矿物加工工程

新型捕收剂 KMC-1 浮选分离某铜钼矿试验研究

张琳1,2.3, 张晶1,2.3, 简胜1,2.3, 吕向文1,2.3, 唐鑫1,2.3

1. 昆明冶金研究院有限公司, 云南 昆明 650031;

2. 云南省选冶新技术重点实验室,云南昆明650031;

3. 共伴生有色金属资源加压湿法冶金技术国家重点实验室, 云南 昆明 650031

中图分类号:TD923^{*}.13 文献标识码:A 文章编号:1001-0076(2023)01-0120-08 DOI: 10.13779/j.cnki.issn1001-0076.2023.01.012

摘要 为了查明新型捕收剂 KMC-1 对某铜钼矿铜钼分离的影响,通过浮选试验、筛分-水析的方法,对比了丁基黄药、AP、 Y89(C₆H₁₃OSSNa)、异戊基黄药、丁铵黑药、KMC-1等捕收剂对浮选指标的影响。研究结果表明:新型捕收剂 KMC-1 优于其 他 5 种捕收剂,采用"铜钼混合浮选一铜钼分离"工艺流程,可以获得产率 0.021%、钼品位 47.79%、钼回收率 89.14% 的钼精 矿和产率 1.85%、铜品位 29.87%、铜回收率 91.23% 的铜精矿,钼精矿含铜 0.51%、铜精矿含钼 0.021%,铜钼互含较低,铜钼分 离效果良好。捕收剂 KMC-1 可实现粗粒级条件下铜矿物及钼矿物的高效捕收,在较宽的粒级范围内,铜精矿铜品位及钼精矿 钼品位较高。

关键词 铜钼分离;捕收剂;混合浮选

铜是我国重要的有色金属资源,属大宗紧缺矿产 之一。我国又是铜消费量大国,其中大部分铜是从硫 化铜矿精炼出来的^[1]。我国铜矿资源具有"四多四少" 特点^[23]:贫矿多,富矿少;共伴生矿床多,单一矿床少; 中小型矿多,大型矿少;难选矿多,易选矿少。据《中 国矿产资源报告(2021)》^[4]:2020年我国铜储量为 2701.30万t,主要分布在西藏、江西和云南三个省 (区)。我国铜矿的可采储量仅占世界可采储量的 2.96%,但精炼铜产量为世界第一。2020年,我国保持 世界主要精炼铜生产国地位,产量达1002.5万t,远超 其他国家,产量占比约为42%。同时,中国又是铜矿 资源需求大国,虽然产量较高,但是需求量更大,铜的 对外依存度很高。因此提高铜矿资源综合利用率,将 提升我国在铜矿资源方面的竞争力。

钼也是一种重要的工业材料,2020年我国钼储量 为373.61万t⁴⁴,我国钼矿探明储量虽多,但其品位与 世界主要钼资源国相比显著偏低,多属低品位矿床。 硫化铜钼矿是获得铜金属和钼金属的主要来源之一, 主要存在于斑岩型铜矿与砂卡岩型铜矿床中¹⁵¹,斑岩 型铜矿床或多或少地伴生有辉钼矿,因此需同时考虑 铜和钼的回收。

铜钼矿石一般采用选矿分离以期得到合格的铜、 钼精矿。铜钼矿选矿分离常规浮选工艺主要包括等 可浮浮选流程、优先浮选流程和混合浮选---分离浮选 流程以及分支浮选流程等¹³⁶。选别的关键是铜、钼、 硫多金属矿石的分离与富集,即铜、钼的富集与硫的 抑制。由于铜钼矿中铜、钼品位较低,一般采用混合 浮选富集然后再进行分离,因此捕收剂的选择至为关 键,既要对铜钼有良好的捕收性,而不捕收黄铁矿,同 时又能易于实现铜钼分离[78]。铜钼硫化矿的捕收剂种 类比较多,常规药剂有非极性油类、丁基黄药类、乙 基硫氮脂类、丁基铵黑药、苯胺黑药、Z-200等[9-12]。由 于铜钼矿中铜、钼都具有良好的可浮性,得到铜钼粗 精矿很容易,如何从铜钼精矿中分离出铜精矿和钼精 矿依旧是后续分选的关键问题。因此,寻找合适的捕 收剂,在铜钼混选阶段获得高质量铜钼精矿可为后续 铜钼分离奠定良好的技术基础。

本文选用6种代表性捕收剂进行浮选试验研究, 根据捕收剂的特点分别考察各自的捕收特性,查明不 同捕收剂在铜钼混选中对铜钼回收的影响,尽可能地 挑选出效果比较好的捕收剂提高进入铜钼分离的铜 钼混合精矿铜、钼品位,保证后续铜钼有效分离。

收稿日期:2022-04-24

基金项目:云南省科学技术厅基础研究专项-重点项目(202201AS070054)

作者简介:张琳(1991一),女,硕士研究生,助理工程师,主要从事浮选工艺研究, E-mail: zl415101@126.com。

通信作者:张晶(1985一),女,硕士研究生,高级工程师,主要从事选矿技术管理工作,E-mail:happy-jingle@163.com。

/%

1 试验材料及方法

1.1 矿石性质

试验样品取自云南某铜钼矿,矿石中主要铜矿物 为黄铜矿,微量斑铜矿和砷黝铜矿等;钼矿物主要为 辉钼矿,未见氧化钼矿物;其他金属硫化矿物主要有 黄铁矿,少量磁黄铁矿、毒砂、闪锌矿;脉石矿物主要 为长石,其次为石英、黑云母、白云母、绿泥石等。原 矿化学多元素分析结果见表1,铜物相分析结果分别 见表2。

从表1和表2可知,矿石中主要有价元素为铜、 钼,品位分别为0.53%、0.012%。通过对该矿石的铜 物相分析可知,绝大部分的铜以硫化物形式存在,说 明该矿石为典型的硫化矿。

镜下观察,黄铜矿呈他形粒状,粒度变化大。部 分集合体星散状分布于脉石矿物颗粒间(见图 la),部 分粒度极细的黄铜矿被石英等包裹。部分黄铜矿沿 矿石裂隙或矿物裂隙、解理缝进行充填(见图 lb),黄 铜矿与磁铁矿、黄铁矿、辉钼矿连生,或相互包裹。 黄铜矿的粒度一般在 0.06~0.2 mm,最大为 0.8 mm, 最小为 0.002 mm 左右。多数黄铜矿嵌布特征对铜的 回收较为有利,少量细粒(粒径<0.02 mm)黄铜矿稀疏 浸染状分布于矿石或被石英、长石等包裹,对铜的回 收有一定影响。 表 1 原矿化学多元素分析结果

 Table 1
 Results of chemical multi-element analysis of raw ore

成分	Cu	Мо	Fe	S	MgO	SiO ₂	Na
含量	0.53	0.012	3.47	0.89	2.06	62.17	1.74
成分	Zn	Pb	CaO	Al_2O_3	Au*	Ag*	
含量	0.017	< 0.05	1.77	12.93	0.10	1.29	
35 a/h	古人日日	4 (二) 1. ()					

注:*代表含量单位为g/t。

表 2 铜物相分析结果

 Table 2
 Results of conner phase analysis

/%

	resur	is of copper p	muse unurysi	5		
元素物相	胆矾	游离氧化铜	结合氧化铜	硫化铜	其他铜	总铜
含量	< 0.01	0.015	0.013	0.48	0.012	0.53
分布率	1.89	2.83	2.45	90.57	2.26	100.00

镜下观察可见, 钼矿物为辉钼矿(0.018%), 辉钼 矿呈片状(见图 1c), 他形粒状, 多数为集合体片状嵌 布于脉石矿物颗粒间, 部分与黄铜矿、黄铁矿连生, 部 分包裹于黄铜矿、黄铁矿中(见图 1d)。粒度悬殊较大, 片状辉钼矿粒度在 0.1~0.2 mm之间, 细粒辉钼矿粒 度<0.01 mm, 对钼的回收有一定影响。

1.2 试验药剂

铜钼混合浮选流程:采用石灰为调整剂,HCCL 为起泡剂,捕收剂包括丁基黄药、AP、Y89(C₆H₁₃OSSNa)、 异戊基黄药、丁铵黑药、KMC-1,药剂均为工业级。 其中,黄药^[3,11]是最常用的硫化矿捕收剂。丁基黄药、

图 1 原矿显微镜下观察图 Fig. 1 Observation diagram of raw ore under microscope

Y89(C₆H₁₃OSSNa)、异戊基黄药是不同碳链结构的黄 药;丁铵黑药¹⁹对硫化矿中的伴生金、银回收有明显 捕收效果,且选择性较好;HCCL^[14-15]为醇类起泡剂,与 松醇油相比,泡沫黏度低,有利于混合精矿分离; AP^{(3,17,17]}是北京矿冶研究总院研制的一种高选择性捕 收剂,对硫化铜矿物具有良好的选择性和捕收能力, 而对硫捕收能力弱,已在德兴铜矿成功应用;KMC-1 是昆明冶金研究院自主研发的新型铜捕收剂,是一种 烃油类不同比例复配的捕收剂,透明液体溶剂,水溶 性好,选择性强。

铜钼分离流程:采用硫化钠为铜抑制剂,水玻璃 和氟硅酸钠为脉石抑制剂和分散剂,煤油为捕收剂, 药剂均为工业纯药剂。其中,硫化钠不仅是铜抑制剂, 还可以吸附在硫化铜矿石表面的疏水膜还原解吸具 有脱药作用^[18]。氟硅酸钠作为铜钼分离抑制剂已在某 铜矿选厂使用^[16,19],主要用于脉石抑制和矿泥分散;水 玻璃是浮选中常用的分散剂,研究表明^[20],水玻璃对硅 酸盐等脉石矿物具有一定的抑制效果,铜钼分离时加 入一定量的水玻璃有利于降低钼精矿杂质含量,还可 以提高辉钼矿的回收率。

1.3 试验方法

(1)浮选:每组试验称取 500 g 矿样,装入磨机中 磨至所需要的细度,磨矿质量浓度恒定为 55%,再将 矿浆转移至 1.5 L 浮选机中进行粗扫选,粗精矿在小 型棒磨机再磨后矿浆再转移至 1 L 浮选机中进行第一 次精选,后续精选在 0.5 L 浮选机中进行。试验结束 后对产品进行过滤、烘干及称重,化验分析后处理数据。

(2)筛分-水析:取100g左右待检测矿样,用200 目标准筛进行粒度筛析,将+0.074mm筛上产品混匀、 缩分、送检化验;-0.074mm筛下产品与一定比例的 水混合成矿浆充分润湿后,采用BXF旋流粒度水析仪 进行测定,水析出不同粒级样品,对产品进行过滤、烘 干及称重,送检化验分析。

(3)工艺流程:由于原矿铜、钼品位低、共伴生严重、嵌布粒度细、铜硫矿物连生体较多。前期经详细上的探索试验,等可浮浮选流程、优先浮选流程等均未能取得较理想的浮选指标,本次试验最终确定采用"铜钼混合浮选——铜钼分离"的工艺流程。铜钼混合浮选粗选条件:石灰 200 g/t, HCCL 20 g/t, 控制变量,探索磨矿细度、捕收剂种类及用量的最佳参数。混合浮选试验流程如图 2 所示。

2 试验结果及分析

2.1 选矿试验研究

2.1.1 磨矿细度试验

磨矿细度试验采用一次粗选浮选流程,在石灰

图2 铜钼混合试验流程

Fig. 2 Experimental flowsheet of Cu-Mo bulk flotation

200 g/t, 捕收剂异戊基黄药 100 g/t, 起泡剂 HCCL 20 g/t 的条件下, 考察了磨矿细度对铜钼浮选的影响。

试验结果如图 3 所示,随着磨矿细度的增加,混 合精矿中钼品位及回收率基本不变,混合精矿中铜品 位和铜回收率呈先增加后下降的趋势,当磨矿细度为 -0.074 mm 占 55% 时,混合精矿铜品位和回收率最高, 因此确定适宜的磨矿细度为-0.074 mm 占 55%。

图 3 磨矿细度试验结果 Fig. 3 Results of grinding fineness test

2.1.2 不同捕收剂对比试验

不同捕收剂对比试验采用一次粗选浮选流程,在 磨矿细度为-0.074 mm占55%,石灰200g/t,捕收剂 100g/t,起泡剂HCCL20g/t的条件下,选取了丁基黄 药、Y89、异戊基黄药、AP、丁铵黑药及KMC-1等6 种捕收剂,考察不同捕收剂对铜钼混合浮选的影响。 试验结果见图4。

试验结果可知,采用丁铵黑药和黄药系列捕收剂, 混合精矿铜品位较低,且丁黄药、异戊基黄药及 Y89,

图 4 捕收剂种类试验结果 Fig. 4 Results of collector types tests

随着碳链的增长,捕收能力增强,选择性变差。采用 捕收剂 AP,精矿铜品位较高,但混合精矿中铜回收率 偏低,说明 AP 也不适应于该铜钼矿;采用捕收剂 Y89 与 KMC-1 混合精矿中铜回收率与钼回收率都比较高, 但是 KMC-1 作为捕收剂时,混合精矿中铜品位及钼品 位比较高。从选择性和捕收能力综合来看,KMC-1 更好。

为了进一步考察6种不同捕收剂作用所获得的 混合精矿粒度分布情况。将试验得到的混合精矿通 过筛分-水析的方法进行粒度筛析,结果见图5、图6。

由图 5、图 6 可以看出,通过粒级品位的比较, KMC-1 的捕收性能最好,获得的混合精矿中铜和钼品 位最高。通过粒级回收率比较可知,-74+21 μm 粒级

图 6 不同捕收剂对各粒级钼品位及钼分布的影响 Fig. 6 Effect of different collectors on molybdenum grade and molybdenum distribution of each particle size

含铜矿物易浮,-74+43 μm 含钼矿物易浮。与其它捕 收剂作用比较,丁基黄药、Y89 的加入强化了+74 μm 粒级含铜矿物的回收;异戊基黄药、KMC-1 的加入强 化了-74+56 μm 粒级含铜矿物的捕收,但异戊基黄药 不利于铜精矿铜品位的提高。

综合说明捕收剂 KMC-1 的优势在于可实现在粗 粒级条件下对铜矿物及钼矿物的高效捕收,在一个较 宽的粒级范围内,铜精矿铜品位及钼品位较高。

2.1.3 混合精矿再磨细度试验

混合精矿粗精矿再磨细度试验,采用一次粗选两次精选两次扫选的浮选流程,KMC-1作捕收剂,在不同再磨细度下进行了铜钼混选小型闭路试验。粗选+扫选I+扫选I+精选I,捕收剂KMC-1用量为120+60+35+8g/t,试验流程及药剂制度见图2,试验结果见表3。由表3可知,随着磨矿细度增加钼品位保持在0.6%以上,说明再磨对钼的回收影响较小。铜钼混合精矿铜品位均在25%以上,但是在粗精矿再磨细度为-0.048 mm占80%时,铜钼混合精矿中铜品位相对较低,为了得到更高铜品位的铜钼混合精矿,铜钼混合粗精矿仍然需要细磨,当粗精矿再磨细度为-0.048 mm占85%。

3 全流程闭路试验

为了进一步考察采用新型捕收剂 KMC-1 对铜钼

長3 不同再磨细度下小	型闭路试验结果 circuit test of re-grin	ding fineness				/%
再磨细度	产品		品 位			
(-0.048 mm含量)%	名称	产举	Cu	Мо	Cu	Мо
	铜钼精矿	1.71	25.88	0.62	84.59	92.04
80	尾矿	98.29	0.082	0.000 87	15.41	7.96
	原矿	100.00	0.53	0.012	100.00	100.00
	铜钼精矿	1.75	27.51	0.60	88.15	90.02
85	尾矿	98.25	0.065	0.001 2	11.85	9.98
	原矿	100.00	0.54	0.012	100.00	100.00
	铜钼精矿	1.77	27.22	0.63	86.74	90.44
90	尾矿	98.23	0.075	0.001 2	13.26	9.56
	原矿	100.00	0.53	0.012	100.00	100.00

分离的影响,选择混合浮选指标较好的 Y89 进行混合 浮选—铜钼精矿分离全流程对比试验,试验流程见

图 7,试验结果见表 4。

由表4结果可知,与Y89对比,采用KMC-1浮选

图 7 全流程小型闭路试验流程

Fig. 7 Flow chart of whole process of small closed-circuit of tests

Table 4Results of	of whole process of clo	sed-circuit tests					
埔	立日 夕称	र्ज के	F	品位		回收率	
1冊 4又 介门) 阳石协	ノ平	Cu	Мо	Cu	Мо	
	钼精矿	0.021	0.51	47.79	0.018	89.14	
	铜精矿	1.85	29.87	0.021	91.23	3.45	
KMC-1	尾矿	98.13	0.054	0.000 85	8.75	7.41	
	原矿	100.00	0.53	0.011	Cu 0.018 91.23 8.75 100.00 0.04 88.38 11.58	100.00	
	钼精矿	0.02	0.86	43.21	0.04	82.60	
Veo	铜精矿	1.56	29.93	0.016	88.38	2.25	
¥ 89	尾矿	98.42	0.062	0.001 7	11.58	15.15	
	原矿	100.00	0.53	0.011	100.00	100.00	

表 4 全流程浮选小型闭路试验结果

指标更好,最终可获得产率 0.021%、钼品位 47.79%、 钼回收率 89.14%的钼精矿和产率 1.85%、铜品位 29.87%、铜回收 91.23%的铜精矿,钼精矿含铜 0.51%, 铜精矿含钼 0.021%,铜钼互含较低,分离效果好。

4 结论

(1)矿样含铜 0.53%、钼 0.012%、硫 0.89%。矿石 中主要铜矿物为黄铜矿;钼矿物主要为辉钼矿;脉石 矿物主要为长石,其次石英、黑云母、白云母、绿泥石 等。多数黄铜矿嵌布特征对铜的回收较为有利,少量 细粒(粒度<0.02 mm)黄铜矿稀疏浸染状分布于矿石 中,对铜的回收有一定影响。辉钼矿嵌布粒度大小 悬殊较大,片状辉钼矿粒度在 0.1~0.2 mm 之间,利于 回收,细粒辉钼矿粒度<0.01 mm,对钼的回收有一定 影响。

(2) 在对比 6 种不同类型捕收剂铜钼混合浮选效 果的基础上,选择新型捕收剂 KMC-1 采用"铜钼混 合浮选—铜钼分离"的工艺流程,全流程闭路最终可 获得产率 0.021%、钼品位 47.79%、钼回收率 89.14% 的 钼精矿 和产率 1.85%、铜品位 29.87%、铜 回收 91.23% 的铜精矿,钼精矿含铜 0.51%,铜精矿含钼 0.021%,铜钼互含较低,分离效果好。

(3)通过筛分-水析,考察了不同捕收剂作用下混 合精矿的粒度分布情况,6种捕收剂对比,捕收剂 KMC-1的优势主要体现在对粗粒级范围内铜矿物及 钼矿物的高效捕收,在较宽的粒级范围内,铜精矿铜 品位及钼品位较高。同时,KMC-1对粒度粗的含铜、 钼矿物捕收作用明显,有较好的选择性。

参考文献:

- 王澜. 乳液颗粒捕收剂对黄铜矿和蛇纹石的浮选作用及机理研究 [D]. 赣州: 江西理工大学, 2020.
 WANG L. Study on flotation and mechanism of emulsion particle collector on chalcopyrite and serpentine [D]. Gan Zhou: Jiangxi University of Science and Technology, 2020.
- [2] 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺[J]. 矿产综合

利用, 2019(5): 32-36+16.

JIAN S, HU Y H, SUN W. Process of a low-grade mineral coppermolybdenum ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 32–36+16.

- [3]张晶,杨玉珠,简胜,等.云南某铜钼矿浮选工艺流程试验研究[J]. 有色金属(选矿部分), 2014(5): 29-34.
 ZHANG J, YANG Y Z, JIAN S, et al. Study on flotation process of copper and molybdenum ore in Yunnan[J]. Nonferrous Metals (Mineral Processing Section), 2014(5): 29-34.
- [4] 中国矿产资源报告[J]. 国土资源情报, 2021(11): 2.
 China mineral resources[J]. Land and Resources Information, 2021(11):
 2.
- [5] 陈志友,苏小琼,肖洪旭,等.云南某微细粒辉钼矿工艺矿物学与 浮选回收技术研究[J].矿物学报,2021,41(3):287-293.
 SUN Z Y, SUN X Q, XIAO H X, et al. A study on process mineralogy and flotation recovery technology of a kind of fine molybdenite ore in Yunnan Province, China[J]. Acta Mineralogica Sinica, 2021, 41(3): 287-293.
- [6] 乔吉波, 王少东, 张晶, 等. 迪庆铜钼矿选矿工艺研究[J]. 矿冶工程, 2017, 37(5): 60-63.
 QIAO J B, WANG S D, ZHANG J, et al. Beneficiation technique for copper-molybdenum ore from Diqing[J]. Mining and Metallurgical Engineering, 2017, 37(5): 60-63.
 [7] 纪国平, 张迎棋. 丁铵黑药对微细粒级黄铜矿捕收作用初探[J]. 新
- [8] 苏超,申培伦,李佳磊,等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(4): 1921–1929.
 SU C, SHEN P L, LI J L, et al. A review on depression and derepression of pyrite flotation[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1921–1929.
- [9] 吴海祥, 邵延海, 张铂华, 等. 低碱度铜硫分离浮选药剂的研究进展[J]. 矿冶, 2021, 30(4): 33-40.
 WU H X, SHAO Y H, ZHANG B H, et al. Research progress of flotation reagents for low alkalinity copper-sulfur separation[J]. Mining and Metallurgy, 2021, 30(4): 33-40.
- [10] ZHANG XL, HAN Y X GAO PENG, et al. Depression mechanism of a novel depressant on serpentine surfaces and its application to the selective separation of chalcopyrite from serpentine [J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(3).

/%

- [11] 孙乾予.铜矿物的晶体化学基因特征及浮选机理研究[D].沈阳: 东北大学, 2019.
 SUN Q Y. Research on crystal chemical gene characteristics and floation mechanism of copper minerals[D]. Shen Yang: Northeastern University, 2019.
- [12] ZHAO Q F, YANG H Y, TONG L L, et al. Understanding the effect of grinding media on the adsorption mechanism of cyanide to chalcopyrite surface by ToF –SIMS, XPS, contact angle, zeta potential and flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022: 644.
- [13] 王立刚,刘万峰,孙志健,等. 某复杂低品位铜钼硫多金属矿选矿 工艺技术研究[J]. 矿冶, 2015, 24(S1): 30-34.
 WANG L G, LIU W F, et al. Study on mineral processing technology of a complex low grade copper molybdenum sulfur polymetallic ore[J]. Mining and Metallurgy, 2015, 24(S1): 30-34.
- [14] 田小松,高利坤.新型高效起泡剂HCCL在羊拉铜矿的应用研究[J]. 价值工程,2015,34(32):129-131.
 TIAN X S, GAO L K. Study on the application of new frother HCCL in Yangla copper mine[J]. Value Engineering, 2015, 34(32):129-131.
- [15] 朱月锋,高双龙,李春保,等. 云南某铜钼矿浮选药剂制度优化研究[J]. 中国矿业, 2018, 27(3): 132-137.
 ZHU Y F, GAO S Y, LI C B, et al. Optimization of flotation reagent system for a copper-molybdenum ore in Yunnan province[J]. China Mining Magazine, 2018, 27(3): 132-137.

- [16] 朱一民. 2021年浮选药剂的进展[J]. 有色金属(选矿部分),
 2022(2): 1-15.
 ZHU Y M. Progress of Flotation Reagents in 2021[J]. Nonferrous Metals (Mineral Processing Section), 2022(2): 1-15.
- [17] 孙志健,李成必,陈金中,等.高效选择性铜捕收剂AP应用研究[J]. 有色金属(选矿部分), 2010(5): 41-43.
 SUN Z J, LI B C, CHEN J Z, et al. The utilization research of high selective copper collector AP[J]. Nonferrous Metals (Mineral Processing Section), 2010(5): 41-43.
- [18] 张红英,张军,刘建国,等. 西藏某铜钼混合精矿分离试验研究[J]. 有色金属(选矿部分), 2019(6): 23-26+49.
 ZHANG H Y, ZHANG J, LIU J G, et al. Selective flotation of a coppermolybdenum bulk concentrate from Tibet[J]. Nonferrous Metals (Mineral Processing Section), 2019(6): 23-26+49.
- [19] 夏亮, 杜淑华, 朱国庆, 等. 安徽某含泥难选铜钼矿选矿试验[J].
 矿产综合利用, 2019(3): 44-47.
 XIA L, DU S H, ZHU G Q, et al. Beneficiation of a refractory Cu-Mo ore containing high-content slimes in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 44-47.
- [20] 陈磊, 马亮. 陕西某低品位铜钼矿选矿试验研究[J]. 铜业工程, 2021(4): 47-51.
 - CHEN L, MA L. Experimental study on mineral processing of a low copper-molybdenum ore in Shaanxi[J]. Copper Engineering, 2021(4): 47–51.

Experimental Study on Flotation Separation of a Copper-molybdenum Ore with a Novel Collector KMC-1

ZHANG Lin^{1,2,3}, ZHANG Jing^{1,2,3}, JIAN Sheng^{1,2,3}, LV Xiangwen^{1,2,3}, TANG Xin^{1,2,3}

1. Kunming Metallurgical Research Institute Co., Ltd., Kunming 650031, Yunnan, China;

2. The Key Lab of New Technology for Mineral Processing and Metallurgy of Yunnan Province, Kunming 650031, Yunnan, China;

3. State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources, Kunming 650031, Yunnan, China

Abstract: In order to investigate the effect of the novel collector KMC-1 on the separation of copper and molybdenum from a copper-molybdenum ore, the different kinds of collectors including butyl xanthate, AP, Y89 ($C_{6}H_{13}OSSNa$), isoamyl xanthate, ammonium butyl aerofloat and KMC-1 were compared through flotation tests and screening-hydraulic analysis. The results showed that the novel collector KMC-1 was better than the other five collectors. Using the flowsheet of "Cu-Mo bulk flotation–Cu-Mo separation" and KMC-1, the molybdenum concentrate with the yield of 0.021%, molybdenum grade of 47.79% and molybdenum recovery of 89.14% was obtained, as well as the copper concentrate with the yield of 1.85%, copper grade of 29.87% and copper recovery of 91.23%. Furthermore, the molybdenum concentrate contained 0.51% copper, and the copper concentrate was low, and the separation of copper and molybdenum was realized. Additionally, copper minerals and molybdenum minerals in the coarse-grained range could be efficiently collected with KMC-1, resulting in higher grades of copper and molybdenum in concentrate.

Keywords: copper-molybdenum separation; collectors; mixed flotation

引用格式:张琳,张晶,简胜,吕向文,唐鑫. 新型捕收剂 KMC-1 浮选分离某铜钼矿试验研究[J]. 矿产保护与利用, 2023, 43(1): 120-127. ZHANG Lin, ZHANG Jing, JIAN Sheng, LV Xiangwen, TANG Xin. Experimental study on flotation separation of a coppermolybdenum ore with a novel collector KMC-1[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 120-127.

投稿网址: http://hcbh.cbpt.cnki.net

E-mail: kcbh@chinajoumal.net.cn