张磊,李迎春,屈文俊,等.离子吸附型稀土监控样定值研究[J].岩矿测试,2020,39(6):878-885. ZHANG Lei, LI Ying-chun, QU Wen-jun, et al. Preparation of Ion-adsorption Type REE Monitoring Samples[J]. Rock and Mineral Analysis,2020,39(6):878-885. 【DOI: 10.15898/j. cnki.11-2131/td.202004230058】

离子吸附型稀土监控样定值研究

张磊,李迎春, 屈文俊, 周伟, 尚文郁, 伊芹 (国家地质实验测试中心, 北京 100037)

摘要:离子吸附型稀土矿是中国极其重要、世界罕见的矿床类型,是中国的优势矿产资源。目前现有的稀土 标样全部为稀土矿石成分分析标样,稀土元素以氧化物形式稳定存在,无法淋滤浸取,不能对离子吸附型稀 土淋滤过程进行监控。为进一步满足离子吸附型稀土资源勘查和评价需要,本文按照导则《标准物质定值 的通用原则及统计学原理》(JJF 1343—2012),制备了三种岩性共9个离子吸附型稀土监控样。样品采自南 岭地区典型富轻稀土(HREE)离子吸附型稀土风化壳,经干燥、球磨至200目后混合机混匀,以硫酸铵淋滤、 电感耦合等离子体质谱法(ICP-MS)测试离子相稀土元素含量,检验样品均匀性,结果表明 F 值小于临界 值 F_{0.05(19,20)},样品均匀性良好。在两年内对样品进行4次稳定性检验,在95% 置信度时 | β₁ | <t_{0.05} × s(β₁),未发现明显不稳定变化,表明稳定性良好。由8 家技术权威的实验室进行协作定值,经过统计计算给 出各离子相稀土元素含量的加权平均值和扩展不确定度,定值结果涵盖除 Sc 以外的 15 种稀土元素。该系 列监控样的研制能够为离子吸附型稀土矿产资源评价和有效利用等工作提供计量支撑。

关键词:离子吸附型稀土;稀土元素;淋滤;监控样;定值

要点:

(1) 制备了9个离子吸附型稀土监控样,定值成分达15种。

(2) 监控样的均匀性、稳定性及定值均满足 JJF 1343-2012 的要求。

(3) 监控样的制备为完善稀土标准物质体系奠定了基础。

中图分类号: TQ421.31 文献标识码: A

稀土在军事、冶金、石油化工等方面有着重要 的、不可替代的作用。离子吸附型稀土矿作为世界 罕见的稀土矿床类型,是我国的优势矿产资源。离 子吸附型稀土中离子相稀土以羟基或水合羟基的形 式吸附在黏土矿物上,可与强电解质(Mg²⁺、NH₄⁺ 等)交换解吸进入溶液^[1-2]。与氟碳铈矿、混合型稀 土矿等传统稀土矿物相比,离子吸附型稀土中的轻 重稀土元素配分齐全,且不需要破碎、分解、选矿等 方式来分离不同的稀土元素,直接浸取即可获 得^[3-4],工艺简单,生产成本低,对环境污染较小,有 较大的优势和发展前景。

目前离子相稀土的提取方式主要以硫酸铵、硫

酸镁等强电解质溶液淋滤为主^[5-8],辅以 ICP - MS、 ICP - OES 测定稀土含量^[5,9-10]。但在样品淋滤处 理过程中,缺乏相应的标准物质或者监控样品对前 处理过程进行有效监控;光谱/质谱测试过程中,只 测试已有的稀土标样^[4-5],其岩石矿物组成、稀土配 分等与离子吸附型稀土矿样品有很大差异,不能很 好地对测试过程提供参考,质量控制效果不理想;现 有的 GBW07158、GBW07188 等稀土标样全部为稀 土矿石成分分析标样,由于原料样品的差异及研制 目的的不同,该类标样中稀土元素以氧化物形式稳 定存在,需强酸溶解提取,无法进行淋滤,不能满足 离子相稀土的分析测试要求。随着离子型稀土资源

收稿日期: 2020-04-23; 修回日期: 2020-07-30; 接受日期: 2020-09-19

基金项目:中国地质调查局中国地质科学院基本科研业务费项目(CSJ201602);中国地质调查局中国地质科学院基本科研 业务费专项(CJYYWF20182602);中国地质调查局地质调查工作项目(DD20190323)

作者简介:张磊,硕士,工程师,主要从事岩石矿物测试技术应用与研究。E-mail: zhang. lei. 198806@163. com。

勘查和开发程度的加大,已对稀土分析测试的准确 性要求提高,对更接近实际样品矿物组成的标准样 品的需求加强,这都迫切需要制备新型离子吸附型 稀土标样。

针对离子吸附型稀土分析现状,本研究以我国南 岭地区离子吸附型稀土风化壳为原料样品研制离子 吸附型稀土监控样。参考导则《标准物质定值的通用 原则及统计学原理》(JJF 1343—2012),本文详细阐 述了离子吸附型稀土监控样的制备和定值,探讨了监 控样的均匀性、稳定性评估,给出监控样扩展不确定 度。研制的监控样可完善我国稀土标准物质体系,解 决离子吸附型稀土中离子相稀土的精确测定问题。

1 实验部分

1.1 仪器及工作条件

NexION300D 电感耦合等离子体质谱仪 (ICP-MS,美国 PerkinElmer公司)。仪器工作条件 为:ICP 功率 1350W,冷却气流量 13.0L/min,辅助 气流量 0.75L/min,雾化气流量 1.0L/min,取样锥孔 径 1.0mm,截取锥孔径 0.9mm,超锥孔径 1.0mm,停 留时间 13ms/点,扫描次数 20 次,总采集时间 12s, 采样深度 120mm,采用跳峰测量。

1.2 标准溶液和主要试剂

稀土单元素标准储备溶液:均用高纯氧化物配制,其浓度为1000µg/mL。

ICP - MS标准工作溶液:由标准储备溶液逐级稀释至20ng/mL,介质为5%硝酸。

钡、铈、镨、钕单元素干扰校正溶液浓度为 1μg/mL,介质为5%硝酸。

稀土元素混合标准样品:MTSD - 1 - 1 为 Y、 La、Ce、Pr、Nd、Sm、Eu 的混合溶液,其浓度为 20 ng/mL,介质为 5% 硝酸;MTSD - 1 - 2 为 Gd、Tb、 Dy、Ho、Er、Tm、Yb、Lu 的混合溶液,其浓度为 20 ng/mL,介质为 5% 硝酸。

ICP-MS内标:10ng/mL的Rh、Re混合溶液, 介质为5%硝酸。内标溶液于测定时通过三通在线 加入。

硝酸(MOS级,北京化学试剂研究所);硫酸铵: 分析纯;去离子水:电阻率大于18MΩ・cm。

1.3 样品采集和制备

采集南岭地区火山岩、变质岩、沉积岩三种岩性 共9个离子吸附型稀土样品,分别编号HS-1、 HS-2、HS-3、BZ-1、BZ-2、BZ-3和CJ-1、CJ-2、 CJ-3。采集后以铁锤敲碎,用ZHM1A 盘磨进行粉 碎,粉碎时间 2min,再将样品放入球磨机内进行细磨直至样品粒度小于 200 目达到 99% 以上。以 YSH-200 混合机混匀样品,正转、反转各 999s 为一 个周期,每个样品混匀三个周期,共计 1.5h。样品 于 105℃烘箱烘干 2h,备测。

1.4 样品前处理及分析测试

准确称取 4.0g 样品(<200 目)于聚四氟乙烯 塑料瓶中,加入 2.5% 硫酸铵溶液 32mL,摇晃均匀 后静置 24h 以上。取 1mL 上清液,加入 5% 硝酸 9mL 稀释,ICP – MS 上机测定溶液中的稀土元素含 量。每个样品做三个平行,实验过程中带两个流程 空白。以 1.1 节中的仪器工作条件测定淋滤溶液中 的¹³⁹ La、¹⁴⁰ Ce、¹⁴¹ Pr、¹⁴² Nd、¹⁵² Sm、¹⁵³ Eu、¹⁵⁸ Gd、 ¹⁵⁹ Tb、¹⁶⁴ Dy、¹⁶⁵ Ho、¹⁶⁶ Er、¹⁶⁹ Tm、¹⁷⁴ Yb、¹⁷⁵ Lu、⁸⁹ Y 共 15 种元素。以常用的干扰系数校正法来消除轻稀土对 重稀土的干扰^[11-12]。按下式计算固体样品中待测 元素的含量:

 $w = 80 \times (\rho_{\rm tr} - \rho_0)$

式中:w—试样中被分析元素的含量(μ g/g);80—淋 滤、测试过程稀释倍数(mL/g); ρ_{u} —校正干扰后被 分析元素的真实浓度(μ g/mL); ρ_{0} —实验室试剂空 白溶液中被分析元素的浓度(μ g/mL)。

2 结果与讨论

2.1 监控样均匀性检验

均匀性是用来描述物质特性的空间分布特征, 在标准物质的研制过程中必须进行均匀性评估,以 证明其具有良好的均匀性,监控样制备时也需进行 均匀性评估。采用方差分析 F 检验法和测试结果 的相对标准偏差对监控样的均匀性进行评价^[13-16], 当计算所得的瓶间和瓶内方差检验 F 值小于临界 值 F_{0.05(19,20)}时,说明监控样均匀性良好^[17-18];分析 结果的相对标准偏差(RSD) <5%时,说明分析结果 精密度较高^[19-20],经验判断监控样均匀性良好^[20]。

根据《标准物质定值的通用原则及统计学原理》 (JJF 1343—2012)中均匀性检验抽样方法和评估方 法,本次均匀性检验对每个监控样品从全部塑料收纳 箱中的上中下的不同部位分装出若干小瓶,再从中随 机抽取 20 瓶,每瓶取双份样品,以本文所列方法进行 均匀性检验分析,检验结果见表1,其中 Q_1 、 Q_2 为组间 差方和、组内差方和。从表1中数据可知,监控样的 均匀性检验得到的 F 值都小于相应的临界值 $F_{0.05(19,20)} = 2.16;各稀土元素测定结果的RSD均小$

表1 监控样均匀性检验结果

Table 1 Analytical results of the homogeneity test for monitoring samples

样品 编号	参数	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
	\bar{X} (× 10 ⁻⁶)	462.2	4.8	97.5	383.1	69.3	6.2	59.5	9.7	45.2	7.5	17.4	2.1	13.2	1.6	275.4
	Q_1	150.1	0.007	111.5	368	22.8	0.1	17.2	0.3	13.6	0.5	0.6	0.006	0.4	0.003	20.1
HS – 1	Q_2	232.5	0.07	46.1	186.5	34.2	0.09	10.1	0.1	5.9	0.4	2	0.03	0.8	0.004	109.6
	F	0.51	0.08	1.91	1.56	0.53	0.87	1.35	2.01	1.82	0.93	0.22	0.17	0.37	0.52	0.14
	RSD(%)	1.08	0.73	4.42	2.04	2.81	2.11	2.84	2.13	3.33	3.92	1.76	1.44	1.90	1.32	0.66
	$X(\times 10^{-6})$	851.6	46.6	226.7	849.4	108.4	6.7	54 21 4	6.4	24.6	4.2	12.5	1.5	7.5	0.96	94.4
<u>н</u> с 2	Q_1	529.9 1523 1	20.4	105 3	1097.9	12.7	0.03	51.4 12.0	0.03	0.2	0.03	0.5	0.002	0.2	0.0009	58.4 10.4
115 - 2	¥2 F	0 17	1 31	2 00	0.94	0.52	1 80	1 93	1.06	0.4	1.92	1 70	0.005	0.5	0.004	15.4
	RSD(%)	0.87	4.50	2.94	1.98	1.34	2.52	4.24	1.85	0. 77	4.43	4.44	4.84	2.44	1.28	3.50
	\bar{X} (x 10 ⁻⁶)	920.9	28.9	262.2	804.8	112.4	7	41.6	4.6	17.7	2.8	8.8	0.8	5.6	0.7	59.3
	Q_1	2672.5	3.2	544.5	668.1	4.5	0.09	37.2	0.6	1.6	0.05	0.001	0.001	0.3	0.002	28.5
HS – 3	Q_2	1225.1	2.1	485.8	456.4	29.3	0.08	33.5	0.2	4.8	0.02	0.5	0.003	0.2	0.0007	47.8
	F	1.72	1.20	0.88	1.16	0.12	0.90	0.88	2.06	0.26	1.96	0.00	0.36	1.33	2.03	0.47
	RSD(%)	2.29	2.54	3.63	3.80	0.77	1.79	4.98	4.81	2.90	4.22	0.18	1.69	4.21	2.57	3.68
	\bar{X} (× 10 ⁻⁶)	101.9	9.4	16.8	56.6	10.2	2.1	13.3	2.1	11.4	2.1	5.5	0.5	3.3	0.4	64.6
	Q_1	56.7	0.3	2.76	17.8	0.3	0.02	0.8	0.03	0.09	0.0001	0.07	0.0002	0.1	0.002	15.5
BZ – 1	Q_2	96.4	0.004	2.16	31.4	2.2	0.03	0.8	0.04	0.06	0.0005	0.1	0.0009	0.1	0.0008	8.5
	F	0.46	1.68	1.01	0.45	0.10	0.39	0.80	0.60	1.28	0.21	0.56	0.20	0.75	1.57	1.44
	RSD(%)	3.01	4.40	4.04	3.05	2.18	2.57	2.77	3.54	2.52	2.53	1.95	4.40	4.14	4.33	4.19
	$X(\times 10^{-6})$	138.4 81.0	5.5	29.4	24.5	0.7	5.2 0.003	19.7 3.4	2.5	14.4	2.8	7.4	0.9	4.8	0.0	/1.0
R7 _ 2	Q_1	33.6	0.4	1.52	24.J 0 1	1 02	0.003	1.5	0.01	0.02	0.04	0.04	0.0000	0.01	0.001	5 7
	72 F	1 93	1.57	1.92	2.13	0.29	0.02	1.5	1 80	0.4	1.64	0.00	0.31	0.02	1 32	0.14
	RSD(%)	2.99	3.98	2.68	1.94	2.00	0.77	4.97	2.33	0.45	4.87	1.13	4.63	0.90	2.68	0.57
	\bar{X} (x 10 ⁻⁶)	270.8	13.3	57.1	206	29.6	4.3	23.3	2.3	11.1	2.1	5.6	0.6	3.6	0.4	53
	Q_1	253.5	0.01	91.6	16.7	6.4	0.02	1	0.02	0.2	0.1	0.7	0.003	0.1	0.0006	10.9
BZ – 3	Q_2	203.2	0.3	54.7	46.7	4.1	0.01	0.4	0.008	0.3	0.007	0.3	0.003	0.1	0.001	5.6
	F	0.98	0.03	1.32	0.28	1.25	1.58	2.03	2.15	0.47	1.37	2.04	0.97	0.65	0.44	1.54
	RSD(%)	2.40	0.33	4.00	0.81	3.50	1.68	3.35	4.69	1.42	4.12	4.49	4.27	3.89	2.93	3.35
	\bar{X} (×10 ⁻⁶)	44.5	1.4	16.7	90.7	57.2	0.4	60.2	9.9	52.8	9.6	30.1	4.4	27.3	3.9	237.7
	Q_1	1.8	0.002	0.33	13.5	114.2	0.001	9.6	0.5	27.5	0.1	8.6	0.09	2.3	0.01	230.3
CJ – 1	Q_2	3.7	0.002	0.54	22.7	78.1	0.0003	26.3	0.2	10.9	0.1	7.3	0.03	1.3	0.04	924.2
	F DCD(C()	0.40	0.69	0.49	0.47	1.15	2.12	0.29	1.98	1.99	0.97	0.93	1.98	1.46	0.27	0.20
	RSD(%)	1.20	1.28	1.41	1.65	71.2	4.29	2.11	4.58	4.05	2.43	3.99	4.44	2.28	1.22	2.61
	$X (\times 10^{-6})$	425.7	0.2	134 5	1300 /	18 7	0.06	40.5 28	0.0	0.2	4.5	9.7	0.002	0.05	0.7	213 6
CL 2	0_2	1055 3	0.2	122 5	753.8	24.2	0.00	11 4	0.03	3.6	0.07	0.4	0.002	0.03	0.002	170.3
0, 2	F	0.30	1.88	0.87	1.37	0.61	1.36	1.94	2.12	0.05	1.88	1.13	1.67	1.72	1.19	0.99
	RSD(%)	1.92	2.99	4.65	4.38	2.48	3.72	4.86	3.79	0.74	4.46	2.77	4.83	4.04	2.82	4.83
	\bar{X} (x 10 ⁻⁶)	342.8	12.4	78.8	249.7	55.8	6.9	56.7	10	64.4	11.7	33.4	3.8	24.4	3.4	315.3
	Q_1	221.9	0.5	68.9	48.9	14.2	0.07	17.5	0.2	6.8	0.7	1.1	0.1	1.4	0.01	529.5
CJ – 3	Q_2	118.8	0.2	93.2	87.3	8.7	0.12	7.8	0.1	5.7	0.3	3.2	0.08	1.6	0.04	338.5
	F	1.47	1.85	0.58	0.44	1.29	0.48	1.75	1.87	0.95	1.70	0.28	1.07	0.67	0.30	1.23
	RSD(%)	1.77	2.45	4.30	1.14	2.76	1.60	4.12	4.12	4.11	2.88	1.29	4.23	1.97	1.44	2.98

注: X 为浓度平均值; Q_1 为组间差方和; Q_2 为组内差方和; F 为统计量; RSD 为相对标准偏差。

于 5%,从技术参数和经验参数分析均符合均匀性 检验要求,由此判定监控样的均匀性符合要求。

2.2 监控样稳定性检验

稳定性是指在规定时间间隔和环境条件下,样

品特性量值保持在规定范围内的性质^[21-22]。稳定 性是标准物质的基本属性,在标准物质的研制过程 中必须进行稳定性评估,在监控样制备过程中也需 进行稳定性评估。常用的样品稳定性评估方法有直 线拟合法^[19-20,23-24]、方差分析法^[25]和极差法^[26]。 本研究在两年时间内对监控样进行4次稳定性检 验,采用单因素方差分析法对所制备监控样进行稳 定性评估,求出拟合直线的斜率β₁以及β₁的标准偏 差 $s(\beta_1)$, 检验结果见表 2。由稳定性检验结果可 知,95% 置信度时 $|\beta_1| < t_{0.05} \times s(\beta_1)$, 即所制备监 控样中各稀土元素含量回归直线的斜率不显著, 因 此可判定监控样的特性值稳定性良好^[27-29]。本系

表 2 监控样稳定性检验结果

Table 2 Analytical results of the long - term stability test for monitoring samples

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	样品 编号	参数	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
$ \begin{array}{c} 1, 10 \\ \beta, 1 \\ \beta, 0 \\ \beta, 1 \\ \beta, 1 \\ \beta, 0 \\ \beta, 1 \\ $		$\frac{1}{V}$ (10^{-6})	516.5	5.4	99.9	354.8	74.4	6.8	66.6	9.0	49.3	7.9	18.8	2.0	11.2	1.5	222.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β_1	-7.902	-0.063	-1.269	-4.616	-0.738	-0.051	-1.079	-0.074	-0.256	-0.099	-0.197	-0.016	-0.148	- 0. 006	-3.143
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HS – 1	β_0	611.273	6.131	115.115	410.186	83.214	7.422	79, 546	9.920	52.329	9.076	21, 199	2.218	12,965	1.529	260.182
$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$s(\beta_1)$	3,450	0.093	0.258	0.878	0.163	0.022	0.113	0.029	0.192	0.011	0.077	0.003	0.021	0.001	1.543
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$t_{0,05} \times s(\beta_1)$	43, 810	1, 181	3. 281	11, 149	2.070	0.281	1.439	0.369	2.440	0.144	0.975	0.040	0.272	0.016	19.596
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{1000}{V}$	951.5	42.5	230.1	852.4	108.0	6.4	49.5	4.9	27.6	4.0	13.1	1.2	7.3	1.0	95.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β_1	-8.136	-0.350	-1.297	- 3, 568	-0.991	-0.014	-0.641	-0.021	-0.352	-0.002	-0.246	0.000	-0.002	0.001	-0.613
$ \begin{array}{c} \chi(\mu) \\ \eta_{0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	HS – 2	Bo	1049.118	46.672	245.682	895.204	119,924	6.618	57.181	5.163	31.821	4.029	16.090	1.187	7.293	0.939	102.917
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$s(\boldsymbol{\beta}_1)$	10.139	0.328	1.344	4.581	0.572	0.044	0.430	0.002	0.212	0.020	0.146	0.004	0.028	0.003	0.422
$ \begin{array}{c} \bar{\chi} (\chi 10^{-4}) \\ 1003.2 \\ 29.5 \\ 232.6 \\ 807.1 \\ 113.1 \\ 6.7 \\ 42.6 \\ 3.5 \\ 19.9 \\ 2.8 \\ 9.7 \\ 0.8 \\ 9.7 \\ 0.8 \\ 9.7 \\ 0.8 \\ 5.1 \\ 0.07 \\ 0.11 \\ 0.00 \\ 0.007 \\ 0.02 \\ 0.00 \\ 0.017 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.017 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.017 \\ 0.00 \\ 0.00 \\ 0.010 \\ 0.000 $		$t_{0,05} \times s(\beta_1)$	128.763	4.171	17.064	58.184	7.261	0.564	5.461	0.027	2.692	0.260	1.853	0.051	0.351	0.036	5.364
$ \begin{array}{c} $		$\frac{1000}{V}$	1003.2	29.5	223.6	807.1	113.1	6.7	42.6	3.5	19.9	2.8	9.7	0.8	5.1	0.7	61.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β_1	- 5. 585	-0.128	-0.915	-2.283	-0.680	-0.004	-0.314	-0.009	-0.250	0.004	-0.141	0.003	0.017	0.002	-0.287
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HS – 3	β_0	1070.210	31.039	234,605	834,469	121.292	6.748	46,407	3.629	22.891	2.707	11.371	0.808	4.942	0.635	65.346
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$s(\beta_1)$	10.795	0.212	1.274	4.811	0.564	0.037	0.257	0.017	0.163	0.010	0.184	0.004	0.022	0.001	0.322
$ \begin{array}{c} \bar{\chi}(\times 10^{-6}) & 94.6 & 9.7 & 16.7 & 57.1 & 10.5 & 2.1 & 11.8 & 1.9 & 11.2 & 2.1 & 5.4 & 0.6 & 3.0 & 0.4 & 70.9 \\ \hline \beta_1 & -0.715 & -0.019 & -0.074 & -0.199 & -0.042 & -0.007 & -0.052 & -0.002 & -0.002 & -0.009 & -0.002 & 0.000 & -0.022 & 0.000 & -0.023 \\ \hline \beta_0 & 10.195 & 9.978 & 17.555 & 59.493 & 11.049 & 2.228 & 12.386 & 1.908 & 11.508 & 0.058 & 0.058 & 0.058 & 0.051 & 0.071 & 1.077 \\ \hline s_{(\beta_1)} & 0.541 & 0.048 & 0.133 & 0.376 & 0.062 & -0.00 & -0.067 & 0.007 & 0.063 & 0.007 & 0.028 & 0.002 & -0.008 & 0.000 & -0.67 \\ \hline s_{(\alpha_0} \times s(\beta_1) & 10.675 & 0.613 & 1.693 & 4.770 & 0.793 & 0.126 & 0.936 & 0.094 & 0.798 & 0.091 & 0.357 & 0.026 & 0.106 & 0.004 & 5.931 \\ \hline \bar{\chi}(\times 10^{-6}) & 174.1 & 6.3 & 31.6 & 99.4 & 17.3 & 3.3 & 16.6 & 2.3 & 14.3 & 2.5 & 6.9 & 0.8 & 4.4 & 0.5 & 81.5 \\ \hline \beta_1 & -1.698 & -0.025 & -0.324 & -1.030 & -0.29 & -0.020 & -0.188 & -0.007 & -0.147 & -0.005 & -0.044 & -0.003 & -0.010 & -0.055 \\ \hline RZ - 2 & \beta_0 & 194.433 & 6.578 & 35.461 & 111.716 & 19.855 & 3.508 & 18.866 & 2.402 & 16.046 & 2.612 & 7.429 & 0.88 & 4.561 & 0.548 & 88.259 \\ \hline s(\beta_1) & 1.858 & 0.011 & 0.498 & 0.570 & 0.071 & 0.019 & 0.079 & 0.014 & 0.056 & 0.012 & 0.044 & 0.003 & 0.19 & 0.003 & 0.577 \\ \hline s_{0.01} \times s(\beta_1) & 2.78.5 & 14.7 & 57.4 & 195.3 & 29.4 & 4.3 & 18.1 & 2.0 & 11.2 & 2.0 & 5.7 & 0.6 & 3.5 & 0.4 & 49.5 \\ \hline \mu_1 & -3.127 & -0.089 & -0.58 & -1.377 & -0.035 & -0.248 & -0.005 & -0.114 & -0.009 & -0.065 & -0.007 & -0.01 & -0.602 \\ \hline LZ - 3 & \beta_0 & 316.650 & 15.804 & 63.866 & 21.697 & 3.377 & 0.035 & -0.248 & -0.005 & -0.114 & -0.009 & -0.065 & -0.005 & -0.003 & -0.017 & -0.01 & -0.602 \\ \hline \chi(\mu_1 - 0.572 & 0.124 & -1.01 & -0.570 & -0.48 & -0.025 & -0.24 & -0.056 & -0.005 & -0.005 & -0.003 & -0.017 & -0.01 & -0.602 \\ \hline \chi(\mu_1 - 0.574 & 0.129 & 1.8 & 17.3 & 80.3 & 52.7 & 0.44 & 63.8 & 9.0 & 9.43 & 9.4 & 27.1 & 3.9 & 24.4 & 3.6 & 267.8 \\ \hline \beta_1 & -0.572 & 0.012 & -0.101 & -0.570 & -0.458 & -0.027 & -0.24 & -0.036 & -0.071 & -0.004 & -0.055 \\ \hline \chi(\mu_1 - 0.534 & 0.029 & 1.668 & 7.324 & 4.059 & 0.327 & 0.046 & 0.229 & 1.38 & 1.$		$t_{0.05} \times s(\beta_1)$	137.096	2.690	16.183	61.104	7.164	0.467	3.266	0.219	2.070	0.132	2.342	0.054	0.276	0.015	4.084
$ \begin{array}{c} \left(x \ 10^{-6} \right) & -0.715 & -0.019 & -0.074 & -0.199 & -0.074 & -0.079 & -0.092 & -0.002 & -0.002 & -0.009 & 0.000 & -0.002 & 0.000 & -0.323 \\ \left(\beta_{1} \right) & 0.841 & 0.048 & 0.133 & 0.376 & 0.062 & 0.010 & 0.074 & 0.007 & 0.063 & 0.007 & 0.028 & 0.002 & 0.008 & 0.000 & -0.467 \\ \left(x \ 0.06 \times s \left(\beta_{1} \right) & 0.675 & 0.613 & 1.693 & 4.770 & 0.793 & 0.126 & 0.906 & 0.097 & 0.078 & 0.091 & 0.357 & 0.026 & 0.100 & 0.047 \\ \hline \left(x \ 0.06 \times s \left(\beta_{1} \right) & 1.675 & 0.613 & 1.693 & 4.770 & 0.793 & 0.126 & 0.908 & 0.007 & -0.147 & -0.005 & -0.044 & -0.003 & -0.010 & 0.000 & -0.565 \\ \hline \left(x \ 0.07 \ 0.057 & 0.78 & 0.025 & -0.324 & -1.030 & -0.29 & -0.020 & -0.188 & -0.07 & -0.147 & -0.005 & -0.044 & -0.003 & -0.010 & 0.000 & -0.565 \\ \hline \left(x \ 0.05 \times s \left(\beta_{1} \right) & 1.858 & 0.011 & 0.408 & 0.570 & 0.071 & 0.19 & 0.079 & 0.014 & 0.005 & -0.044 & 0.003 & 0.019 & 0.003 & 0.577 \\ \hline \left(x \ 0.05 \times s \left(\beta_{1} \right) & 2.858 & 0.011 & 0.408 & 0.570 & 0.071 & 0.19 & 0.09 & 0.015 & 0.012 & 0.044 & 0.033 & 0.019 & 0.033 & 7.572 \\ \hline \left(x \ 0.05 \times s \left(\beta_{1} \right) & 2.354 & 1.47 & 5.74 & 195.3 & 2.94 & 4.3 & 18.1 & 2.0 & 11.2 & 2.0 & 5.7 & 0.6 & 3.5 & 0.44 & 9.5 \\ \hline \left(x \ 10^{-6} \right) & 278.5 & 14.7 & 5.74 & 195.3 & 2.94 & 4.3 & 18.1 & 2.0 & 11.2 & 2.0 & 5.7 & 0.6 & 3.5 & 0.44 & 9.5 \\ \hline \left(x \ 0.05 \times s \left(\beta_{1} \right) & 2.054 & 0.154 & 0.470 & 1.454 & 0.205 & 0.037 & 0.164 & 0.025 & -0.114 & -0.09 & -0.065 & -0.003 & -0.017 & -0.001 & -0.602 \\ \hline \left(x \ 10^{-6} \right) & 1.58 & 0.154 & 0.70 & -0.458 & -0.002 & -0.41 & -0.035 & -0.244 & 0.019 & 0.086 & 0.006 & 0.035 & 0.033 & 0.55 \\ \hline \left(x \ 0.05 \times s \ 0.05 & 1.608 & 1.840 & 2.026 & 0.613 & 0.158 & 0.062 & -0.010 & -0.600 & -0.05 & -1.816 \\ \hline \left(x \ 10^{-6} & 49.9 & 1.8 & 17.3 & 80.3 & 52.7 & 0.4 & 63.8 & 9.0 & 49.3 & 9.4 & 27.1 & 3.9 & 24.4 & 3.6 & 27.88 \\ \hline \left(x \ 0.05 & 5.678 & 1.608 & 7.324 & -0.035 & -0.224 & -0.035 & -0.024 & -0.036 & -0.05 & -1.816 \\ \hline \left(x \ 0.05 & 5.188 & 0.029 & 0.516 & 0.046 & 0.279 & 0.048 & 0.270 & 0.108 & 0.170 & 0.408 & 0.701 & 0.450 & 0.055 \\ \hline \left(x \ 0.05 & 5.688 $		$\frac{100}{V}$ ($\times 10^{-6}$)	94.6	9.7	16.7	57.1	10.5	2.1	11.8	1.9	11.2	2.1	5.4	0.6	3.0	0.4	70.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β_1	-0.715	-0.019	-0.074	-0.199	-0.042	-0.007	-0.052	-0.002	-0.028	-0.002	-0.009	0.000	-0.002	0.000	-0.323
$ \begin{array}{c} s(\widehat{\mu}_{1}) & 0.841 & 0.048 & 0.133 & 0.376 & 0.062 & 0.010 & 0.074 & 0.007 & 0.063 & 0.007 & 0.028 & 0.002 & 0.008 & 0.000 & 0.467 \\ \hline \iota_{0.05} \times s(\beta_{1}) & 10.675 & 0.613 & 1.693 & 4.770 & 0.793 & 0.126 & 0.936 & 0.094 & 0.798 & 0.091 & 0.357 & 0.026 & 0.106 & 0.004 & 5.931 \\ \hline \hline $\overline{\chi} (\times 10^{-6}) & 174.1 & 6.3 & 31.6 & 99.4 & 17.3 & 3.3 & 16.6 & 2.3 & 14.3 & 2.5 & 6.9 & 0.8 & 4.4 & 0.5 & 81.5 \\ \hline \hline $\beta_{1} & -1.698 & -0.025 & -0.324 & -1.030 & -0.209 & -0.020 & -0.188 & -0.007 & -0.147 & -0.005 & -0.044 & -0.03 & -0.010 & 0.000 & -0.565 \\ \hline BZ -2 & B_{0} & 14.43 & 5.78 & 35.461 & 111.716 & 19.855 & 3.508 & 18.866 & 2.402 & 16.046 & 2.612 & 7.429 & 0.88 & 4.561 & 0.548 & 88.8259 \\ \times $(\beta_{1}) & 1.858 & 0.011 & 0.408 & 0.570 & 0.071 & 0.019 & 0.079 & 0.014 & 0.056 & 0.012 & 0.044 & 0.003 & 0.019 & 0.003 & 0.577 \\ \hline $\iota_{0.05} \times s(\beta_{1}) & 23.594 & 0.146 & 5.187 & 7.235 & 0.904 & 0.243 & 1.001 & 0.180 & 0.714 & 0.147 & 0.563 & 0.042 & 0.236 & 0.034 & 7.326 \\ \hline \hline $\overline{\chi} (\times 10^{-6}) & 278.5 & 14.7 & 57.4 & 195.3 & 29.4 & 4.3 & 18.1 & 2.0 & 11.2 & 2.0 & 5.7 & 0.6 & 3.5 & 0.44 & 9.55 \\ \hline $\beta_{1} & -3.127 & -0.089 & -0.536 & -1.787 & -0.357 & -0.035 & -0.015 & -0.015 & -0.010 & -0.000 & -0.010 & -0.001 \\ \hline $\alpha_{0.05} \times s(\beta_{1}) & 2.5.847 & 1.962 & 5.968 & 18.461 & 2.608 & 0.469 & 2.083 & 0.323 & 1.581 & 0.240 & 1.086 & 0.071 & 0.490 & 0.703 \\ \hline κ(\beta_{1}) & 2.5.847 & 1.962 & 5.968 & 18.461 & 2.608 & 0.469 & 2.083 & 0.323 & 1.581 & 0.240 & 1.086 & 0.010 & -0.060 & -0.005 & -0.101 \\ \hline κ(\beta_{1}) & 0.534 & 0.029 & 1.608 & 7.327 & 4.730 & 2.033 & 0.323 & 1.581 & 0.240 & 1.086 & 0.010 & 0.000 & -0.555 \\ \hline κ(\beta_{1}) & 0.534 & 0.029 & 0.127 & 0.577 & 0.48 & 6.029 & -0.034 & -0.036 & -0.062 & -0.010 & -0.060 & -0.005 & -1.816 \\ \hline κ(\beta_{1}) & 0.534 & 0.029 & 1.608 & 7.324 & 4.035 & 0.029 & 0.513 & 0.048 & 0.320 & 0.030 & 0.157 & 0.018 & 0.118 & 0.141 & 1.71 \\ \hline κ(\beta_{1}) & 0.534 & 0.029 & 1.608 & 7.324 & 4.035 & 0.029 & 0.513 & 0.048 & 0.220 & -0.036 & -0.002 & -0.000 & -0.005 & -0.010 & -0.000 \\ \hline κ(\beta_{1}) & 0.53$	BZ – 1	β_0	103.195	9.978	17.554	59.493	11.049	2.228	12.386	1.908	11.508	2.094	5.480	0.582	3.054	0.371	74.769
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$s(\boldsymbol{\beta}_1)$	0.841	0.048	0.133	0.376	0.062	0.010	0.074	0.007	0.063	0.007	0.028	0.002	0.008	0.000	0.467
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$t_{0.05} \times s(\beta_1)$	10.675	0.613	1.693	4.770	0.793	0.126	0.936	0.094	0.798	0.091	0.357	0.026	0.106	0.004	5.931
$ \begin{array}{c} \lambda(x 10^{-6}) & -1.698 & -0.025 & -0.324 & -1.030 & -0.209 & -0.020 & -0.188 & -0.007 & -0.147 & -0.005 & -0.044 & -0.003 & -0.010 & 0.000 & -0.565 \\ \hline BZ-2 & \beta_0 & 194.453 & 6.578 & 35.461 & 111.716 & 19.855 & 3.508 & 18.866 & 2.402 & 16.046 & 2.612 & 7.429 & 0.838 & 4.561 & 0.548 & 88.259 \\ \hline s(\beta_1) & 1.858 & 0.011 & 0.408 & 0.570 & 0.071 & 0.019 & 0.079 & 0.014 & 0.056 & 0.012 & 0.044 & 0.003 & 0.019 & 0.003 & 0.577 \\ \hline t_{0.05} \times s(\beta_1) & 23.594 & 0.146 & 5.187 & 7.235 & 0.904 & 0.243 & 1.001 & 0.180 & 0.714 & 0.147 & 0.563 & 0.042 & 0.236 & 0.034 & 7.326 \\ \hline \bar{\chi} (\times 10^{-6}) & 278.5 & 14.7 & 57.4 & 195.3 & 29.4 & 4.3 & 18.1 & 2.0 & 11.2 & 2.0 & 5.7 & 0.6 & 3.5 & 0.4 & 49.5 \\ \hline \beta_1 & -3.127 & -0.089 & -0.536 & -1.787 & -0.337 & -0.035 & -0.248 & -0.005 & -0.014 & -0.009 & -0.065 & -0.003 & -0.017 & -0.001 & -0.602 \\ \hline BZ-3 & \beta_0 & 316.050 & 15.804 & 6.366 & 216.697 & 33.727 & 4.730 & 21.030 & 2.015 & 12.880 & 2.080 & 6.513 & 0.657 & 3.752 & 0.439 & 56.739 \\ \hline s(\beta_1) & 2.035 & 0.154 & 0.470 & 1.454 & 0.205 & 0.037 & 0.164 & 0.025 & 0.124 & 0.109 & 0.086 & 0.006 & 0.035 & 0.003 & 0.055 \\ \hline t_{0.65} \times s(\beta_1) & 25.847 & 1.962 & 5.968 & 18.461 & 2.608 & 0.469 & 2.083 & 0.323 & 1.581 & 0.240 & 1.086 & 0.071 & 0.450 & 0.040 & 0.703 \\ \hline \bar{\chi} (\times 10^{-6}) & 49.9 & 1.8 & 17.3 & 80.3 & 52.7 & 0.4 & 63.8 & 9.0 & 49.3 & 9.4 & 27.1 & 3.9 & 24.4 & 3.6 & 267.8 \\ \hline \beta_1 & -0.572 & 0.012 & -0.101 & -0.570 & -0.458 & -0.002 & -0.491 & -0.035 & -0.224 & -0.036 & -0.062 & -0.010 & -0.060 & -0.005 & -1.816 \\ \hline CJ-1 & \beta_0 & 56.761 & 1.603 & 18.555 & 87.150 & 82.01 & 0.413 & 69.727 & 9.384 & 52.00 & 9.48 & 2.708 & 4.047 & 25.131 & 3.708 & 289.626 \\ s(\beta_1) & 0.534 & 0.002 & 0.127 & 0.378 & 0.029 & 0.513 & 0.048 & 0.320 & 0.030 & 0.157 & 0.018 & 0.118 & 0.014 & 1.871 \\ \hline t_{0.05} \times s(\beta_1) & 5.422 & 0.174 & 0.593 & 2.287 & 0.496 & -0.535 & -0.24 & 4.3 & 10.0 & 0.95 & 5.3 & 0.7 & 106.4 \\ \hline \beta_1 & -3.982 & -0.669 & -1.678 & -0.588 & -0.032 & -0.685 & -0.495 & -0.006 & -0.035 & 0.005 & 0.118 \\ \hline t_{0.05} \times s(\beta_1) & 5.422 & 0.174 &$		\bar{X} (x 10 ⁻⁶)	174.1	6.3	31.6	99.4	17.3	3.3	16.6	2.3	14.3	2.5	6.9	0.8	4.4	0.5	81.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		β_1	-1.698	-0.025	-0.324	-1.030	-0.209	-0.020	-0.188	-0.007	-0.147	-0.005	-0.044	-0.003	-0.010	0.000	-0.565
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BZ – 2	eta_0	194.453	6.578	35.461	111.716	19.855	3.508	18.866	2.402	16.046	2.612	7.429	0.838	4.561	0.548	88.259
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$s(\boldsymbol{\beta}_1)$	1.858	0.011	0.408	0.570	0.071	0.019	0.079	0.014	0.056	0.012	0.044	0.003	0.019	0.003	0.577
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$t_{0.05} \times s(\boldsymbol{\beta}_1)$	23.594	0.146	5.187	7.235	0.904	0.243	1.001	0.180	0.714	0.147	0.563	0.042	0.236	0.034	7.326
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		\bar{X} (× 10 ⁻⁶)	278.5	14.7	57.4	195.3	29.4	4.3	18.1	2.0	11.2	2.0	5.7	0.6	3.5	0.4	49.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BZ - 3	β_1	-3.127	-0.089	-0.536	-1.787	-0.357	-0.035	-0.248	-0.005	-0.114	-0.009	-0.065	-0.003	-0.017	-0.001	-0.602
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$oldsymbol{eta}_0$	316.050	15.804	63.866	216.697	33.727	4.730	21.030	2.015	12.580	2.080	6.513	0.657	3.752	0.439	56.739
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$s(\boldsymbol{\beta}_1)$	2.035	0.154	0.470	1.454	0.205	0.037	0.164	0.025	0.124	0.019	0.086	0.006	0.035	0.003	0.055
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$t_{0.05} \times s(\boldsymbol{\beta}_1)$	25.847	1.962	5.968	18.461	2.608	0.469	2.083	0.323	1.581	0.240	1.086	0.071	0.450	0.040	0.703
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\bar{X} (×10 ⁻⁶)	49.9	1.8	17.3	80.3	52.7	0.4	63.8	9.0	49.3	9.4	27.1	3.9	24.4	3.6	267.8
$ \begin{array}{c} \mathrm{CJ-1} \beta_{0} 56.761 1.603 18.555 87.150 58.201 0.413 69.727 9.384 52.005 9.868 27.808 4.047 25.131 3.708 289.626 s(\beta_{1}) 0.534 0.002 0.127 0.577 0.318 0.002 0.513 0.048 0.320 0.030 0.157 0.018 0.118 0.014 1.871 1.0.05 \times s(\beta_{1}) 6.787 0.029 1.608 7.324 4.035 0.029 6.516 0.607 4.070 0.383 1.995 0.230 1.497 0.174 23.760 0.174 23.760 0.174 2.114 0$		β_1	-0.572	0.012	-0.101	-0.570	-0.458	-0.002	-0.491	-0.035	-0.224	-0.036	-0.062	-0.010	-0.060	-0.005	-1.816
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CJ – 1	eta_0	56.761	1.603	18.555	87.150	58.201	0.413	69.727	9.384	52.005	9.868	27.808	4.047	25.131	3.708	289.626
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$s(\boldsymbol{\beta}_1)$	0.534	0.002	0.127	0.577	0.318	0.002	0.513	0.048	0.320	0.030	0.157	0.018	0.118	0.014	1.871
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$t_{0.05} \times s(\boldsymbol{\beta}_1)$	6.787	0.029	1.608	7.324	4.035	0.029	6.516	0.607	4.070	0.383	1.995	0.230	1.497	0.174	23.760
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\bar{X} (× 10 ⁻⁶)	472.7	16.9	96.4	336.7	61.9	5.3	49.9	5.8	28.2	4.3	10.0	0.9	5.3	0.7	106.4
$ \begin{array}{c} \text{CJ-2} \beta_{0} 531.381 18.774 107.425 370.632 70.190 5.705 56.393 6.394 31.566 4.713 11.255 0.972 5.648 0.722 114.396 \\ s(\beta_{1}) 5.422 0.174 0.593 2.287 0.276 0.043 0.273 0.018 0.217 0.019 0.113 0.006 0.035 0.005 0.118 \\ t_{0.05} \times s(\beta_{1}) 68.865 2.208 7.529 29.049 3.510 0.545 3.470 0.230 2.760 0.236 1.441 0.081 0.440 0.059 1.501 \\ \hline \bar{X} (\times 10^{-6}) 382.8 13.8 75.1 261.7 55.8 7.1 60.4 9.7 57.3 11.0 30.8 4.1 25.0 3.4 356.6 \\ \beta_{1} -3.982 -0.069 -0.609 -1.678 -0.588 -0.043 -0.750 -0.085 -0.495 -0.096 -0.282 -0.030 -0.191 -0.006 -3.210 \\ \hline \text{CJ} -3 \beta_{0} 430.630 14.605 82.402 281.826 62.839 7.563 69.410 10.676 63.229 12.143 34.213 4.450 27.321 3.466 395.093 \\ s(\beta_{1}) 4.486 0.123 0.507 1.730 0.329 0.056 0.421 0.053 0.359 0.037 0.221 0.015 0.140 0.023 2.069 \\ t_{0.05} \times s(\beta_{1}) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ \hline \text{CJ} -3 \beta_{0} 8.56978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ \hline \text{CJ} -3 \beta_{0} 8.56978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ \hline \text{CJ} -3 \beta_{0} 8.56978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ \hline \text{CJ} -3 \beta_{0} 8.56978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ \hline \text{CJ} -3 \beta_{0} 8.56978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ \hline \text{CJ} -3 0.56 0.471 0.56978 0.56978 0.568 0.435 0.76 0.576 0.557 0.471 0.471 0.803 0.191 0.783 0.288 26.276 0.56 0.576 0.577 0.577 0.$	CJ – 2	β_1	-4.891	-0.155	-0.918	-2.824	-0.690	-0.034	-0.537	-0.046	-0.279	-0.034	-0.107	-0.004	-0.025	-0.001	-0.670
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$oldsymbol{eta}_0$	531.381	18.774	107.425	370.632	70.190	5.705	56.393	6.394	31.566	4.713	11.255	0.972	5.648	0.722	114.396
$\frac{t_{0.05} \times s(\beta_1) \ 68.865 \ 2.208 \ 7.529 \ 29.049 \ 3.510 \ 0.545 \ 3.470 \ 0.230 \ 2.760 \ 0.236 \ 1.441 \ 0.081 \ 0.440 \ 0.059 \ 1.501}{\bar{X} (\times 10^{-6}) \ 382.8 \ 13.8 \ 75.1 \ 261.7 \ 55.8 \ 7.1 \ 60.4 \ 9.7 \ 57.3 \ 11.0 \ 30.8 \ 4.1 \ 25.0 \ 3.4 \ 356.6 \ \beta_1 \ -3.982 \ -0.069 \ -0.609 \ -1.678 \ -0.588 \ -0.043 \ -0.750 \ -0.085 \ -0.495 \ -0.096 \ -0.282 \ -0.030 \ -0.191 \ -0.006 \ -3.210} \ CJ -3 \ \beta_0 \ 430.630 \ 14.605 \ 82.402 \ 281.826 \ 62.839 \ 7.563 \ 69.410 \ 10.676 \ 63.229 \ 12.143 \ 34.213 \ 4.450 \ 27.321 \ 3.466 \ 395.093 \ s(\beta_1) \ 4.486 \ 0.123 \ 0.507 \ 1.730 \ 0.329 \ 0.056 \ 0.421 \ 0.053 \ 0.359 \ 0.037 \ 0.221 \ 0.015 \ 0.140 \ 0.023 \ 2.069 \ t_{0.05} \times s(\beta_1) \ 56.978 \ 1.568 \ 6.435 \ 21.973 \ 4.172 \ 0.708 \ 5.352 \ 0.675 \ 4.557 \ 0.471 \ 2.803 \ 0.191 \ 1.783 \ 0.288 \ 26.276 \ 0.286 \ 26.276 \ 0.410 \ 0.417 \ 0.766 \ 0.457 \ 0.471 \ 2.803 \ 0.191 \ 1.783 \ 0.288 \ 26.276 \ 0.417 \ 0.286 \ 0.417$		$s(\boldsymbol{\beta}_1)$	5.422	0.174	0.593	2.287	0.276	0.043	0.273	0.018	0.217	0.019	0.113	0.006	0.035	0.005	0.118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$t_{0.05} \times s(\boldsymbol{\beta}_1)$	68.865	2.208	7.529	29.049	3.510	0.545	3.470	0.230	2.760	0.236	1.441	0.081	0.440	0.059	1.501
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CJ – 3	\bar{X} (×10 ⁻⁶)	382.8	13.8	75.1	261.7	55.8	7.1	60.4	9.7	57.3	11.0	30.8	4.1	25.0	3.4	356.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		β_1	- 3.982	-0.069	-0.609	-1.678	-0.588	-0.043	-0.750	-0.085	-0.495	-0.096	-0.282	-0.030	-0.191	-0.006	-3.210
$ s(\beta_1) 4.486 0.123 0.507 1.730 0.329 0.056 0.421 0.053 0.359 0.037 0.221 0.015 0.140 0.023 2.069 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 5.352 0.675 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 1.783 0.288 5.352 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 1.783 0.288 5.352 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 1.783 0.288 5.352 \\ t_{0.05} \times s(\beta_1) 56.978 1.568 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 1.783 0.288 5.352 \\ t_{0.05} \times s(\beta_1) 56.978 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 1.783 0.288 5.352 \\ t_{0.05} \times s(\beta_1) 56.978 5.352 0.675 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 5.805 \\ t_{0.05} \times s(\beta_1) 56.978 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 5.805 \\ t_{0.05} \times s(\beta_1) 56.978 5.352 0.675 5.352 0.675 5.352 0.471 5.803 0.191 5.805 \\ t_{0.05} \times s(\beta_1) 56.978 5.352 0.575 5.352 0.575 \\ t_{0.05} \times s(\beta_1) 56.978 5.352 \\ t_{0.05} \times s(\beta_1) 56.95 \\ t_{0.05} \times s(\beta$		$oldsymbol{eta}_0$	430.630	14.605	82.402	281.826	62.839	7.563	69.410	10.676	63.229	12.143	34.213	4.450	27.321	3.466	395.093
$t_{005} \times s(\beta_1) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 1.568 0.191 1.783 0.288 26.276 0.191$		$s(\boldsymbol{\beta}_1)$	4.486	0.123	0.507	1.730	0.329	0.056	0.421	0.053	0.359	0.037	0.221	0.015	0.140	0.023	2.069
		$t_{0.05} \times s(\boldsymbol{\beta}_1)$	56.978	1.568	6.435	21.973	4.172	0.708	5.352	0.675	4.557	0.471	2.803	0.191	1.783	0.288	26.276

注: X 为浓度平均值; $\beta_1 \ \pi \beta_0$ 为回归系数; $s(\beta_1)$ 为 β_1 的标准偏差; $t_{0.05}$ 为自由度 0.05 下的 t 因子。

列监控样采集自风化壳,均是稳定的黏土矿物,在常 温下储存和运输时可稳定存在,不会影响其稳定性。

2.3 定值与不确定度评定

2.3.1 测试数据统计处理与定值

8家地矿实验室参加协作定值,定值测试方法 为本研究提供方法,方法的相关技术指标及准确性、 可靠性已在前期作了明确研究^[30]。

参照 JJF 1343—2012 对测量结果进行定值计算。 第一步,实验室组内可疑值检验。每个协作实验室所 给出的数据视为一组独立测量数据,以格拉布斯法 (Grubbs)和狄克逊法(Dixon)进行检验,两种方法均 不合格的数据予以剔除。经检验各组数据均合格。 第二步,实验室组间数据等精度检验。以科克伦法 (Cochran)检验实验室间各组数据的标准偏差是否等 精度。经检验各组数据不等精度。第三步,在实验室 间各组数据不等精度时,对实验室间各组数据平均值 进行差异性检验。以格拉布斯法(Grubbs)和狄克逊 法(Dixon)进行检验,两种方法均有差异的予以剔除。

该组数据最小X剔除,再次检验后均符合要求。

剔除异常值后再次检验,数据均呈正态或近似 正态分布。在实验室组间数据不等精度时,标准值 定值结果以加权总平均值(X)表示,计算公式如 下,结果见表3。

$$\bar{\bar{X}} = (\sum_{i=1}^{m} W_i X_i) / (\sum_{i=1}^{m} W_i)$$

式中: X 为总平均值,即加权平均值; X, 为每个实验

表 3 监控样定值结果和不确定度

Table 3 Certified values and uncertainty for monitoring samples

室的测定平均值; m 为参与定值的实验室数目, 本研 究中 m = 8; W_i 为第 i 组测量的权重。

各组测量的权重(W_i)的计算公式为:

$$W_i \propto \frac{1}{\left(s_i / \sqrt{n_i}\right)^2}$$

式中:s_i为第 i 组方差, n_i为各组数据数。

2.3.2 扩展不确定度

以扩展不确定度 U_{CRM} 表示监控样的最终不确定度。扩展不确定度 U_{CRM} 为合成标准不确定度 u_{CRM} 乘以包含因子 $k(本研究中 k = 2, 对应置信概率 95%), 而合成标准不确定度 <math>u_{CRM}$ 主要由不均匀性 引起的不确定度 u_{bb} 、不稳定性引起的不确定度 u_{s} 以及定值过程带来的不确定度 u_{char} 组成。因此,

 $U_{\text{CRM}} = k \cdot u_{\text{CRM}} = k \cdot \sqrt{u_{\text{char}}^2 + u_{\text{bb}}^2 + u_{\text{s}}^2}$

最终本研究所制备监控样定值结果和不确定度

(X ± U_{CRM})结果见表3。

3 结论

本研究制备的离子吸附型稀土监控样采自南岭 地区典型富轻稀土离子吸附型稀土矿床,样品代表 性强,按照《标准物质定值的通用原则及统计学原 理》的要求考察监控样的均匀性和稳定性,选取地 矿系统有权威的8家实验室协作定值,给出监控样 定值结果,成功制备了3种岩性共9个离子吸附型 稀土监控样。定值项目涵盖除 Sc 以外的共计15个 稀土元素,大多数元素定值结果呈梯度分布。

空估元表	$\bar{\bar{X}} \pm U_{\rm CRM} (\times 10^{-6})$											
走诅儿系	HS – 1	HS – 2	HS – 3	BZ – 1	BZ – 2	BZ – 3	CJ – 1	CJ – 2	CJ – 3			
La	453.9 ± 33.2	507.3 ± 47.3	542.3 ± 48.3	79.3 ± 8.2	152.8 ±15.1	242.3 ± 24.5	35.7 ±5.1	429.5 ± 17.6	341.4 ± 28.7			
Ce	4.4 ± 0.5	29.2 ± 3.9	28.0 ± 1.8	9.6 ± 0.3	6.2 ± 0.1	13.9 ± 0.2	1.5 ± 0.1	16.3 ± 0.5	10.7 ± 1.5			
Pr	83.0 ± 14.6	260.1 ± 24.8	245.8 ± 12.7	12.8 ± 1.8	27.2 ± 2.9	48.5 ± 8.3	15.8 ± 2.0	65.9 ± 4.2	68.4 ± 11.3			
Nd	321.4 ± 51.8	754.2 ± 36	720.0 ± 12	57.6 ± 5.5	93.4 ± 13.0	206.1 ± 3.7	75.2 ± 10.9	308.5 ± 35.2	213.9 ± 32.9			
Sm	50.8 ± 9.6	90.8 ± 12.8	114.3 ± 24.5	10.5 ± 1.1	16.5 ± 1.8	23.7 ± 4.1	51.0 ± 4.9	53.6 ± 6.6	45.7 ± 6.9			
Eu	6.7 ± 0.8	6.9 ± 0.6	6.7 ± 1.0	1.9 ± 0.1	2.7 ± 0.2	4.1 ± 0.4	0.4 ± 0.02	5.4 ± 0.2	6.6 ± 0.7			
Gd	64.1 ± 16.6	48.7 ± 7.3	76.1 ± 9.1	9.8 ± 1.1	15.2 ± 1.9	20.3 ± 2.7	57.7 ± 7.0	45.6 ± 6.4	59.1 ± 10.1			
Tb	6.8 ± 1.6	6.1 ± 0.4	4.7 ± 1.1	1.9 ± 0.1	2.2 ± 0.3	2.3 ± 0.1	8.7 ± 1.0	5.1 ± 0.8	7.8 ± 1.3			
Dy	41.2 ± 8.0	22.6 ± 3.7	19.4 ± 2.9	9.3 ± 1.5	14.1 ± 0.4	11.1 ± 0.2	53.5 ± 5.4	28.4 ± 3.0	57.8 ± 7.4			
Ho	5.1 ± 0.9	4.2 ± 0.3	3.1 ± 0.3	2.0 ± 0.1	2.3 ± 0.3	1.9 ± 0.1	7.5 ± 1.2	4.3 ± 0.4	11.3 ± 1.4			
Er	12.6 ± 1.9	9.7 ± 1.4	8.7 ± 1.7	5.1 ± 0.3	7.2 ± 0.4	5.1 ± 0.6	21.8 ± 4.0	9.3 ± 0.7	29.4 ± 4.3			
Tm	1.9 ± 0.4	1.3 ± 0.1	0.7 ± 0.1	0.7 ± 0.01	0.8 ± 0.1	0.4 ± 0.1	3.3 ± 0.6	1.1 ± 0.1	3.8 ± 0.7			
Yb	7.3 ± 1.5	6.5 ± 1.4	5.1 ± 1.1	2.9 ± 0.3	4.6 ± 0.4	3.2 ± 0.3	21.7 ± 4.5	5.5 ± 0.7	22.4 ± 4.7			
Lu	1.6 ± 0.1	1.3 ± 0.1	0.5 ± 0.1	0.5 ± 0.03	0.5 ± 0.07	0.3 ± 0.06	3.9 ± 0.5	0.7 ± 0.1	3.5 ± 0.4			
Y	187.1 ± 35.4	94.3 ±15.4	52.8 ± 8.0	62.1 ± 4.2	70.9 ± 8.6	43.9 ± 7.5	182.4 ± 34.7	96.6±11.1	316.7 ± 49.6			

本监控样覆盖所有的离子吸附型稀土元素,定 值方法可靠,能显著提高离子相稀土元素测试的准 确性,为测试工作中的质量监控、方法的评价等提供 可靠保证;同时,填补离子吸附型稀土监控样的空 白,对完善我国稀土标准物质体系有重要意义,可以 满足离子型稀土资源勘查和开发的需求,为矿产资 源评价和有效利用等工作提供计量支撑。

4 参考文献

- Xiao Y F, Feng Z Y, Hu G H, et al. Reduction leaching of rare earth from ion – adsorption type rare earths ore with ferrous sulfate[J]. Journal of Rare Earths, 2016, 34(9): 917 – 923.
- Georgiana A M, Vladimiros G P. Leaching of lanthanides from various weathered elution deposited ores [J]. Canadian Metallurgical Quarterly, 2013, 52 (3): 257 - 264.
- [3] 赵芝,王登红,王成辉,等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报,2019,93(6):1454-1465.
 Zhao Z, Wang D H, Wang C H, et al. Progress in prospecting and research of ion adsorption type REE deposits [J]. Acta Geologica Sinica, 2019, 93 (6): 1454-1465.
- [4] 程丽娅. 离子型稀土矿中离子稀土的 ICP AES 测定 方法研究[J]. 安徽地质,2017,27(2):147 – 149,160.
 Cheng L Y. Study on determination of rare earth ions in ion – adsorbed rare earth mineral using ICP – MS[J].
 Geology of Anhui,2017,27(2):147 – 149,160.
- [5] 肖燕飞,黄莉,李明来,等. ICP AES 法测定离子吸附型稀土矿镁盐体系稀土浸出液中稀土与非稀土杂质
 [J].稀有金属,2017,41(4):390-397.

Xiao Y F, Huang L, Li M L, et al. Determination of rare earth elements and non – rare earth elements in leaching solution with magnesium salt system of ion – adsorption type rare earth ore by ICP – AES[J]. Chinese Journal of Rare Metals, 2017, 41(4):390–397.

- [6] Yang X J, Lin A J, Li X L, et al. China's ion adsorption rare earth resources, mining consequences and preservation [J]. Environmental Development, 2013, 8: 131 – 136.
- [7] Georgiana A M, Vladimiros G P. Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate [J]. Hydrometallurgy, 2013, 131: 158 - 166.
- [8] Xiao Y F, Gao G H, Huang L, et al. A discussion on the leaching process of the ion – adsorption type rare earth ore with the electrical double layer model [J]. Minerals Engineering, 2018, 120:35 – 43.
- [9] Sanjukta A K, Shailaja P P, Sangita D K. Determination

of rare earth elements in Indian kimberlite using inductively coupled plasma mass spectrometer (ICP – MS) [J]. Journal of Radioanalytical and Nuclear Chemistry,2012,294:419 – 424.

- [10] 代小吕,赵金宝,贺颖婷,等. 电感耦合等离子体质谱 (ICP-MS)法测定离子吸附型稀土矿中的浸出稀土 元素[J]. 中国无机分析化学,2015,5(4):35-40.
 Dai X L, Zhao J B, He Y T, et al. Determination of leaching rare earth elements in ion adsorption type rare earth ore by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry,2015,5(4):35-40.
- [11] Raunt N M, Huang L S, Lin K C, et al. Uncertainty propagation through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry [J]. Analytica Chimica Acta, 2005, 530(1):91-103.
- [12] 刘贵磊,许俊玉,温宏利,等. 动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J]. 桂林理工大学学报,2016,36(1):176-183.
 Liu G L, Xu J Y, Wen H L, et al. Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J]. Journal of Guilin University of Technology,2016,36(1):176-183.
- [13] Botha A, Ellison S, Linsinger T, et al. Outline for the revision of ISO Guide 35[J]. Accreditation and Quality Assurance, 2013, 18:115 - 118.
- [14] Linsinger J T P, Pauwels J, van der Veen A M H, et al. Homogeneity and stability of reference materials [J]. Accreditation and Quality Assurance, 2001, 6 (1): 20-25.
- [15] 王晓红,王毅民,高玉淑,等. 地质标准物质均匀性检验方法评价与探讨[J]. 岩矿测试,2010,29(6):735-741.
 Wang X H, Wang Y M, Gao Y S, et al. A view on homogeneity testing techniques for geochemical reference material in China[J]. Rock and Mineral Analysis,2010, 29(6):735-741.
- [16] van der Veen A M H, Linsinger P T, Pauwels J. Uncer tainty calculation in the certification of reference materials. 2. Homogeneity study [J]. Accreditation and Quality Assurance, 2001, 6(1):26-30.
- [17] 杜烨,王春龙,刘俊保,等.GBW(E)130573a标准物质复制均匀性与稳定性评价[J].合成材料老化与应用,2020,49(2):44-46,127.
 Du Y, Wang C L, Liu J B, et al. Evaluation of uniformity and stability of reference material of GBW(E)130573a
 [J]. Synthetic Materials Aging and Application, 2020, 49(2):44-46,127.
- [18] 白玉洁,李红亮,李微微,等.总有机碳分析仪校准用

- [19] 曾美云,刘金,邵鑫,等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试,2017,36(6):633-640.
 Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis
 [J]. Rock and Mineral Analysis, 2017, 36(6): 633-640.
- [20] 杨理勤,陈占生,谢璐,等. 卡林型金矿砷成分分析标 准物质研制[J]. 岩矿测试,2018,37(2):209-216.
 Yang L Q, Chen Z S, Xie L, et al. Preparation of gold and arsenic certified reference materials for chemical composition analysis in Carlin - type gold deposits[J].
 Rock and Mineral Analysis,2018,37(2):209-216.
- [21] 金浩,韩永志.标准物质及其应用技术[M].北京: 中国标准出版社,2003:34-35.
 Jin H, Han Y Z. Standard reference material and its application technology [M]. Beijing: China Standards Press,2003:34-35.
- [22] 宋丽华,郝原方,杨柳,等. 地质标准物质的研制方法
 [J]. 地质与资源,2013(5):419-421.
 Song L H, Hao Y F, Yang L, et al. Preparation method of geochemical reference materials [J]. Geology and Resources,2013(5):419-421.
- [23] 辛文彩,夏宁,徐磊,等.长江三角洲沉积物标准物质研制[J].岩矿测试,2017,36(4):388-395.
 Xin W C, Xia N, Xu L, et al. Preparation of Yangtze River Delta sediment reference materials[J]. Rock and Mineral Analysis,2017,36(4):388-395.
- [24] 田衎,杨珺,孙自杰,等. 矿区污染场地土壤重金属元 素分析标准样品的研制[J]. 岩矿测试,2017,36(1): 82-88.

Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites [J]. Rock and Mineral Analysis,

2017,36(1):82-88.

[25] 高捷,盛成,卓尚军. X 射线荧光光谱分析用的含铁尘 泥标准样品的研制[J]. 冶金分析, 2015, 35(2): 74-78.
Gao J, Sheng C, Zhuo S J. Development of ferric containing dust and sludge standard samples used for

X – ray fluorescence spectrometric analysis [J]. Metallurgical Analysis,2015,35(2):74 – 78.

[26] 汪斌,卢晓华,王茜.质量控制图在标准物质稳定性 评估中的应用[J].化学试剂,2019,41(5): 475-477.
Wang B, Lu X H, Wang Q. Application of control chart for assessment of stability of reference materials [J].

Huaxue Shiji, 2019, 41(5): 475 - 477.

- [27] 李津,马健雄,闫斌,等.黑色页岩铁同位素标准物质的研制[J].地球学报,2020,41(5):623-629.
 Li J, Ma J X, Yan B, et al. The preparation of reference material for Fe isotope measurement of black shale samples [J]. Acta Geoscientica Sinica, 2020, 41(5): 623-629.
- [28] 胡德龙,张雯,陈家颖. 二氧化碳中一氧化氮气体标 准物质研制[J]. 化学分析计量,2020,29(2):8-11.
 Hu D L, Zhang W, Chen J Y. Preparation for gas reference material of nitric oxide in carbon dioxide[J].
 Chemical Analysis and Meterage,2020,29(2):8-11.
- [29] 刘妹,顾铁新,潘含江,等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试,2018,37(5):558-571.
 Liu M, Gu T X, Pan H J, et al. Preparation of seven certified reference materials for floodplain sediments
 [J]. Rock and Mineral Analysis, 2018, 37 (5): 558-571.
- [30] 张磊,周伟,朱云,等.硫酸铵溶液淋滤-电感耦合等离子体质谱测定离子相稀土分量的方法优化[J]. 岩矿测试,2018,37(5):518-525.
 Zhang L,Zhou W,Zhu Y,et al. An optimized method for determination of ionic - phase rare earth elements by ICP-MS using ammonium sulfate leaching [J]. Rock and Mineral Analysis,2018,37(5):518-525.

Preparation of Ion – adsorption Type REE Monitoring Samples

ZHANG Lei, LI Ying – chun, QU Wen – jun, ZHOU Wei, SHANG Wen – yu, YI Qin (National Research Center for Geoanalysis, Beijing 100037, China)

HIGHLIGHTS

- Preparation of 9 ion adsorption type REE monitoring samples and 15 elements were characterized as certified values.
- (2) The homogeneity, stability and certified values met the requirements of JJF 1343-2012.
- (3) The preparation of monitoring samples layed a foundation for improving the rare earth reference materials system. 884 -

ABSTRACT

BACKGROUND: Ion – adsorption type rare earth ore is extremely important in China and rare in the world. It is China's dominant mineral resource. At present, all the rare earth elements in the existing REE reference materials are oxide minerals, not ion – adsorption type, and cannot be exchanged with strong electrolytes. These reference materials cannot be used to monitor the leaching process of ion – adsorption type REE.

OBJECTIVES: To meet the needs of exploration and evaluation of ion – adsorption type REE resources by preparing nine ion – adsorption type REE monitoring samples in accordance with the JJF 1343—2012 'General and Statistical Principles for Characterization of Reference Materials'.

METHODS: The samples were collected from the typical ion – adsorption type REE weathering crust in Jiangxi Province. After being dried and ball – milled to 200 mesh, they were mixed for 1.5h. The contents of rare earth elements in the ionic phase were analyzed to test the homogeneity by ammonium sulfate leaching and inductively coupled plasma – mass spectrometry (ICP – MS).

RESULTS: Results showed that the F values for the variance test were less than the threshold, which indicated a good homogeneity. The stability of monitoring samples was tested 4 times in two years, and no statistically significant changes were observed, indicating good stability of the samples. An accurate and reliable leaching analytical method was used in 8 technologically significant laboratories to finalize the contents of ionic phase rare earth elements. The determined values of nine monitoring samples were given by statistical calculation, including weighted average value and total uncertainty results which were from uncertainties in certified values, between – bottle homogeneity and long – term stability. These nine monitoring samples have certified values of 15 ionic phase rare earth elements except Sc.

CONCLUSIONS: The reference materials can be used to monitor the leaching process and provide metrological support for the analysis of rare earth elements in ionic phase during the evaluation and effective utilization of REE mineral resources.

KEY WORDS: ion - adsorption type rare earth elements; leaching; monitoring samples; certified value