的古生代—中生代地质与西伯利亚克拉 通之间具有亲缘关系. 一般将威尔霍扬斯克--柯雷马 造山系划分为3个构造演化时段:前造山期(O-J)、 主造山期(J₂₋₃)和后造山期(K₁) 但该带的碰撞花岗岩 主要形成于 95~145 Ma^[9],与欧亚与北美大陆之间碰 撞有关.

南阿纽伊缝合带位于新西伯利亚-北楚科奇褶 皱-逆冲带与威尔霍扬斯克-柯雷马造山系之间,是北 美与欧亚两大板块之间的主缝合带,由蛇绿岩碎块、角 闪岩、古生代或中生代蓝闪片岩和加积楔组成.南阿纽 伊碰撞缝合带的构造演化也被划分为前碰撞、碰撞和 后碰撞期3个演化阶段^[10].前碰撞期,从晚古生代到 中侏罗世,构造体制可能与原大西洋张开或古太平洋

张允平等:东北亚活动大陆边缘中生代构造格架主体特点

					SP 1-+ 815	17	林山水	行人サルズ		<u> </u>	and and the set of the set		
地质年代		同位	厥尔崔杨─楚科奇复合造山系							欧亚大陆板块			
		素年	欧亚大陆板块 对接带 北美大陆板块						亚洲东部大陆边缘造山系				
		代	威尔霍杨-柯雷马造山系 新西伯利亚-							锡霍特-阿林增生造山带			
古近	始新世	- 55Ma	威尔霍杨褶皱逆冲带 柯雷马-阿玛隆超地体 网阿纽伊达台市 北楚科奇 褶皱-逆冲带						哈巴罗夫斯克-那单哈达-比金-撒玛卡 -西南日本和东北日本侏罗纪加积楔带				
纪	古新世	55144	11-69Ma期间,伸展构造环境,发育裂谷、地垒和地堑								古近纪双峰式火山岩		
	Maastrichtian	65Ma	69-79Ma期间在南阿纽伊缝合带背景下发展为板块 离散边界的拉普捷夫海								马斯特里赫特-达宁期过碱性喷出岩		
	Companian	701014											
116	Santonian	83Ma	鄂霍 (科	鄂霍次克-楚科奇火山带的大部分火山岩形成于晚白垩世 (科尼亚斯明桑托坎潘期)74-85 Ma,							[]		
成白垩世	Coniacian	85Ma	封盖	能り	公武岩喷出于74 公武岩喷出于74	-77	-85 Ma. Ma			土伦期-桑托期 流纹岩和英安岩			
	Turonian	- 88Ma	威尔霍扬逆	冲拍	覆构造使阿普								
	Cenormanian	93Ma	地层变形,被43-90Ma花岗岩侵入 后碰撞时期阿尔布-赛诺蔓期形成 伸展构造和科迪勒拉型变质核杂岩								赛诺曼期玄武岩安山岩		
	Albin	99Ma	Albrian-Cenomanian期陆缘火山弧不整合于缝合带之上,发育碰撞后的走滑断层								阿普特-阿尔布期沖积岩沉积		
		112Ma	构造前锋带	白	垩纪阶段发生	112 1200 N 11 25 15			业极业转利态				
	Aptian	125Ma	威尔霍扬造山	家 楚伯	属北美极块的科奇地块向西利亚板块下俯	1	109-10- 碰撞有	4Ma新成更加 4Ma折返 关绿片岩115-119Ma	地块被动陆缘 发育逆掩构造, 志际纽伊构造	陆缘战	巴列姆-阿普蒂期大架山组沉积 不整合在中-晚侏罗世增生楔上		
早白垩	Barremian	130Ma	区早日垩贝利 阿斯-洪转瑞 期发育中性- 基性火山岩	冲北 的 资	增生,最后发生 美与欧亚大陆 碰撞.	北美与	Aptia 和Hau	n-Albian Iterrian	地层复合体逆 掩绿片岩年龄 115-119 Ma	·····································	碰撞带发育S型花岗岩,那单哈达地区 131-111Ma; 比金地区S型花岗岩测年131-105Ma;		
世	Hunterivian	132Ma		非 合 12	近庸四纽伊缇 带花岗岩105- 0 Ma	欧亚大	-Barr 在北外	emian 朝不整音 界道冲构造上		滑	撒马卡地区S型花岗岩130-123Ma; S-1型花岗岩110-98Ma		
	Valanginian	140Ma	在Lensky和 Yakutiya盆地 贝利阿斯期含 煤沉积 1500 m厚	主带同造山期4 岗岩100-145 M		陆活动边	南阿约	出伊洋壳俯冲			那单哈达、比金和撒马卡地区中侏罗 末-晚侏罗-早白垩世早期3个构造层 位单元组成与结构特征可对比.其中,		
	Berriasian	145Ma		早育	早白垩世盆地发 育含煤沉积	缘 碰 強 和	的 晚保3 Alaze	ューア→又 テー早白垩世期间 -ya-Oloi火山弧			下构造位: Ulitka-Zoloty Klyuch河之间,晚 保罗世-早白垩世提超-贝利阿斯期混 杂岩基质,夹碱性玄武岩,硅质岩,		
	Tithonian	1.000	晚侏罗末星 白肉西古方向 古陆方向的 道冲-褶皱	歐尔霍扬 柯雷马造山期	花岗岩147- 154Ma	胡	」 增生带逆冲柯雷马- 阿玛龙超地体之上		亚 洲 东 缘 增 生	亚洲东	泥质岩含中三叠-中侏罗硅质岩块和中 侏罗硅泥质沉积岩		
晚侏罗世	Kimmeridgian	150Ma			晚保罗柯语与 阿玛隆微天陆 与西伯利亚古 陆东缘威尔霍 场斯古被动陆	L_				赤缘 増生	重构造位:		
	Oxfordian	161Ma			汤加克亚 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				逆沖褶皱	主要分布乌苏里江右岸中保罗 Bujocian期放射虫化石砂岩粉 砂岩湿质岩基质含中三叠-中保罗 燧石层,晚三叠-早保罗硅质岩块			
	Caliovian	– 164Ma		柯雷马	中侏罗-晚侏罗 早期柯雷马-阿 玛隆地块与阿 拉结雅弧碰撞	南个	阿纽伊缝合带内具有三 阶段变质作用过程(419			带			
中侏罗	Bathonian	167Ma		一阿玛龙复合地体形期	形成微大陆。 属柯雷马-阿玛 一 龙的Chersky 碰撞间造山期 柯蕾马-阿玛龙 微大陆蛇绿岩 绿片岩相变质	-430 Ma, 3 的蛇绿岩		370 Ma和174 Ma)			上构造位: 那单哈达地区中侏罗 Aalenian Bathonian期放射虫		
112	Bajocian	171Ma				中保罗碰撞期仰冲北亚克 拉通大陆边缘				的流录着地观。含有表一 盈火石 块体 叠址填着、玄武岩和砂 岩蛇纹岩化超基性块体			
	Aalenian	17514			作用: 174 Ma时 超镁铁岩逆冲 在碳酸盐岩上								
	Toarcian	173Ma		前造山期	早岩石 可能超蛇蛋子岩积产达岛开始 有能超蛇蛋岩积产岩积产的体体元的 为小和构 叠置 一层、混拉岛子齿 一层、混拉岛子齿 一层、温拉岛子齿 一层、一层、一层、一层、一层、一层、一层、一层、一层、一层、 一层、一层、一层、一层、一层、一层、一层、一层、一层、一层、一层、一层、一层、一	早-中侏罗 岩和硅质岩 石沉积		洋盆沉积,玄武					
早侏	Pliesbachian	189Ma						A A WAA X Z					
夕世		- 196Ma				睽	石炭-早	佚罗丗Alazeva	三叠-侏罗纪 海相沉积		三叠系和下侏罗统被动大陆 边缘海相滨海三角洲和陆架		
		10014-				火	山弧位	于南侧			碎屑岩层序		
晚	Rhaetian	203Ma	维柳伊裂陷槽 被三叠瘀菇 质和碳酸素出。			南阿纽伊缝合带含有古 生代和中生代的蛇绿岩:							
一叠世	Norian	216Ma	玄武岩、流纹 岩充填,厚度 4000 m		27 田		i生代或 部含政	.绿岩 :中生代蛇绿岩:					
	Carnian	228Ma	 勘拿平原东部 地区,三叠系 浅海-陆源碎屑 沉积, 2000 m 			14	自盆在早	白垩世闭合					

图 2a 东北亚活动大陆边缘重要构造事件对比图(之一)

Fig. 2a Correlation of the significant tectonic events in Northeastern Asian active continental margin (1 of 3)

有关,洋壳碎块239.1±3.8 Ma,增生楔构造变形于晚侏 罗世—早白垩世;早白垩世初,南阿纽伊洋盆关闭,北 美 与 欧 亚 大 陆 发 生 碰 撞. 后 碰 撞 期 (Albian – Cenomanian), 楚科奇地区主要是以伸展构造为主,伴 生正断层和科迪勒拉型变质核杂岩.片岩的106~108 Ma 年龄可能反映了增生楔杂岩的折返时期,也是东楚 科奇的变质和变形峰期(104~108 Ma).靠近碰撞-缝 合带北侧的花岗岩主要形成于105~120 Ma. 阿纽伊缝 合带的变形历史记录了从正交到斜碰撞的演化过程.

新西伯利亚-北楚科奇褶皱-逆冲带位于北极-北 楚科奇--阿拉斯加地块西南缘,属北美大陆板块构造 单元组成部分.北极-北楚科奇-阿拉斯加地块的前寒 英岩、角闪岩和大理岩 新元古界千枚岩、云母片岩、绿 泥-绢云片岩、石英岩和灰岩;中奥陶到中泥盆统石灰 岩、白云岩、大理岩和顶部板岩及泥盆系陆源砂岩、粉 砂岩、板岩和浊积岩;下--中石炭统板岩、砂岩、粉砂岩 和石灰岩 :二叠-三叠-侏罗系的海相沉积 ,以及早白 垩世晚 Albian—晚白垩世的火山岩. 新西伯利亚-楚科 奇褶皱带的盆地大部分都发育三叠系,后造山拗陷包 括晚侏罗、白垩和新生代地层, 楚科奇火山岩带由早白 垩世 Albian 和晚白垩世的火山岩组成. 硅铝和镁铁质 侵入岩浆作用出露干楚科奇褶皱带北部和东楚科奇. 北楚科奇被动大陆边缘与北亚克拉通(俄罗斯学者泛 指西伯利亚与威尔霍扬--柯雷马造山系拼合后的大地 构造单元为北亚克拉通)在 Neocomian 到 Aptina 时期 碰撞,致使楚科奇南部被动大陆陆缘发育褶皱-逆冲 构造 相关的绿片岩年龄为 115~119 Ma.

威尔霍扬斯克-楚科奇复合造山系的形成经历了 两个阶段:1)早期碰撞阶段(J₂₋₃) 威尔霍扬斯克-柯雷 马复合地体碰撞拼合,并向西推覆形成威尔霍扬斯克 褶皱-逆冲带;2)晚期碰撞阶段(J₃—K₁),南阿纽伊洋 盆闭合,北美与欧亚大陆东部陆缘增生区之间发生碰 撞,在威尔霍扬斯克-柯雷马造山系叠加构造-岩浆作 用,北极-北楚科奇-阿拉斯加地块西缘形成新西伯利 亚-北楚科奇陆缘褶皱-逆冲带.威尔霍扬斯克-楚科 奇复合造山系的主造山时期为中-晚侏罗一早白垩 世,勒拿河前陆盆地与威尔霍扬斯克-楚科奇复合造 山系发展进程同步.太平洋边缘晚白垩世—古近纪造 山运动导致威尔霍扬斯克复合造山系的抬升[11].

2.1.2 蒙古-鄂霍次克造山系

蒙古--鄂霍次克造山系的形成时代和大地构造属

性一直存在争议.1)蒙古-鄂霍次克带形成于里菲-文 德,古生代是局部张开与闭合的历史(I. V. Gordienko, 1994);2)蒙古-鄂霍次克洋在晚古生代一早中生代时 期依然是很宽的洋盆;3)形成于晚古生代,延续至前 白垩纪,由于西伯利亚和中朝古陆之间的碰撞作用而 消失;4)认为蒙古-鄂霍次克存在晚石炭世洋壳,闭合 于边缘走滑断裂活动(173 Ma)之前;5)蒙古-鄂霍次 克洋为一个向东开口的海湾.

L.M. Parfenov 等^{12]}认为 蒙古-鄂霍次克带南部格 架的所有地体 都是早古生代造山带的碎块 这些地体 沿走向带状延伸数百千米,主要由浊积岩增生楔和海 洋组合构成 :东部也有晚古生代、三叠纪和早侏罗世碎 块构成的大洋组合. Onon 地体的构成极其复杂, 泥盆 系以碳酸盐岩-火山沉积-陆源碎屑建造为特征;上泥 盆统及下、中石炭统浅海碎屑沉积的砂岩、粉砂岩、砾 石和底砾岩,以及少量流纹岩、英安岩和凝灰岩,不整 合于 Onon 岩套(变质且无年代数据)和中泥盆统下部 岩石组合之上;下二叠统浅海相碎屑岩不整合在石炭 系和 Onon 岩套之上 :上三叠统海相沉积(2000 m)不 整合在下石炭统之上. 上二叠统—三叠系由砂岩、粉砂 岩、硅质岩和玄武岩构成独立岩块,它们毗邻东贝加尔 西部,并被断层围限.与 Onon 地体毗邻的额尔古纳-上黑龙江地区泥盆系以碳酸盐岩-陆源碎屑岩建造为 特征^{13]}.

笔者认为,蒙古-鄂霍次克造山系属复合造山系 (图 2b),起源于新元古代—早古生代,经历了晚古生 代—中生代蒙古-鄂霍次克洋的俯冲-闭合,及西伯利 亚与蒙古-中国北方陆块群之间的碰撞作用. 其古生 代属古亚洲洋构造域演化进程,中生代演化历史属于 东北亚滨太平洋构造域演化进程的一部分. 由于该造 山系的构造演化历史复杂,其边缘多地出露含早寒武 世古杯、三叶虫的灰岩岩片或岩块[14] 周边地块大都 遭受过萨拉伊尔-加里东期构造-岩浆作用,说明其所 在区域曾是新元古代—早古生代褶皱区. 杭盖-肯特 浊积岩盆地形成于早石炭世晚期,浊积岩中碎屑锆石 研究揭示该盆地具有弧后盆地属性,北侧是古陆剥蚀 区 南侧曾发育具有元古宙基底的岛弧[15].石炭纪浅 海浊积岩不整合覆盖于中古生代增生杂岩之上[16]. 这 套增生杂岩曾被划分为6个地质单元,实为晚志留— 泥盆纪放射虫硅质岩组合(OPS)加积楔[17]. 晚石炭世 Adaatsag 蛇绿岩^[18],可能代表沿早石炭世晚期浊积盆 地南缘的裂解.蒙古杭盖地区[19]和鄂霍次克海口的珊

张允平等:东北亚活动大陆边缘中生代构造格架主体特点

	同位 地质年代 紫		蒙古-鄂霍次克复合造山系									
			古亚洲洋复合造山活化区				ヌ 蒙古-鄂霍言			支克造山系 西伯利亚古		古陆活化区
		花	西部区		中部区	东部区		1	增皱带南缘	Onon地体	外贝加尔地区	阿尔丹-斯塔诺夫 陆缘区
古	始新世	33Ma										
近纪	古新世	- 55Ma			松嫩盆地沉积 中心向西迁移	乌云组含煤	抗积					
	Maastrichtian	- 65Ma				松木河组下部相 相安岩,火山醇	安岩、 玄武 图岩, 夹正					
	Companian	70Ma	海	拉尔ーニ连大		嚴碎層岩、英安	岩、珍珠岩					
晚	Santonian	- 85Ma	里组他盆	物函盘地嗽江 含油地层,其 地区小型断陷 地河湖相沉积	嫩江组火山 岩碎屑岩组							
聖世	Coniacian	88Ma	为	ŧ.	音83.68Ma 青山口组泥 岩夹橄榄粗	海浪组紫色紫 及杂色泥岩	红色砂岩					
	Turonian	02Ma			安岩90.4Ma	猴石组类磨拉 粗砂岩砂岩及	石沉积灰色	7	Forom 上叠 盆地晚白垩			
	Cenormanian	93Ma	大雄	唐拐组含煤沉积	大型拗陷盆 地泉头组碎 屑岩沉积:	MONDAX		相学習	世陆相火山 岩被左行走 骨断裂切割			
	Albian	11224	上玄粗岩	军力组一光华组 式相安岩组合, 加英安岩一流纹 11合	登接库组碎 屑岩沉积 营城组玄武岩	东山组安山厚 凝灰岩	袁火山岩和	-			东外贝加尔 区磷灰石裂	早白垩世前陆盆 地陆相含煤沉积 不整合前寒武系
	Aptian	125Ma	义梅化的	县组一龙江组一 助图组含热河群 百:小型火山斯	103.7Ma;流纹 岩及凝灰岩 112-106Ma	亚 云山组,城 洲 架山组,东 海陆交互相	子河组,大 大岭组相- 目含煤沉积				交任近1%小 抬升期 140-120 Ma	之上,发育早白 垩世花岗岩: Lensky和Yakutiya
早白显	Barremian	- 130Ma	阳地式岗土	一河湖相沉积盆 同期发育双峰 大山岩,A型花 岩变质核杂岩和	沙河子组碎 屑岩:火石 岭组上部安	塚 含热河生物 造 山 系	如群化石	セレ発力	1.列伊金矿 又早白垩世 没谷火山盆		具有削寒武 纪变质基底 的中晚侏罗 世活动大陆	盆地沉积贝利阿 斯期含煤沉积 1500m厚
世	Hunterivian	- 133Ma	走?	背断层 音高老组组玛尼 组一大北沟组会	山岩 124.9 Ma;底部变 质核杂岩左	前 裴德组前国 私 新虫硅质岩	击盆地磨拉 含侏罗纪放 言砾石		也双峰式火 日岩 10-140 Ma		边缘 Darasun金矿	贝加尔地区维季 姆生物群,可与辽 西热河生物群对比
	Valanginian	140Ma	尼张鄂	斯托叶肢介: 家口组一满克头 專组	旋走滑时代 127-130 Ma	地					斑岩─钙碱性 岩基带 135-70 Ma	140-120 Ma 期间 快速隆升
	Berriasian	- 145Ma		上城子组一后 城组杂色复成		绥滨拗陷绥滨	组和东荣		前胜分轴		晚侏罗-早白 垩含煤沉积	晚休罗ー早白垩 世发育 Uda 陆缘 史山男響
19/7.	Tithonian	- 150Ma	逆冲褶	が味着む味着, 砂岩粉砂岩组 合,局部夹火 山岩,土城子		组 生 初 化 石 组 界 限	Ϋ́ΕΡΫ́Κ/J	246	前温至 泥盆系 来峰逆冲 中侏罗统		晚保罗一早 白垩世火山 断陷盆地变	所塔诺夫花岗岩 带 142-138 Ma
祝 保罗世	Kimmeridgian	155Ma	皱带沉积	组156-159Ma 暫轄山组一藍 施组一塔木兰 沟组中基性火		敦化、密山斯	裂以东:	家古 - 鄂	之上 二十二站 一马林纲		碱性岩带	物响、火山断陷 盆地沉积伴随核 杂岩
	Oxfordian	- 161Ma	小火山	山岩, 蓝旗组 安山岩 159Ma 海房沟组一九		-E III IA SH -F BK	ндша	霍次克洗	巨厚游岩 砂岩组合		中-晚侏罗世 钙碱性-亚碱 性侵入岩带	
	Caliovian	164Ma	一沉积廊	北田组一方宝 组(新民組)杂 色砾岩砂砾岩 砂岩粉砂岩组			黑龙江杂 岩蓝片岩 中多硅白	垣山系碰	含双壳化 石 Bajocian-			
中侏罗	Bathonian	- 167Ma	拉石	音: 向部夹火 山岩,九龙山组 凝灰岩163Ma			云母 144 -146 Ma	撞造山田	Tunonian		广泛发育碱性过碱性花	早一中侏罗陆相 含煤沉积,不整
ш	Bajocian	171Ma						刑	Muron剪切 		肉尿石及相 关的双模式 火山岩: 同位素年龄	合斯塔诺夫褶皱带前寒武系之上
	Aalenian	– 175Ma					黑龙江群蓝片岩多		市操伎名 化花岗岩 172 Ma		集中于 295-270 Ma 230-190 Ma	
	Toarcian	- 183Ma				张厂才岭帽儿 山组双峰式火 山岩 179-184 Ma	176-184 Ma 快速折返				3个时段	
早休男	Pliesbachian	189Ma	早林	休罗世被动大 100 岩粉砂岩和	陆边缘浅海		17 AL 11 AL			晩三叠早休 罗世辉长岩		
世		– 196Ma	314	1 10 10 10 10 10	06794 11 06 101					石炭纪辉长岩闪长岩	▶ 一巻世-	三叠纪一星体罗世
		199Ma								/三叠纪海相	活动大陆边线	象钙碱性火山岩带
晚	Rhaetian	203Ma	1	晚二叠三叠系? 粉砂岩	戈海相砂岩	南双鸭山组海 陆交互相沉积	佳木斯地块系 一地层2000 一地层2000 一地位物研			碎屑岩夹截 性火山岩	+	
一叠世	Norian	216Ma				广才岭双峰火 山岩200-228Ma	化石 早中泥盆系 与下伏变质 地层不整合		早石炭浅海 浊积岩不整 合在志留泥	晚二叠一三 叠系浅砂岩、 不整合在泥	-	
	Carnian	228Ma	11	泥盆纪被动陆 屑岩夹碳酸盐	指缘海相碎 法岩沉积	张广才岭二叠 纪双峰式火山 岩 202 Ma	麻山群变质 年龄500 Ma	1	盆纪加积楔杂岩之上	盆石炭纪海相浊积岩上	泥盆石	炭纪活动大陆边缘

图 2b 东北亚活动大陆边缘重要构造事件对比图(之二)

Fig. 2b Correlation of the significant tectonic events in Northeastern Asian active continental margin (2 of 3)

塔尔群岛北侧发育二叠纪磨拉石沉积^[14],它们连同中 国东北-蒙古地区广泛分布的晚石炭—二叠纪安哥拉 植物群,说明这里经历了晚石炭—早二叠世前洋盆收 缩与陆-陆碰撞.西西伯利亚低地巨大的裂谷系统^[20] 及外贝加尔地区广泛发育的三叠纪碱性岩带(B.M. Jahnet al.,2009),揭示了晚古生代造山期后大陆地壳 的伸展.晚古生代安哥拉植物群的广泛分布,揭示了西 伯利亚古陆与蒙古-北中国陆块群之间的密切关联. 显然,晚古生代的蒙古-鄂霍次克洋盆不宽,或更可能 是一个向东开口的海湾.

西伯利亚板块的外贝加尔-斯塔诺夫隆起带南 缘,发育宽阔的晚二叠世—早侏罗世钙碱性火山-深 成岩带^[14],揭示了蒙古-鄂霍次克洋盆在晚二叠世— 早侏罗世期间连续的向北俯冲.阿尔丹-斯塔诺夫褶 皱带南雅库斯克的早-中侏罗至早白垩世陆相含煤沉 积,不整合于太古宇-元古宇-寒武纪地层之上,其南 侧发育向北的晚中生代逆冲构造,形成侏罗纪—早白 垩世含煤断陷沉积盆地和中生代岩浆作用.南侧蒙 古-北中国陆块群具有被动陆缘属性^[21](Mushnikov et al.,1966;Rutshtein,1992).早二叠世和中-晚侏罗世 两个时段的磨拉石沉积,被俄罗斯学者称为两次碰撞 作用^[18].早期碰撞与古亚洲洋构造域演化有关,晚期 碰撞与蒙古-鄂霍次克海湾的闭合有关.

距上黑龙江盆地北大约 120 km 的 Nyukzha 断陷 盆地,由砾岩和砂岩夹泥岩层组成的白垩纪陆相含煤 岩系(厚约 600 m)不整合于新太古代黑云片麻岩之上. 最东段,蒙古-鄂霍次克带之上的 Torom 沉积盆地的 晚三叠世(Carnian)—新生代沉积序列,显示了晚三叠 世—中侏罗世和晚侏罗世—新生代为两个独立的构造 发展阶段.

应当指出的是,在中侏罗世末一早白垩世初期,由 于蒙古-鄂霍次克湾闭合,西伯利亚古陆南缘与蒙古-中国北部板块之间发生碰撞、褶皱-逆冲作用.在上黑 龙江前陆盆地形成巨厚的中侏罗世前陆盆地陆相类 磨拉石和含煤沉积^[22-27].早泥盆世的结晶灰岩、泥灰岩 以飞来峰形式逆冲于前陆盆地的中侏罗世碎屑岩之 上^[28].洛古河东发育早白垩世二长花岗斑岩、正长花 岗斑岩和石英二长斑岩,花岗斑岩体的 SHRIMP 锆石 U-Pb 年龄为 129.82±2.2 Ma *e*Nd (*t*)介于-3.45 和-2.64 之间,亏损地幔的 Nd 模式年龄介于 969~1131 Ma 之间,显示后碰撞花岗岩的岩石化学特征^[29].在华北 古陆块北部燕山-大青山及其以北的东蒙古-兴安活 化区,普遍发育褶皱-逆冲作用,形成山前和山间断陷、拗陷和压陷盆地,沉积-火山-沉积磨拉石(或类磨拉石),及与这一时段构造背景有关的逆冲断层、飞来峰和花岗质侵入岩.火山-沉积磨拉石包括,中国冀北地区的九龙山组-髫髻山组-后城组,辽西地区海房沟组-蓝旗组-土城子组,大兴安岭地区万宝组(新民组) -塔木兰沟组-土城子组.蒙古-鄂霍次克造山系南部褶皱-逆冲带之宽,与深部地球物理研究揭示的蒙古-鄂霍次克褶皱带大规模向南逆冲^[30]的深部构造特征 是一致的.

2.1.3 亚洲东缘复合造山系

亚洲东缘复合造山系(图 2c),由锡霍特-阿林-西 南日本陆缘增生造山带(J—K₁)、萨哈林(库页岛)-北 海道碰撞造山带和鄂霍次克-楚科奇、锡霍特-阿林陆 缘火山-深成岩带构成.其中,锡霍特-阿林-丹波-美 浓陆缘增生造山带向南延伸到琉球群岛,而萨哈林(库 页岛)-北海道碰撞造山带则只发育在日本北海道以 北的鄂霍次克海微板块与欧亚大陆边缘接触地段.

1) 锡霍特--阿林--西南日本陆缘增生造山带

锡霍特-阿林-西南日本陆缘增生造山带,包括锡 霍特-阿林-丹波-美浓增生带(内带 J2-J3)和陶克哈-秩父-三波川陆缘增生带(外带 J3-K1),且主要由晚古 生代--侏罗纪、晚侏罗世和早白垩世的蛇绿岩、绿片 岩、硅质岩、灰岩、板岩、砂岩和泥岩组成的中生代增生 杂岩构成,发育早白垩世 S型花岗岩,并被早白垩世晚 期浊积岩和白垩纪--新近纪火山岩覆盖.

Ishiwatari^[31]概述了日本-俄罗斯远东的蛇绿岩和 蓝片岩问题,认为远东蛇绿混杂岩大部分平行欧亚大 陆地块的东缘,沿北北东方向,从南向北分布在 Sergeevka,Kalinovka和Bikin 三个地区.其中, Sergeevka 变质辉长岩体是滨海边疆区最大的镁铁岩 体,毗邻兴凯地块.变质辉长岩锆石U-Pb年龄为 528±3 Ma,闪长岩年龄为504±3 Ma^[32],花岗岩白云母 K-Ar年龄为529 Ma^[33],石榴角闪岩角闪石K-Ar年龄 为622 Ma,变质辉长岩的角闪石K-Ar年龄在430~ 470 Ma之间(Tsujimori,未发表).这些年龄与日本九州 西部最古老的蛇绿岩 Nomo岩块(583 Ma,Igi et al., 1979)、西南日本 Oeyama 蛇绿岩、北东日本 Miyamori 蛇绿岩的时代相当.Khanchuk等^[32]认为它们形成于大 陆边缘,不是蛇绿岩.但是,这些镁铁岩以推覆体形式 出现在年轻蓝片岩和增生杂岩之上,构造位与锡霍

		同				亚洲东部大陆过	边缘造山	系		
	地质年代	世素在	>	₿ ^{\$}	哈林-北海道研	碰撞造山带	鄂霍次克海微板		堪察加一科里雅克	陆缘增生造山带
		代	锡霍特-阿林南部 Taukha加积楔带	北部(萨哈林地区)	南部(北海道地区)	北部	南部	西部	东部
新近	上新世	5. 3Ma	Tuurnusi Dyix ii							
纪	中新世	23. 03Ma	陆缘增生带裂解用	%成日本海	盆地	千岛岛弧连接的 Nemuro地体与		形成千岛盆地		
	渐新世	33. 9Ma		新新世	世火山弧	Tokoro地体碰撞			For second second	-
白近幻	始新世	_ 55. 8Ma		始初田宮覆盖碰撞	深沉积不整合 花岗岩34Ma				始新世曆拉有沉	枳
50	古新世	65Ma						1	古近纪早始新世	
	Maastrichtian	70Ma		鄂霍次 大陆边	克海微板块与西缘走滑带变质量	西侧的欧亚大陆碰撞 岩石白云母K-Ar年龄	北部区 古近朝 要		辉长岩和辉绿岩	
	Companian	83Ma		80-60Ma期间双向俯冲,在 侧形成火山岛弧		9. 在中央构造带东	或赛期磨沉和 西京 一道会媒石 西京 四一西京 四一西京	千岛岛级 Ma 95-68火由 时活揭示太块助 揭洋板的影响	靖灰石裂变径 迹100-44Ma期 间,火山弧快 速降升与侵蚀	11-06 11 30 40 44
睽	Santonian	85Ma 88Ma	土伦期一桑托期 流纹岩和英安岩 赛诺曼期玄武岩	发育晚日		上Yezo群泥岩砂				中一晚口主增生 杂岩: 含中侏罗-早白 垩大洋火山岩
白垩世	Coniacian					着和底砾岩,发现蓝闪石铬尖晶 现蓝闪石铬尖晶 廿石碎屑				
	Turonian	93Ma	A DUMAN	1	1	中Yezo群早自垩世 晚期凝灰砂岩含蛇 纹岩蓝片岩和铬尖	白近 始 始 生 た 岩		北部晚白垩世复理石加积楔	
	Cenormanian	99Ma	連积岩盆地	西部浊 积岩 盆地		晶石碎屑,不整合 Iwashimizu杂岩和 下Yezo群推覆体之 上,底砾岩组成物		古法版社与	含中侏罗-早白 垩洋壳残片及 火山岩岩块	阿尔布一坎潘 即陆源沖和岩
	Albian	112Ma	5-1型化図石 110-98 Ma	1	Kamuitokan 高压变质岩系 在Albian期折1	揭示俯冲变质产物 在早白垩世晚期折 返。	北侧欧	亚大陆碰撞	科里亚克一堪 察加陆缘岛弧 蛇绿岩浊积岩	
	Aptian	125140		; 西部火山	Kamuikotan 变质140Ma	下Yezo群底砾岩含 蛇纹石蓝闪石碎屑			和增生楔 北部:太平俯 冲洋壳蛇绿岩	岛弧与主板块 碰撞 115 Ma
早白	Barremian	130Ma	下构造位Er单元 属于凡蓝因-巴列 姆期加积楔	NO 911	Susunai变质 岩发育硬柱 石文石和硬 玉茹因石榴	a 成新出血信切派符 瑞-阿尔布期:层孔 虫晚阿普特阿尔布 小原片虫旱阿普特			逆冲岩片:晚 古生代和中生 代蛇绿岩、弧	
聖世	Hunterivian	133Ma	早三叠一晚侏罗 硅质岩块	西部加积 輕硬柱石片 些123-	辉岩133- 136 Ma	/ 俯冲带变质 峰期后20Ma	n/z /4- 110	11	玄武岩碎块 南部: 阿拉斯	
	Valanginian	140Ma	中构造位Gr单元 属于贝利阿斯凡 蓝因期加积楔	135 Ma	早一中白垩 世加积楔混 杂岩,含二		成保夕- 白垩世史 绿泉泉岩 增生根2	平 干岛群岛 155-110 始 发育 岛弧火山	加型超镁铁辉 长岩组合晚白 垩世一早新生 代浊积岩	
	Berriasian	145Ma	泥盆石炭石灰岩三 叠中侏罗硅质岩块		三叠海山岩 块206-178 Ma	洋深海沉积	速积岩用 成Uda陆 缘火山引	B 活动: 反映太平 近 洋板块运 动的影响	蛇绿岩年龄: 阿普特-阿尔 布期洋壳碎片:	
	Tithonian	150Ma						1	晚白垩世纯橄 榄岩辉长岩斜 长花岗岩作随	
晚侏罗世	Kimmeridgian	155Ma	上构造位SK单元 属于卡洛夫生津	西南1 由中- 纪岛9	日本內带与萨 一晚侏罗纪增 胍基底	內帶与萨哈林西部类同, 未罗纪增生楔构成白垩 弦			岩坡安岩	
	Oxfordian	161Ma	期加积楔 泥盆石炭二叠灰							
	Caliovian	164Ma	岩二叠中一晚休 罗燧石岩块				中侏	罗蛇绿岩		
中侏	Bathonian	167Ma								
罗世	Bajocian	171Ma								
	Aalenian	175Ma		绿片岩 177 Ma	相变质时代					
	Toarcian	183Ma								
早侏罗世	Pliesbachian	189Ma		西南晚古	日本内带发育 生代一早中生					
		196Ma		/ 代变	质带					

图 2c 东北亚活动大陆边缘重要构造事件对比图(之三)

Fig. 2c Correlation of the significant tectonic events in Northeastern Asian active continental margin (3 of 3)

特--阿林--丹波-美浓增生带的其他蛇绿岩相当,可能 是被肢解的蛇绿岩^[31].由于亚洲东缘增生造山带中所 有与俯冲有关的构造单元年龄都小于 500 Ma, 因此, 它们也可能代表 Rodinia 超大陆裂解时期形成的古洋

壳残片.

中---晚侏罗世增生杂岩是锡霍特--阿林陆缘增生 带(内带)的构成主体 属强变形大洋板块组成的构造 增生杂岩复合地体 ,外来岩块包含泥盆、石炭、二叠、三 叠系和下侏罗统的灰岩、玄武岩或硅质岩片. I.V. Kemkin^[34]详细研究和对比了撒马卡(Samarka)、那单 哈达-比金(Bikin)、哈巴罗夫斯克(Khabarovsk)和巴德 扎尔(Badzhal)地体的组成和构造特征,其中,撒马卡 地体沿布列亚-佳木斯-兴凯超地体东部边缘的北东 带出露,从南滨海海岸向下阿穆尔河右岸延伸达 100 km 宽. 增生楔由不同厚度, 不同岩相(陆源砂 岩、粉砂岩、层状燧石、硅质泥岩和泥砾岩的俯冲混 杂岩 ,少量玄武岩和辉长岩--超镁铁岩)的陡倾层状 构造岩片组成.岩石被碎裂为透镜体,强烈片理 化,沿岩片有时发育糜棱岩化.岩片内部有不对 称褶皱,且褶皱常横卧,褶轴北东倾斜,北西翼缓 倾. 上部构造位的岩片出露于北西西,最下部岩片 则出露于南东. 其中 ,①底部岩片卡丁组(Katen)由 早三叠世(Olenekian)到中侏罗世(Bathonian)燧 石和碧玉、Bathonian-Callovian 硅质泥岩,晚侏罗世 (Oxfordian-Tithonian)泥岩和黏土岩,向上为含砂岩 的硅质夹层和砂岩组成 ,见薄层灰色燧石和晚三叠 世(Norian)灰岩. ②下部岩片布列夫卡(Breevka)组由 中三叠世(Anisian)到中侏罗世(Aalenian-Bajocian)燧 石、Bajocian 硅质泥岩, Bajocian-Bathonian 黏土和 Callovian 泥岩,及向上变薄的泥岩和砂岩组成.③中部 岩片萨拉托福卡(Saratovka)组由晚二叠世燧石组成, 在底部被中三叠世(Anisian)到早侏罗世(Pliensbachian-Toarcian) 燧石覆盖,其上为中侏罗世(Aalenian-Early Bajocian)硅质泥岩和(Middle Bajocian-Late Bathonian) 泥岩,及(Bathonian-Callovian)黏土岩和硅质岩,向上 为浊积岩. ④上部岩片阿姆巴-马泰(Amba-Matai)组由 晚二叠世早期的燧石和碧玉,早三叠世(Olenekian)— 早侏罗世(Pliensbachian)燧石和碧玉互层,早侏罗世 (Late Pliensbachian-Early Toarican)的硅质泥岩,早侏 罗世(Toarcian)—中侏罗世(Aalenian)泥岩组成,中侏 罗世(Bajocian-Bathonian)砂岩组成,底部为夹硅质岩 和砂岩的粉砂岩. ⑤顶部岩片为混杂岩 ,含石炭—二叠 纪灰岩块、二叠和三叠纪一侏罗纪燧石、砂岩、玄武岩 和辉长岩块体及其碎屑. 中古生代的辉长岩和超镁铁 岩(Kalinovka Formation)、玄武岩,经常与上覆的石炭 纪—二叠纪碳酸盐岩和燧石、晚二叠黑色板岩

(Sebuchar Formation)、晚二叠绿灰色和暗橄榄色砂岩 和砂泥岩(Udeka Formation)共生.不同地区杂岩的陆 源和过渡层在构造与组成方面有微小区别.

那单哈达--比金地体的构造单元与撒马卡地体的 构造地层单元基本可比(Ulitka 与 Katen 组, Ussuri 与 Breevka 组, Khor 与 Amba-Matai 组之间分别对应),大 顶子山--坨窑山一带玄武岩具有海山属性;另外两个 岩片在陆源组分中有镁铁质火山岩和古生代岩石碎屑 的混杂岩.哈巴罗夫斯克地体的侏罗纪增生楔燧石--陆源层序,仅相当于萨玛卡和那单哈达--比金地体的 下部单元.巴德扎尔地体是一个残留的侏罗纪增生楔, 发育有晚二叠世、三叠纪和三叠纪——中侏罗世燧石,陆 源沉积是中—晚侏罗世;南西部发现玄武岩与石炭— 二叠纪灰岩和二叠纪燧石伴生,说明其具有与撒马卡 地体相同的构造组成.

撒马卡上部构造位相关岩片与日本丹波-美浓-秋吉(Tamba-Mino-Akiyoshi)增生带的构造地层单元的 构造、岩相、岩石组合,年龄约束及相关岩层中微体化 石组合特征均可对比^{34]},也伴有海山岩片(Yakuno 蛇绿 岩). 西南日本的 Akiyoshi 带增生杂岩 260 Ma Suo 带 高压/低温变质增生杂岩 240 Ma Ultra-Tanba 带高压、 低温变质 220 Ma ,Mino-Tanba 带增生杂岩 160 Ma^[35]. 侏罗纪增生楔在堆叠形式、岩相及生物化石组合方面 的相似性,说明它们是沿亚洲古太平洋边缘发育的统 一大洋板块地层(OPS)俯冲增生杂岩系统.

晚侏罗世—早白垩世增生杂岩主要分布在锡霍 特-阿林增生造山带(外带)东南 萨哈林(库页岛)-北 海道碰撞带西部.该带向北与鄂霍次克海微板块北侧 的晚侏罗世—早白垩世增生楔相连,向南与西南日本 的秩父(Chichibu)–三波川(Sabagawa)增生带相连.在 锡霍特-阿林地区 陶克哈(Taukha) 增生楔主要由 3 个 构造岩片组成. 每个岩片都由硅质岩向上逐渐变为陆 源岩石的海相沉积组分,并被滑塌堆积(Olitostrome) 所替代. 陶克哈增生楔形成于 3 个时期:晚侏罗世增生 的泥盆—二叠纪海洋板块碎块,早白垩世 Berriasian-Valanginian 时期和 Valanginian-Barremian 时期增生的 早三叠—晚侏罗世,及晚侏罗—早白垩世贝里阿斯期 海洋板块碎块. 陶克哈增生楔的早白垩世部分靠近海 洋方向,与萨哈林(库页岛)-北海道碰撞带西部的早 白垩世俯冲增生杂岩相连,那里的外来岩块也包含三 叠—侏罗纪洋壳碎块. 萨哈林岛晚白垩世增生杂岩

中含有三叠—侏罗纪大洋岩块,早白垩世的角闪片 岩、变质辉长岩、蛇纹混杂岩和硬柱石-蓝闪片岩 (133~135 Ma)^[36].

西南日本三波川变质带(110~120 Ma)中,由于发 现了形成时代晚于三波川高压变质作用的增生楔 (90~80 Ma), 并受到 66~61 Ma 蓝片岩相变质作用影 响 因此 将其命名为四万十(Shimanto)变质带.并分 别划分出与早白垩世俯冲作用相关的深成岩基带、三 波川高压变质带和加积楔,与晚白垩世俯冲作用有关 的深成岩基带、晚白垩世弧前盆地、四万十高压变质带 和加积楔^[35,37]. 南秩父带延伸大约 1000 km, 含大量二 叠—三叠纪的洋岛玄武岩,三叠纪和侏罗纪的硅质 OPS. 三波川增生带的加积楔形成于 130~140 Ma .高压 变质时代为 110~120 Ma. 三宝山(Sambosan)地区,洋 岛玄武岩作为岩块、枕状熔岩角砾,夹中三叠世燧石. 灰岩"帽"下面是含中—晚三叠世牙形石、软体动物和 珊瑚的洋岛玄武岩,相关的燧石层含中三叠世到晚侏 罗世、晚侏罗世—早白垩世放射虫[35]. 显然,西南日本 MTL 以南的秩父带和三波川带可与锡霍特-阿林的陶 克哈增生杂岩对比.

鄂霍次克海微板块北侧与欧亚大陆之间的增生杂 岩,与锡霍特-阿林-西南日本增生造山带外带类同, 主要由晚侏罗—早白垩世蛇绿混杂岩、增生楔及浊积 岩盆地构成;推覆体等重要变形事件的出现与晚侏 罗—早白垩碰撞有关^[33].也有学者认为,鄂霍次克海 微陆块与北侧欧亚大陆之间的碰撞事件发生于早白垩 世晚期(Late Albian);晚侏罗—早白垩世构造混杂岩 被晚白垩世(Cenomanian)—古新世(Danian)含煤磨拉 石不整合覆盖^[33],磷灰石裂变径迹数据表明火山弧在 100~40 Ma 期间经历了快速隆升与侵蚀^{40]}.

侵位于中国那单哈达加积楔的蛤蟆通(131~115 Ma)和太平村岩体(114~111 Ma)^[41],侵位于俄罗斯 Bikin 加积楔的 Khungariisk 花岗岩(131~105 Ma)^[42], 属同期 S 型花岗岩.撒马卡增生带的 S 型花岗岩与 I 型花岗岩共生,主要形成于 130~123 Ma (Hauterivian-Barremian)和 110~98 Ma (Albian-Cenomanian)两个时 段;早期阶段主要为 S 型花岗岩 Nd 模式年龄大约 1.3 Ga;晚期阶段的花岗岩类型多样化,成分趋势从 S 型 过度到 I 型 Nd 模式年龄≤1.2 Ga. 早白垩世花岗岩岩 石成分、微量元素和同位素特征,与撒马卡杂岩和同时 代辉长岩类同.早期阶段 S 型花岗岩形成于上地壳重 融,晚期阶段,地幔岩浆侵入导致了下地壳深熔,大洋 玄武岩参与壳/幔混融作用,花岗岩从S型过渡到I 型^[43].这些花岗岩与早白垩世晚期含煤沉积,揭示了 锡霍特-阿林增生造山系的俯冲增生过程贯穿于中侏 罗纪至早白垩世的131 Ma前;早白垩世末—晚白垩世 陆相和海陆交互相含煤盆地与晚白垩世—新近纪火山 深成岩带属上叠构造.

2) 萨哈林(库页岛)-北海道碰撞造山带

萨哈林(库页岛)-北海道碰撞造山带位于鄂霍次 克海微板块与锡霍特-阿林陆缘增生造山带之间.由 于萨哈林(库页岛)岛是新生代鞑靼海峡裂谷作用而从 亚洲大陆边缘分离,因此,在锡霍特-阿林地区的中-晚侏罗世—白垩纪俯冲增生杂岩和早古近纪构造也出 现在萨哈林(库页岛)岛上,只是在后期构造作用下变 得相当凌乱.

萨哈林(库页岛)岛南部包括 Tonin-Aniva、Ozerskii 地体和 Susunai 变质地 [36]. Tonin-Aniva 地体主要为侏 罗—白垩纪海山残留块体、早-中白垩世混杂岩、滑塌 堆积和中白垩世复理石.北部则出露二叠—三叠纪古 洋壳拉班玄武岩和超镁铁岩块体,及白垩-古近纪岛弧 岩系和浊积岩.古洋壳岩石经历了侏罗纪—早白垩世 时期绿片岩和蓝片岩相变质作用(177 Ma、133~136 Ma), 该变质带纵向向南延伸到北海道 Kamuikotan 带. 萨哈 林(库页岛)东部为 Campanian—古近纪岛弧碎块,它 们与白垩纪海洋板块的碎块一起,从鄂霍次克海板块 逆冲到萨哈林构造带之上;叠瓦状逆冲的基性-超基 性岩带分隔了早期属于鄂霍次克海板块的白垩纪洋 壳. 萨哈林(库页岛)中部的蛇绿混杂岩、绿片岩和蓝片 岩的变质作用年龄(109 Ma 和 120 Ma)与北海道发育 的花岗闪长岩带高温变质作用时代 (110~120 Ma)相 当. 萨哈林(库页岛)东南部的 Susunai 群被认为是日 本北海道日高变质带的北延部分,变质岩白云母 K-Ar 年龄为 68~59 Ma^[44]. 北海道的重要构造事件出现于晚 侏罗世末---早白垩世期间,鄂霍次克海微板块与欧亚 大陆之间的碰撞发生比经典模式提出的时间要早[33]. V.S. Rozhdstvensky(1986)认为,东、西萨哈林(库页岛) 岩石组合被缝合带分隔 蛇绿混杂岩、滑塌堆积带和绿 片岩、蓝片岩变质带叠加在这个两个带上. 变质带出现 在缝合带片岩和弱变质沉积之间,变质作用级序从沸 石-绿纤石相,逐渐变为葡萄石-绿纤石相、蓝片岩和 蓝片岩相. 变质岩石含蓝闪石、硬柱石、文石和硬玉. 变 质岩给出 3 组 K-Ar 测年数据 206~178 Ma; 100 Ma 和 77~55 Ma. 前面两组为角闪岩、绿色片岩和蓝片岩, 与俯冲和深埋的蓝片岩变质作用对应;而晚白垩世— 古新世的变质作用以绿泥石-钠长石-绢云母片岩为 特征,其成因可能与古近纪—新近纪造山轴带的地温 梯度上升及花岗岩侵入有关;萨哈林(库页岛)-北海 道属晚中生代—早新生代碰撞造山带,其形成与鄂霍 次克微板块与欧亚大陆边缘增生带之间的碰撞有关.

北海道碰撞带西部 Osima 地体的构成与锡霍特– 阿林带增生杂岩类同. 北海道日高构造带轴部地区由 Yezo 群浊积岩、Sorachi 群俯冲杂岩和白垩纪—古近 纪变质的 Kamuikotan 地体构成. 依据区域地质构造特 点,北海道可以划分为西部、中部和东部北海道3部 分. 西部北海道属于本州构造单元的北延伸部分,由白 垩纪花岗岩侵入的侏罗纪增生杂岩构成,属锡霍特– 阿林–西南日本增生造山带一部分. 东部北海道由晚 白垩世—古近纪千岛弧–沟沉积构成. 中部北海道构 成复杂,有2个俯冲增生弧–沟系统:西部(Sorachi-Yezo 带,Idonnappu 带和日高带)是晚侏罗世—白垩纪 的向西俯冲系统;东部(Tokoro 带)是白垩纪的向东俯 冲系统(Kazunori Arita et al., 1998).

应当指出,北海道碰撞带前弧盆地早白垩世 (Hautervian-Early Albian)的下、中Yezo 群浊积岩不整 合在Sorachi 俯冲杂岩和 Kamuikotan 变质带之上,其 底砾岩中含大量的蛇纹岩、铬尖晶石和蓝闪石碎屑,揭 示了这一时期陆缘俯冲变质带的折返,无增生或弱增 生的大地构造背景^[45].这与东亚早白垩世大陆边缘性 质转换及地壳大规模伸展活动时段对应^[46].

西南日本的四万十增生带加积楔形成于晚白垩世 (80 Ma),蓝闪石变质时代为 70~60 Ma^[35].该增生带北 延,与北海道晚白垩世碰撞带西部单元相连.俯冲加积 楔的主要构造–变质和岩浆事件与萨哈林(库页岛)– 北海道碰撞带的构造事件大致同期.

3)鄂霍次克-楚科奇、锡霍特-阿林陆缘火山-深 成岩带

鄂霍次克--楚科奇、锡霍特--阿林陆缘火山-深成 岩带的形成,与库拉、伊泽纳奇洋盆消减,鄂霍次克海 微板块与欧大陆边缘碰撞,及大陆边缘走滑作用有关. 其中,鄂霍次克--楚科奇陆缘火山--深成岩带属早白垩 世晚期—晚白垩世大陆边缘的安第斯型火山带,它叠 加在威尔霍扬斯克--楚科奇复合造山系及南缘的晚侏 罗—早白垩世 Uda-Murgal 火山弧之上,其面积超过 500 000 km².在宏观尺度,可以看出晚侏罗—早白垩世 的 Uda-Murgal 陆缘火山弧及晚白垩世的鄂霍次克-楚 科奇陆缘火山带,与威尔霍扬斯克-楚科奇造山系的 主体构造线走向明显呈截接叠加关系.火山岩年代学 数据表明,鄂霍次克-楚科奇带的大部分火山岩形成 于晚白垩世 (Coniacian-Santonian-Campanian)74~85 Ma,钙碱性火山岩形成于 80~85 Ma,封盖玄武岩喷出 于 74~77 Ma^[47].

应当指出,鄂霍次克海微板块向北俯冲,乌达-马 加尔(晚侏罗世—白垩纪)和鄂霍次克-楚科奇(白垩 纪)火山-深成岩带的发育,显示这一时期在南太平洋 地区发生了重大的板块动力学事件.这一事件导致了 鄂霍次克海微板块的向北运动和中国东部大陆边缘走 滑断层的普遍发育.

锡霍特-阿林火山-深成岩带沿鞑靼海峡西岸分 布,北东延伸1500 km,宽100 km.依据岩浆岩特征分 为4个组合:近断裂盆地玄武岩和安山岩 (Cenomanian),流纹岩和英安岩(Turonian-Santonian), 火山锥和火口相过碱性喷出岩(Maastrichtian -Danian),双峰式火山岩(Paleogene).锡霍特-阿林火山 带与鄂霍次克-楚科奇火山带的安山和流纹岩岩石地 球化学特征及起源具有相似性^[14].根据鄂霍次克-楚 科奇火山深成岩带与锡霍特-阿林火山深成岩带在形 成时代、岩浆起源及大地构造背景方面的相似性,可认 为它们的主体构成晚白垩世—古近纪大陆边缘火山岩 带,反映了鄂霍次克海微板块在晚白垩世早期向北和 向西的俯冲活动.唯一的区别是,大陆边缘走滑作用导 致锡霍特-阿林火山-深成岩带岩浆组分向碱性方向 转化(出现双峰式火山岩).

3 东北亚活动大陆边缘晚中生代—新生代弧-盆系

东北亚活动大陆边缘晚中生代—新生代弧-盆 系,包括晚中生代—新生代堪察加-千岛弧和日本列 岛弧东缘增生带,及新生代千岛盆地、鞑靼海槽、日本 海盆地和冲绳海槽(裂谷)带.

3.1 堪察加-千岛弧、日本岛弧东缘增生带

3.1.1 堪察加-千岛弧东缘增生带

堪察加-千岛东缘增生带由岛弧地体与洋内弧叠 置构成,由东向西依次为东堪察加火山带、中堪察加火 山带、西堪察加岛弧地体和西北部的堪察加-克利亚 克火山深成岩带.其形成与库拉洋板块和 Vetlovka 小 洋盆俯冲消减及岛弧地体间的碰撞有关^[48].

堪察加半岛西北部 Omgon 岭地区主要由包裹侏 罗—白垩纪洋壳残片的中晚白垩世叠瓦状复理石增生 楔构成. 混杂岩中含有中侏罗-早白垩世形成于洋盆 或边缘海环境的火山岩. 大陆边缘堆积富含石英碎屑 物的陆源浊积岩(Albian-Campanian)含洋壳组分. 增 生楔形成于古太平洋板块(或伊泽纳奇)在欧亚大陆边 缘的俯冲,并导致鄂霍次克-楚科奇火山带形成. 磷灰 石裂变径迹测年数据记录了冷却时间和地块侵蚀,并 指出叠瓦构造完成于 Maastrichtian(大约70 Ma). 由于 Omgon 增生楔形成的地球动力学背景及时代,与 Yanranai(科里亚克北部)、Tonino-Aniva(萨哈林南部), 及日高(日本北部)和四万十带(日本西南)的形成年 代、岩相及构造环境相似,说明堪察加半岛西北部 Omgon 增生楔是中一晚白垩世沿古欧亚大陆边缘俯 冲带的一部分^[49].

西部堪察加弧和中部堪察加弧之间的碰撞发生于 晚白垩世,主要的不整合出现于 Maastrichtian 和始新 世时期.西部和中部弧分别含中侏罗一早白垩世 (Cenomanian)和晚白垩世(Cenomanian-Turonian)的不 整合和底砾岩,以及 Aptian – Maastrichtian 和 Campanian-Paleocene 期非海相和浅海相碎屑岩沉积. 中部堪察加弧东部发育 Albian-Maastrichtian 期洋壳 和深海沉积,渐新世非海相或浅海碎屑岩沉积.东堪察 加弧由古新世—始新世期洋壳和深海沉积构成,东堪 察加弧与东部半岛结合带的不整合为中新世末^[45].目 前,对堪察加弧-弧碰撞及俯冲作用时期存在两种意 见:1)俯冲作用发生于古新世—始新世^[50];2)俯冲发 生于晚白垩世,弧-弧碰撞和侵蚀作用发生于早古新

千岛群岛属于堪察加-千岛弧东缘俯冲增生系统 的南延部分^[52],由大岛弧、弧间槽和小岛弧组成.大岛 弧由新生代火山和火山沉积岩组成,地壳厚达 30~35 km,由捕虏体判断基底由变质岩、结晶片岩、角岩、辉 长岩、闪长岩和斜长花岗岩组成.弧间槽的地壳厚度为 15 km.海底火山由第四纪玄武岩、安山-玄武岩及安山 熔岩组成.小岛弧主要由晚白垩世建造组成,基底由来 自外来板块的带状辉长岩、辉长-苏长岩和蛇纹岩化 橄榄岩组成,顶部岩墙发育.

弧间槽与两个弧之间为断裂接触,槽宽45~60 km,沉积物中丰富的火山岩与裂谷作用有关.组成千 岛岛弧的安山玄武岩和安山岩,属弱含钾钙碱性系列 和玄武岩,岩石化学参数接近拉斑玄武岩.岩浆源位于 太平洋板块俯冲带的上方,以地幔底劈进入千岛岛弧 的弧间槽地壳. 值得注意的是,已发表的年代学数据说 明千岛群岛在 155~110 Ma 和 95~68 Ma 两个时段就 发育强烈的岛弧火山活动,说明今太平洋板块在晚侏 罗世末—早白垩世、晚白垩世期间,就持续向西北俯 冲^[33];并驱动鄂霍次克海微板块向北漂移-俯冲,与欧 亚大陆东部边缘碰撞.上述特征是将堪察加—千岛弧 确定为晚白垩世—中新世以来岛弧增生带的主要依 据.

自晚中新世,由于太平洋与千岛弧之间的相互作用,千岛前弧板条沿千岛海沟向西平移,开始与北海道发生碰撞^{54-55]}.

3.1.2 日本岛弧东缘增生带

日本岛弧东缘增生带构成较为复杂,以 ISTL 为 界,北东日本岛弧与太平洋板块之间以日本海海沟为 界;西南日本岛弧与菲律宾海板块之间以南海海沟为 界;南部的琉球岛弧与菲律宾海板块之间以琉球海沟 为界.其中,北东日本岛弧东缘增生带是古、今太平洋 板块与欧亚大陆边缘之间相互作用产生的俯冲增生 带,其间以日本海沟为界.由于太平洋"冷"板块下插, 沿日本海沟主要表现为构造侵蚀作用,增生杂岩相当 少^[35].

西南日本岛弧东缘增生带由古太平洋、菲律宾海 板块与欧亚大陆边缘之间相互作用产生的俯冲增生带 组成.晚中生代西南日本四万十增生带是古太平洋板 块^[35]与东亚大陆边缘在晚白垩世期间相互作用的产 物,向南延伸到琉球群岛.古新世以来的增生杂岩系统 分布于四万十带东侧,沿南海海沟西侧发育.

西南日本与琉球群岛相连接,岛链上最老的岩石 以八重山变质岩为代表,由蓝片岩相蓝片岩、硅质片 岩、变辉长岩,以及变质程度较低的枕状熔岩和玄武质 碎屑岩组成.八重山变质岩的时代可同西南日本内带 的高压变质带对比.北、中琉球的四万十超群则是西南 日本列岛外带的南延部分,始新世火山活动仅发育在 南琉球^[56].

3.2 千岛盆地、鞑靼海槽、日本海和冲绳海槽——新 生代弧后盆地(裂谷)系

东北亚活动大陆边缘新生代陆缘盆地(裂谷)系, 主要指由海洋板块与东北亚活动大陆边缘之间相互作 用,形成的弧后(拉张或裂解)盆地和海槽系统. 3.2.1 千岛盆地

千岛盆地位于鄂霍次克微海板块东南部,鄂霍次

克海板块深部结构分为:1)大陆型地壳,2)次大陆型 地壳,3)次大洋型地壳和4)大洋型地壳四种类型[57]. 千岛盆地实为弧后边缘海中的洼地. 在平面上它是一 个向北东缩小的楔形,其轮廓由 3000 m 等深线圈定, 平均深度 3200 m. 源于火山物质的沉积层厚度大于 4000 m. 盆地下面为 6.4~6.8 km/s 地震波速的洋壳第 三层 盆地中部地壳厚达 5 km 高热流是盆地的特点. 沉积盖层被分成两个组合 上部为上新统—第四系 厚 度大约 800~1000 m;下部组合沉积物厚达 3000 m. Akademii Nauk Elevation 地区的拖网样显示 .千岛盆地 北坡是由钙碱性系列岩浆岩组成 K-Ar 年龄为白垩 纪. 火山岩的 Sr-Nd-Pb 同位素分析证明基底可能是 大陆地壳的变薄 基底地球物理特征显示其复杂性 :上 新世---更新世火山沉积物覆盖于火山构造之上. Akademii Nauk Elevation 南部斜坡 地球物理学家海山 (Geophysist Seamount) 的火山位于千岛盆地的北东大 约 3200 m 深处,以上新世安山--玄武岩、安山岩和英安 岩为代表[58].

千岛盆地形成于古近纪晚期—早渐新世初,伴随 同期火山岩形成海相沉积.千岛盆地的次海洋型地壳 一般为 24~12 km 厚.上部沉积层中的构造断层深达上 地幔,异常带低速层(7.0~7.5 km/s)类似岩浆源的软流 圈底劈.电、磁研究证明千岛盆地下面存在局部熔融 区.千岛盆地的深部构造研究说明地壳厚度接近 10 km.软流圈底劈柱接近地壳^[53,59].根据地震资料,裂谷 或扩张构造在千岛盆地中部明显^[59],裂谷位于盆地扩 张中心,千岛盆地与日本海盆地的特征类似.

3.2.2 日本海盆地和鞑靼海峡

日本海盆地和鞑靼海峡属于拉分盆地,是始新 世—中新世初在东亚大陆边缘中生代增生造山带基础 上发育的裂谷构造.由于日本海盆地和边缘地壳伸展, 导致日本微陆块陆缘增生带和西萨哈林带从亚洲大陆 分离.在晚中新世早期开始扩张,伴随海洋边缘地壳的 形成,盆地边缘之下是延伸的大陆地壳.

鞑靼海峡也是裂谷构造,位于锡霍特-阿林和西 萨哈林山脉中生代构造之间,裂谷对应的软流圈上涌 与地壳伸展相关.裂谷接近50km宽和4km深,由厚 约8~10km的中─新生代沉积建造组成.鞑靼海峡裂 谷区的地震震源较浅.根据地质和地球物理资料,海槽 的沉积层可以分为4个构造组合,相互之间由区域平 行不整合、不同构造组合和地球物理特点区分.这4个 组合分别为 :上白垩统、古近系、渐新统—下中新统和 中中新统—第四系.

日本海盆地的磁场异常资料研究揭示,裂谷位于 日本海深海盆地扩张中心北部.扩张过程从 25 Ma 延 续到 15 Ma,伴随玄武熔岩喷发.由于裂谷的形成,位 于鞑靼海峡中部的 Moneronskiy 隆起伴随区域玄武岩 火山作用,溢流火山岩的化学成分表明喷出岩属于拉 斑玄武岩和碱性橄榄玄武岩类.始新世到中中新世期 间,沿萨哈林-北海道的右旋走滑^[60].及菲律宾海板块 的向北俯冲^[35,61],导致日本海盆地的张开.

3.2.3 冲绳海槽

冲绳盆地是中新世—上新世早期期间,在欧亚大陆边缘拉张形成的年轻弧后盆地,基底结构复杂^[62], 其形成伴随地壳减薄、构造活动和高热流.地震调查显示海槽有3个分层:更新世-全新世的A层(北薄南厚),上新世的B层(南薄北厚)和C层(基底)^[63].冲绳海槽莫霍面深度在15~23 km 深处,属过渡型地壳.海槽的南、北段,在地壳结构、海底热流和火山作用等方面都有差异.南段地壳薄,不超过17 km,火山作用显著,构造破坏和地形起伏都较大.冲绳海槽的南段是典型的弧后盆地.冲绳海槽的形成经历了隆起阶段、岩石圈裂谷阶段和地幔上涌^{64]}.

冲绳海槽南部的基底可能是八重山群岛出露的同 一岩石组合.在晚中新世之前,冲绳海槽的北部和中 部是由白垩纪花岗岩和更老的岩石组成的隆起区,其 地质状况类似于日本西南列岛内带.自晚中新世以来, 冲绳海槽开始发展;上新世以来,在琉球群岛相继发育 了小型狭长地堑;第四纪以来,冲绳海槽内的中央裂 谷作用开始活动⁽⁶¹).

4 东北亚中生代活动大陆边缘构造演化时段划分

纵观东亚活动大陆边缘构造格架的分布,具有宏 观东西分带,南北分区(段)的特点;大陆地壳构造演 化,具有以欧亚古陆为核心向东不断增长的平面特征. 根据东北亚区域地质和主要构造-岩浆事件的对比分 析,东北亚中生代活动大陆边缘构造演化可以分为5 个发展时段.

4.1 晚二叠一早侏罗世(前造山期)

东北亚地区主要表现为前造山期的大陆边缘沉 积,早期裂解于古陆块体之间形成盆地沉积(T—J₁); 西伯利亚南缘表现为活动大陆边缘(P₂—J₁);蒙古-北 中国陆块群北缘表现为被动大陆边缘(P_2 — J_1). 4.2 中-晚侏罗—早白垩世初(Valanginan)(主要表现 为洋盆消亡、闭合、陆块之间碰撞造山)

1)北部区段:威尔霍扬斯克-楚科奇复合造山系; 柯雷马-阿玛隆超地体碰撞拼合(J2—J3),叠加早白垩 世构造-岩浆作用(J3—K1);形成威尔霍扬斯克褶皱-逆冲带(J2—J3);北美大陆与欧亚大陆之间碰撞(K1), 并形成新西伯利亚-北楚科奇褶皱-逆冲带(J3—K1). 勒拿河前陆盆地(J2—K1)与威尔霍扬斯克-楚科奇复 合造山系同步发展.

3)南部区段:西南日本晚古生代—早中生代增生 带东侧,形成丹波-美浓陆缘增生带(J₂₋₃)内带和秩父-三波川陆缘增生带(K₁)外带.

4.3 早白垩世中晚期 (Barremian-Early Albian)(主要 表现为造山期后,东北亚大陆地壳的向东伸展;东亚大 陆东部为转换边缘,以大陆边缘走滑断裂发育为特点)

南太平洋发生板块动力学重大事件,鄂霍次克海 微板块快速向北漂移,鄂霍次克海板块北侧形成俯冲 加积楔(J₃—K₁),北亚克拉通边缘形成上叠乌达-马加 尔陆缘火山岩带(J₃—K₁),鄂霍次克海微板块与北侧 欧亚板块发生碰撞(K₁),萨哈林-北海道高压变质带折 返到地表(K₁),东亚大陆边缘发育大规模走滑断层 (134~110 Ma),锡霍特-阿林带发育 S型 (131~123 Ma)和 S-I 型花岗岩(110~98 Ma) 连同萨哈林-北海道 俯冲带的弱或无增生,揭示东亚大陆边缘可能为转换 边缘(Hauterivian-Albian).

在东北亚造山期后地壳伸展及东部大陆边缘性质 转换的构造背景下,东北亚活动大陆边缘陆缘活化带 的北区、中区和南区,广泛发育伴随伸展构造、走滑断 层、断块化、小型断陷盆地、A型花岗岩和流纹岩、双峰 式火山岩和变质核杂岩^[4].

4.4 早白垩世晚期(Late Albian)—古新世(主要表现 为鄂霍次克微板块与东亚大陆边缘间的碰撞)

鄂霍次克海微板块向北-北西俯冲,在北亚克拉

通南部边缘乌达-马加尔陆缘火山带(J₃—K₁)基础上, 叠加发育鄂霍次克-楚科奇陆缘火山-深成岩带 (Coniacian-Santonian-Campanian),锡霍特-阿林火山-深成岩带(Cenomanian-Danian)及双峰式火山岩(古近 纪),鄂霍次克微板块与欧亚大陆边缘沿萨哈林-北海 道发生碰撞造山(100 Ma、77~55 Ma);同期,科里亚 克-堪察加陆缘增生造山带快速隆升(100~40 Ma). 4.5 始新世—中新世以来(主要表现为东亚大陆边缘 弧-盆系和陆缘盆-岭系)

由于太平洋板块与鄂霍次克海微板块之间的相互 作用,在鄂霍次克海微板块之上形成千岛洼地(始新 世—渐新世),陆缘裂解形成鞑靼海槽(新近纪),同期, 伴随大陆边缘走滑和菲律宾海板块向北和西北俯冲, 在东亚大陆边缘侏罗—白垩纪增生带基础上,拉张形 成日本海盆地(始新世—中新世)和冲绳海槽(中新 世—第四纪).在东北亚大陆边缘活化区早白垩世陆缘 盆-岭系(Late Albian-Cenozoic)基础上,发育新生代渤 海陆缘裂谷(古新世—上新世).

这些弧后盆地与陆缘岛弧一起,构成东亚大陆边 缘新生代弧-盆系和陆缘盆-岭系.

致谢:本文是以全国矿产资源潜力评价项目综合 研究期间编写的东北亚活动大陆边缘晚三叠世以来板 块构造演化特征综合研究报告为基础编写的.成文后, 承蒙任纪舜院士审阅了文稿,并提出宝贵的建议,在此 一并感谢.第一作者并以此文,祝恩师杨振生教授 85 岁寿辰,身体安康.

参考文献:

- [1] Tectonics Observatory, Califonia Institute of Technology. Plate tectonic divergent, convergent, and transform boundaries [M]. 2009.
- [2]CGMW. 1:12 500 000 The structural map of Eatern Eurasia [M]. 2008.
- [3]李廷栋 编. 1:500 万亚欧地质图[M]. 北京 地质出版社,1997.
- [4]Bird P. An updated digital model of plate boundaries [J]. An Electronic Journal of the Earth Sciences , 2003 , 4(3).
- [5]REN Ji-shun, ed. International geological map of Asia [M]. Beijing: Geological Publishing House, 2013.
- [6]地球科学大辞典基础科学卷[M].北京 地质出版社 2006 901.
- [7]任纪舜. 中国大地构造研究的新进展——从全球看中国大地构造 [EB/OL]. http://www.doc88.com/p-159558623895.html.
- [8]Parfenov L M. Tectoniscs of the Verkhoyansk-Kloyma Mesozoides in the context of plate tectonics [J]. Tectonophysics, 1991, 199:319–342.
- [9]Oxman V S. Tectonic evolution of the Mesozoic Verkhoyansk-Kolyma belt (NE Asia) [J]. Tectonophysics 2003, 365:45-76.

- [10]Sokolov S D , Bondarenko G Y , Morozov O L , et al. The Sourth Anyui collision suture zone (NE Asia) :Tectonic evolution and correlations of tectonic events in the eastern Arctic [J]. Journal of Czech Geological Society ,2000 ,45 :3–4.
- [11]Van der Beek P, Delvaux D, Andeiessen P, et al. Early Cretaceous denudation related to convergent tectonics in the Baikal region, SE Siberia [J]. Journal of the Geological Society, London, 1996, 153(4): 515–523.
- [12]Parfenov L M , Popeko L I , Tomurtogoo O. Problems of tectonics of the Mongolia-Okhotsk orogenic belt[J]. Geol Pac Ocean , 2001 , 16:797– 830.
- [13]Kurilenko A V, Kulkov N P. A proposed crinoid zonation of the Devonian deposits of eastern Transbaikal [J]. Bulletin of Geosciences, 2008, 83(4):461–472.
- [14]Karsakov L P , ZHAO Chun-jing , Malyshev Y F , et al. Tectonic , deep structure , metallogeny of the Central Asian-Pacific belts junction area : Explanatory notes to the tectonic map scale of 1:500 ,000 [M]. Beijing : Geological Publishing House ,2008 :213.
- [15]Thomas K K, YIN An, Batulzii D, et al. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey Basin, northcentral Mongolian: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia [J]. Tectonophysics 2008, 451 290–311.
- [16]Dorjsuren B , Bujinlkham B , Minjin C , et al. Geological settings of the Ulaanbaatar terriane in the HangayHentey zone of the Devonian accretionary complex , Central Asian Orogenic belt [M]. Guidebook , IGCP 480 , Mongolia , 2006 : 39–42.
- [17]Nakane Y. Geological division of the rocks at southeast of Ulaanbaatar (Gachuurt-Nalaikh) central Mongolia[J]. Bull Nagoya Univ Museum, 2012, 28:19–26.
- [18]Tomurtogoo O, Windley B F, Kroner A, et al. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, Central Mongolia : Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogeny [J]. J Geol Soc London, 2005, 162:125–134.
- [19]Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia [J]. Tectonophysics, 1999, 306:33-56.
- [20]USGS. Petroleum geology and resources of the West Siberian Basin , Russia [J]. U.S. Geological Survey Bulletin 2201-G 2003.
- [21]Zonenshain L P , Kuzmin M I , Natapov L M. Tektonika litosfernykh plit territorii SSSR (Tectonics of lithosphere plates in the USSR territory) [M]. Moscow :Nedra , 1990.
- [22]孙广瑞,刘旭光,韩振哲,等. 上黑龙江盆地中上侏罗统二十二站群 的地层划分与时代[J]. 地质通报 2002 21(3):150-155.
- [23]辛仁臣 ,吴河勇 杨建国. 漠河盆地上侏罗统层序地层格架[J]. 地 层学杂志 2003 27(3):199-204.
- [24]李锦轶和政军 莫申国 等.大兴安岭北部秀峰组下部砾岩的形成 时代及其大地构造意义[J].地质通报 2004 23(2):120-129.
- [25]和钟铧,刘招君,郭宏伟,等. 漠河盆地中侏罗世沉积源区分析及地

质意义[J]. 吉林大学学报 地球科学版 2008 38(3) 398-404.

- [26]侯伟 刘招君,何玉平,等. 漠河盆地上侏罗统沉积特征与构造背景 [J]. 吉林大学学报 地球科学版 2010 40(2) 286-297.
- [27]肖传桃,叶明,文志刚,等. 漠河盆地额木尔河群古植物群研究[J]. 地学前缘 2015,22(3) 299-309.
- [28]曲关生. 黑龙江省岩石地层[M]. 武汉:中国地质大学出版社, 1997:42-150.
- [29]武广 陈衍景 赵振华 ,等. 大兴安岭北端洛古河东花岗岩的地球化学、SHRIMP 锆石 U-Pb 年龄和岩石成因[J]. 岩石学报 2009 25
 (2) 233-247.
- [30]Zorin Y A, Mordvinova V V, Turutanov E K, et al. Low seismic velocity layers in the Earth's crust beneath Eastern Siberia (Russia) and Central Mongolia : Receiver function data and their possible geological implication [J]. Tectonophysics ,2002 ,359 :307–327.
- [31]Ishiwatari A, Tsujimori T. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: A synthesis [J]. The Island Arc, 2003, 12:190–206.
- [32]Khanchuk A I, Ratkin V V, Ryazantseva M D, et al. Geology and mineral deposits of Primorskiy Krai [M]. 1996 :61.
- [33]Mishkin M A, Lelikova E P, Ovcharek E C. New evidence of metamorphic rocks on the Japan Sea coast of southern Primorye [J]. Doklady Akademii Nauk , 1970 , 190 :1426–1429 (in Russian).
- [34]Kemkin I V. Structure of terranes in a Jurassic accretionary prism in the Sikhote-Alin-Amur area : Implications for the Jurassic geodynamic history of the Asian eastern margin [J]. Russian Geology and Geophysics , 2008 , 49 :759–770.
- [35]Isozaki Y , Aoki K , Nakama T , et al. New insight into a subductionrelated orogen : A reappraisal of the geotectonic framework and evolution of the Japanese Islands [J]. Gondwana Research , 2010 , 18 : 82–105.
- [36]Zharov A E. South Sakhalin tectonics and geodynamics : A model for the Cretaceous-Paleogene accretion of the East Asian continental margin [J]. Russian Journal of Earth Sciences , 2005, 7:1–31.
- [37]Aoki K , Maruyama S , Isozaki Y , et al. Recognition of the Shimanto HP metamorphic belt within the traditional Sanbagawa HP metamorphic belt : New perspectives of the Cretaceous-Paleogene tectonics in Japan [J]. Journal of Asian Earth Sciences ,2011 ,42 :355–369.
- [38]Jolivet L , Cadet J P , Lalevee F. Mesozoic evolution of Northeast Asia and the collision of the Okhotsk microcontinent [J]. Tectonophysics , 1988 ,149 :89–109.
- [39]Hourigan J K, Akinin V V. Tectonic and chronostratigraphic implications of New ⁴⁰Ar / ³⁹Ar geochronology and geochemistry of the Arman and Maltan-Ola volcanic fields, Okhotsk-Chukotka volcanic belt, northeastern Russia [J]. Geological Society of America, 2004, 116:637–654.
- [40]Garver J I , Solovier A V , Bullen M E , et al. Towards a more complete record of magmatism and exhumation in continental arc , using detrital fission-track thermochrometry [J]. Phys Chem Earth (A) , 2000 , 25 (6/7) :565–570.

[41]程瑞玉 吴福元 ,葛文春 , 等. 黑龙江省东部饶河杂岩的就位时代与 东北东部中生代构造演化[J]. 岩石学报 ,2006 ,22(2) 353-375.

- [42]Maximova Z V, et al. Petrology and isotopic systematic of Khungariisk granites as a key to the history of Early Cretaceous collision in the Sikhote Alin fold belt, Far Eastern Russia [C]. ICAM-94 Proceedings : Gneiss & Granitic Domes.
- [43]Kruk N N, Simanenko V P, Gvozdev V I, et al. Early Cretaceous granitoids of the Samarka terrane (Sikhote-Alin): Geochemistry and sources of melts [J]. Russian Geology and Geophysics, 2014, 55:216 –236.
- [44]Gouchi N, Omata M, Katoh T, et al. K-Ar Age of white micafractiona from the Susunai metamorphic rocks in Sakhalin, Far East Russia [J]. Jour Fac Sci, Hokkaido Univ (Ser. IV), 1992, 23(2):281–286.
- [45]Yoshida K , Iba Y , Taki S , et al. Deposition of serpentine-bearing conglomerate and its implications for Early Cretaceous tectonics in northern Japan [J]. Sedimentary Geology ,2010 ,232 :1–14.
- [46]ZHANG Yun-ping. Main characteristics of Late Jurassic-Cretaceous tectonic framework in Northeast Asia [J]. Journal of Jilin University : Earth Science Edition , 2011 , 41(5) :1267–1284.
- [47]Sokolov S D, Bondarenko G Y, Layer P W, et al. Kravchenko-Berezhnoy, South Anyui suture : Tectono-stratigraphy, deformations, and principal tectonic events [C]. Stephan Mueller Spec Publ., Ser. 4, 2009 :201–221.
- [48]Konstantinovskaia E A. Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific : An example from Kamchatka (NE Russia) [J]. Tectonophysics ,2001 ,333 :75–94.
- [49]Soloviev A V , Garver J I , Ledneva G. Cretaceous accretionary complexs related to Okhotsk-Chukotka subduction , Omgon Range , Western Kamchatka , Russian Far East [J]. Jurnal of Asian Earth Sciences , 2006 , 27 :437–453.
- [50]Pechersky D M , Leashova N M , Shapiro M N , et al. Paleomagnetism of Paleogene volcanic series of the Kamchatsky Mys Peninsula , East kamchatka : The motion of an active island arc [J]. Tectonophysics , 1997 ,273 :219–237.
- [51]Ledneva G V , Garver J I , Shapiro M N , et al. Provenance and tectonic setting of accretionary wedge sediments on northeastern Karaginski Island (Kamchatka , Russian Far East) [J]. Rusian Journal of Earth Sciences ,2004 ,6(2) :105–132.
- [52]Avdeiko G P , Savelyev D P , Palueva A A , et al. Evolution of the

Kurile-Kamchatkan volcanic arcs and dynamics of the Kanchatka-Aleutian junction volcanism and subduction [C]. The Kamchatka Region Geophysical Monograph Series ,2007 :172.

- [53]Gnibidenko H S , Svarichevsky A S. Tectonics of South Okhotsk deepsea basin [J]. Tectonophysics , 1984 , 102 :225–244.
- [54]Kimura G. Oblique subduction and collision : Forearc tectonics of the Kuril Arc [J]. Rep Inst Kuroshio Sphere , Kochi Univ ,1989 A 37-44.
- [55]Kurashimo E J , Iwasaki T , Hirata N , et al. Crustal structure of the southwestern margin of the Kuril arc sited in the eastern part of Hokkaido , Japan : Inferred from seismic refraction/reflection experiments [J]. Earth Planets Space , 2007 , 59 :375–380.
- [56]木崎甲子郎. 琉球岛弧的地质构造[J]. Tectonohysics, 1986, 125(1/ 2/3):193-205.
- [57]郝天珧 Neprochnov Y,江为为,等. 鄂霍茨克海的地球物理场与地 质构造[J]. 地球物理学进展,2001,16(1):1-10.
- [58]Rodnikov A G , Sergeyeva N A , Zabarinskaya L P , et al. The deep structure of active continental margins of the Far East (Russia) [J]. Russia Journal of Earth Science , 2008 , 10.
- [59]Piip V B, Rodnikov A G. The sea of Okhotsk crust from deep seismic sounding data [J]. Rusian Journal of Earth Sciences 2004 6(1) 35–48.
- [60]Honza E , ed. Geological investigation of the Okhotsk and Japan Seas off Hokkaido [C]. GH77–3 Cruise , 1977.
- [61]Hall R. Cenozoic reconstructions of SE Asia and the SW Pacific : Changing patterns of land and sea [EB/OL]. http://citeseerx.ist.psu. edu/showciting ?cid=5949509.
- [62]FU Ming-zuo, LIU Le-jun, ZHENG Yan-peng, et al. Tectonic geomorphology of the Ryukyu trench-arc-backarc system : Geologicalgeophysical exploration and mapping [J]. Chinese Science Bulletin, 2004, 49(14):1512–1526.
- [63]JIN Xiang-long, et al. Structure and tectonic evolution of Okinawa Trough [J]. Science in China: Series B (Chemistry, Biological, Agricultural, Medical & Earth Sciences), 1988, 31(5):614.
- [64]金翔龙 唐宝珏 , 庄杰枣 ,等. 冲绳海槽海底结构的地球物理调查 [J]. 地震地质 ,1983 ,5(1):42.
- [65]Letouzey J , Kimura M. The Okinawa Trough : Genesis of a back-arc basin developing along a continental marging [J]. Tectonophysics , 1986 ,125(1/2/3) :209–230.