何佳乐,龚婷婷,潘忠习,等. 细微矿物拉曼成像分析技术与方法研究[J]. 岩矿测试,2021,40(4):491-503. HE Jia - le, GONG Ting - ting, PAN Zhong - xi, et al. Raman Imaging Analysis Method of Fine Minerals in Rock Ore[J]. Rock and Mineral Analysis,2021,40(4):491-503. 【DOI: 10.15898/j. cnki. 11-2131/td. 202103080036】

细微矿物拉曼成像分析技术与方法研究

何佳乐1,龚婷婷2,潘忠习1*,杜谷1

(1. 中国地质调查局成都地质调查中心,四川成都 610081;

2. 成都理工大学地球科学学院,四川成都 610059)

摘要: 岩矿鉴定是各类地质工作开展的基础,其鉴定水平和质量直接影响着工作的深入程度和研究程度。 传统鉴定方法受人员自身经验水平、光学显微镜分辨率等因素的影响较大,对于现今需要研究的细微稀有矿 物、细粒沉积岩矿物等很难准确地识别鉴定。而依托高精密大型仪器的技术方法多数对样品制备有特殊要 求,不利于样品的再利用,诸如扫描电镜、电子探针等在高倍数反射光下探寻、观测特定的细微透明矿物也存 在一定的不足。本文将激光拉曼高分辨大面积快速成像方法(StreamLineHR)运用于两块标准岩石光薄片的 全区域大面积扫谱,准确识别出其中透明矿物有碱性长石、斜长石、石荚、普通角闪石、黑云母、方解石、榍石、 磷灰石、锆石和绿帘石,不透明矿物有磁铁矿,部分矿物间存在紧密伴生的情况(如石英与长石、榍石与角闪 石)和次生蚀变的情况(如长石碳酸盐化蚀变为方解石)。并以此为基础进行了含量统计,将其分别定名为 细粒角闪石英二长闪长岩与细粒黑云母斜长角闪岩。实验过程中,荧光效应,类质同象类矿物(长石、角闪 石)峰位相似性和蚀变矿物峰位偏移会对矿物识别、谱图解析造成干扰,可结合矿物镜下光性特征来解决。 另外,面扫步长设置越小,分析精确度越高,时间成本也会相应增加,应用时需兼顾考虑。该方法实现了对细 微矿物便捷、直观、准确的大范围快速识别鉴定,可弥补传统岩矿鉴定和其他技术方法的不足,拓展了拉曼光 谱法在地质工作中的应用范围。

关键词:激光拉曼光谱; Mapping 技术; 快速成像; 岩矿鉴定; 矿物识别

要点:

(1) 用 StreamLineHR 进行细微矿物鉴定并对其组成、含量进行了系统分析。

(2) 分析了实验条件、荧光干扰、谱图解析等对拉曼 Mapping 测试结果的影响。

(3) 对比了 Mapping 技术与传统鉴定方法、SEM 等其他技术方法间的异同性。

中图分类号: P575.4 文献标识码: A

岩矿鉴定是地质观察和研究的重要组成部分, 通过对不同岩石矿物或古生物化石的赋存状态、蚀 变特征、裂隙、孔隙度发育情况等方面进行观察和分 析,为岩石矿物的成因、赋存环境、成岩演化、地层时 代研究等提供了依据^[1-3],对找矿、勘探、油气及矿 产资源利用起着指导性作用。例如,Tian等^[4]对影 响致密油生烃能力和储集性能,并与沉积环境密切 相关的细粒沉积岩岩相特征进行研究,以其成分作 为第一要素,结合岩石类型、颜色、沉积结构、微层理 等建立岩相划分方案,以济阳坳陷 NY 1 井为例,将 研究区划分为8 种岩相类型;杨富成等^[5]通过野外 调研及对岩心样的镜下鉴定,确定了巴达铜金矿床 成因类型;张殿伟等^[6]通过岩性组合分析和古生物 鉴定等分析手段,确认湄潭组生烃潜力并建立了两 种成藏组合。近年来,随着能源地质、生态地质、健 康地质等概念的相继提出,地质工作面临转型和不

收稿日期: 2021-03-08; 修回日期: 2021-05-14; 接受日期: 2021-07-02

基金项目:国家自然科学基金项目"扬子西缘深成造山型丹巴金矿成矿流体成分及来源研究"(42002107)

第一作者:何佳乐,硕士,工程师,从事岩矿鉴定、流体包裹体、激光拉曼分析工作。E-mail:qianlideguongzhu@163.com。 通信作者:潘忠习,高级工程师,从事流体包裹体、激光拉曼分析工作。E-mail:314160752@qq.com。

断深化,其研究主体正逐渐由传统固体矿产向能源 矿产、土壤利用等方向转变,研究对象也更趋重于对 一些黏土矿物、微细稀有矿物等开展观察和分 析^[7-9]。例如, Kiristen 等^[10]研究了土壤中的铝质 黏土(高岭石、三水铝石)和铁氧化物(针铁矿、赤铁 矿)对陆地生态系统(农田、天然林等)中有机碳 (OC) 储存和稳定性的贡献作用;朱强等^[11]对镇原 地区洛河组黏土矿物的组成、含量开展了系统研究, 认为黏土矿物特征可以作为铀成矿过程中后生流体 示踪的重要标志;李光柱等^[12]通过对山东微山不同 颗粒稀土矿物的赋存状态研究,证明其主要赋存于 氟碳酸岩中,极少数赋存于独居石、铈磷灰石中,与 方解石、天青石、萤石、石英等嵌布密切,并认为方解 石呈微细胞颗粒分布于稀土矿物颗粒中,且不易分 离,是造成品位低的重要因素。岩矿鉴定作为多类 地质工作的基础以及对地质成果精密性和准确度的 反映,其鉴定水平和质量直接影响工作的深入程度 和研究程度,这就对该方法的精准度、客观性和系统 性提出了更高的要求。

然而,传统的岩矿鉴定方法通常借助光学显微 镜由人工观察完成,该方法受鉴定人员自身经验水 平、光学显微镜分辨率、相似矿物光性干扰、矿物颗 粒大小、含量目估等因素的影响,主观性较大,极易 造成镜下定名的精确性降低,从而直接影响鉴定结 果的质量,已渐难胜任日益变化的研究需求^[13]。随 着科技和地质研究的深入发展,以红外光谱^[14]、拉 曼光谱^[15]、X射线衍射^[16]、扫描电镜-能谱^[17]等高 精密大型仪器为基础而产生的 AMICS - SEM -EDS^[18]、薄片扫描法^[19]等岩矿鉴定新方法,可对不 同粒径的矿物形貌、组构、含量和元素分布等进行全 方位的研究,有效提升了岩矿鉴定的客观性和精准 度。但这类方法通常对样品制备有特殊要求,也存 在各自局限性。其中,激光拉曼光谱以方便、直观、 快捷、高精度及对样品无损等特点区别于其他技术 方法,以点-点的扫描方式通过物质特有的拉曼特 征峰来对其进行识别,在物质定性分析方面具有较 大的优势,是鉴别多晶型、同构型矿物的有效手 段^[20-21]。主要应用于地质领域中流体包裹体分 析^[22]、宝玉石鉴定^[23]和沉积有机质分析(石墨化碳 质拉曼光谱温度计)^[24-25]。而随着高分辨大面积 快速成像(StreamLineHR)等拉曼面扫描(Mapping) 技术的进一步发展,激光拉曼光谱分析由"点"上升 到"面",能通过快速逐点扫描成像来采集选定区域

内的光谱数据,直观地对所选区域内的物质成分进 行整体识别,被国内外众多学者广泛应用于医学、材 料、生物等诸多领域。例如, Zhang 等^[26] 用拉曼 Mapping 技术方便快捷地对超过 20 种新旧药品(未 过期/过期)进行了精准识别;刘丹童等^[27]通过 Mapping 扫谱对 5 种常见的微塑料进行定性和定量 检测,从滤膜背景上识别出最小粒径为1um的微塑 料;崔楠楠等^[28]利用拉曼成像技术研究了不同环境 下生存的贻贝的介壳矿物组成。在地质学领域,已 有 Fernando 等^[29]通过拉曼 Mapping 技术确定了富 P-Li-Nb-Ta 岩浆岩和 Buranga 伟晶岩中两个磷 化物组合的共生关系;Chu 等^[30]建立了低温拉曼成 像技术估算流体包裹体溶质组成的新方法,可以根 据水合物拉曼峰面积的分数来估算盐组分的摩尔分 数,克服了点分析中存在的问题。但这类研究主要 是针对单矿物和流体包裹体,而在岩石薄片鉴定方 面较为少见,这不仅限制了拉曼光谱在岩矿鉴定领 域的发展,也限制了 Mapping 技术在地学领域的进 一步应用。

本文将拉曼 Mapping 技术应用于薄片鉴定中, 以岩石薄片为研究对象,设置大范围扫描区域,利用 自动平台实现样品位移,对区域内矿物进行数据采 集、整理,系统地从实验条件、矿物识别、含量统计、 综合定名等几个方面对其进行研究,通过与传统鉴 定方法的对比来观察鉴定结果的相似性和差异性, 进而分析影响鉴定矿物识别准确性的因素,提出解 决方法。本实验旨在探索利用激光拉曼 Mapping 技 术直接对岩石薄片进行鉴定的准确性和可行性,其 研究成果可弥补传统鉴定和其他方法存在的不足, 为直观、大范围地进行镜下微细矿物鉴定提供一种 更为便捷、客观的研究手段,拓展拉曼光谱在地质工 作中的应用范围。

1 实验部分

1.1 实验样品

本次实验样品均由成都理工大学地球科学学院 岩石学实验室提供,原采集地为新疆和田县铁克里 克地区。该样品均为日常鉴定所用光薄片(无盖玻 片),厚度为0.03mm,且已附有镜下鉴定原始报告。 光薄片可有效减少实验中因盖玻片引起的干扰,镜 下鉴定原始报告有利于进行方法的比对,整体上符 合本次实验需求。为便于实验操作和区分,将样品 编号设为样品1和样品2。

1.2 实验方法

1.2.1 分析仪器及工作条件

本文实验在中国地质调查局成都地质调查中心 实验室进行。采用英国雷尼绍公司生产的 Renishaw Invia Reflex 显微共聚焦激光拉曼光谱仪,使用 514nm 波长的半导体激光器。整个实验在 23℃室 温、40% 湿度下进行。仪器工作条件为: StreamLineHR 面扫模式,光栅 2400L/mm(vis),狭缝 20µm,波数范围 100~1500cm⁻¹,功率 15mW,物镜 5X~20X,曝光时间 10s,叠加次数为 1 次。数据处 理采用 WIRE3.4 软件。

1.2.2 实验步骤

为保证拉曼位移的准确性,测试前先对拉曼光 谱仪用标准单晶硅片进行了峰位校正, 使 520 cm⁻¹ 拉曼特征峰偏移不大于0.01cm⁻¹。随后对激光功 率、成像区域、步长等实验条件进行选择。在此基础 上,再通过 Mapping 技术对岩石薄片进行全区域扫 谱。将薄片样品置于自动平台上进行全区域拼图, 拼图张数视薄片大小和放大倍数而定。然后在 StreamLineHR 模式下进行成像区域选择。20X 物镜 下,样品1设置步长为700µm,采集点数300个;样 品2设置步长为1500µm,采集点数108个。光谱数 据采集完成后利用 WiRE3.4 进行数据自动处理,通 过标准谱图库、已知资料文献等途径对拉曼光谱图 进行分析,识别矿物及其种属,并以此为基础统计出 每类矿物在此区域中的占比(视为相对含量),最后 根据三大岩岩石分类命名标准中的"附加修饰词+ 基本名称"定命原则,对该薄片进行综合定名。

2 结果与讨论

2.1 Mapping 实验条件选取依据

在学者 Burke^[31]的研究中,对影响拉曼光谱的

实验参数进行了详细阐述,但侧重的是单点扫描方 法。而在 Mapping 测试中,成像区域、步长、激光功 率的选择对测试结果有着直接影响,具体体现在: ①相同功率下,同一矿物不同分布位置上的峰强不 同,如图 1a 所示,不同点位的石英颗粒在相同的实 验条件下峰强有高有低。大范围、长时间的数据采 集会因个别测试点位接收能量不均衡而形成不能识 别的拉曼光谱图(过饱和或不出峰)。因此单点扫 谱适用的激光功率(如20mW)在 Mapping 扫谱中不 一定适合。②面扫区域大小及步长的选取影响采集 数据的精细度和测试时间的长短。范围越大、步长 越小,囊括矿物越多,分析越细致,但相应扫描时间 也会增加(图1中b~c)。③Mapping 扫描时, StreamLineHR 模式比常规 Extended + high(共聚焦) 模式耗时更短,适用于无需获取深层次信息的矿物 类样品,在时效性上更有优势,可有效降低测试时间 成本(由3~4h/片降为1~2h/片)。

因此,用 Mapping 扫谱进行岩矿鉴定前,选择的 实验条件需结合样品实际情况(矿物种类、颗粒大 小、分布范围),时间因素和具体研究需求来综合考 虑,以将干扰因素降到最低,提高实验结果的 准确率。

2.2 矿物组分及含量特征

在本实验中,除了实验条件的影响因素,拉曼光 谱图总体呈现荧光干扰背景值过高的现象,推测是 受薄片磨制厚薄或颗粒大小不均匀以及不同的矿物 性质、背面粘胶等因素影响。测试结束后,样品1根 据可识别的拉曼光谱图解析出232个矿物数据,样 品2解析出89个矿物数据,识别率在77%~82% 区间。将其与标准谱图库和众多矿物拉曼光谱文献 资料^[32-41]进行峰位拟合、峰位组合对比,显示扫描 区域内存在表1中所列的矿物。

图 1 不同位置的(a)石英在相同实验条件下的拉曼光谱及(b)样品 1 和(c)样品 2 的面扫区域图及步长范围

Fig. 1 Raman spectra of (a) quartz at different position under the same experimental conditions and mapping area images and step size ranges of (b) sample 1 and (c) sample 2

— 493 —

根据矿物拉曼光谱数据和区域占比判断,样品 1 扫描区域内的矿物以长石为主,石英、普通角闪 石、黑云母为次,副矿物有磁铁矿、方解石、榍石、绿 帘石和磷灰石;样品 2 扫描区域内的矿物以普通角 闪石、斜长石为主,石英、黑云母为次,存在少量磁铁 矿、方解石、榍石、锆石(表1)。这些矿物中,石英、 黑云母等矿物的鉴定相对简单,使用软件中的矿物 标准谱图库进行峰位拟合比对即可辨识。长石和角 闪石同为类质同象矿物,其变种甚多,各变种间的拉 曼特征峰位范围多有重叠,相对来说谱图解析过程、 矿物识别过程较为复杂,需要对其进行详细分析。

2.2.1 类质同象系列矿物——长石族矿物拉曼 光谱特征

长石族是由钾、钠、钙、钡分子组成的架状铝硅 酸盐矿物,分子间相互的混溶可形成钠钙长石、钾钠 长石和钾钡长石三个类质同象系列(即斜长石、碱 性长石、钡冰长石亚族),每一个系列中又含有众多 变种^[32]。本文综合各相关文献的研究成果,绘制出 长石族矿物主要拉曼特征峰位,具体见表2,以供长 石族矿物拉曼光谱比对^[32-34]。从每类变种对应的

拉曼特征峰位值和组合来看,斜长石亚族和碱性长 石亚族的区别主要在中频(400~800cm⁻¹)范围内. 510cm⁻¹、475cm⁻¹这两个最明显的特征峰位波数有 所变化,前者主要在 512~514cm⁻¹、473~479cm⁻¹ 区间,后者主要在 503~509cm⁻¹、479~484cm⁻¹区 间, 且斜长石亚族在 557~570cm⁻¹区间内可见一明 显的拉曼谱峰^[33-34](表 2)。谢俊^[33]亦指出,随着 有序度的增加,碱性长石拉曼光谱变化主要集中在 低频区(<400 cm⁻¹)和中频区(400~800 cm⁻¹) 480cm⁻¹、510cm⁻¹附近,不仅谱峰数量会增加,形态 也更尖锐;在斜长石亚族中,随着 An 端元成分的增 加,高频区谱峰向低频偏移,中频区483cm⁻¹和 510 cm^{-1} 附近的谱峰略微向高波数偏移,560 cm $^{-1}$ 附 近的拉曼特征峰强度会持续增加,由钠长石中的最 弱到钙长石中接近 510 cm⁻¹特征峰一半的强度,且 波数明显向低频偏移,是区别钙长石和钠长石的特 征峰,并据此给出了可大致计算斜长石 An 牌号的 成分与频率公式:

An = $4 \times (577.6 - \nu)$

式中:v为560cm⁻¹左右峰的频率。

表1	样	品1和样品2的矿物组成及拉曼特征峰值范围
Table	1	Mineral composition and Raman characteristic peaks of samples 1 and 2

样品编号	分类	矿物	拉島特征修位(m^{-1})		区域占比	
1十日13冊 フ	为天	12 12	1元至14.0mm ★1元(0mm)	(个)	(%)	
	之 而 <i>论 htm</i>	斜长石	109 ~ 112 \151 \159 \161 ~ 162 \185 ~ 190 \194 \284 ~ 294 \473 ~ 483 \506 ~ 514	114	49.1	
	土安竹初	碱性长石	106 ~ 110 \ 151 ~ 153 \ 157 ~ 158 \ 284 ~ 286 \ 472 ~ 476 \ 512 ~ 514 \ 1123	49	21.1	
		石英	129 ~ 130 \ 207 ~ 208 \ 355 ~ 356 \ 464 ~ 465	37	16.0	
	次要矿物	普通角闪石	317 371 555 663 ~ 680 731 746 797 929 ~ 940 1020 ~ 1023	18	7.8	
		富铁黑云母	548	1	0.4	
样品1		磁铁矿	292 541 663 ~ 668	5	2.2	
		方解石	157 282 712 1085 ~ 1086	2	0.9	
	副矿物	副矿物 榍石		163 ~ 164 ,230 ,251 ~ 254 ,336 ~ 337 ,424 ~ 425 ,467 ~ 469 ,546 ~ 549 , 608 ~ 612 ,854 ~ 857 ,910 ~ 912	4	1.7
		绿帘石	389 564 594 914 1086	1	0.4	
		磷灰石	430 591 965 1054	1	0.4	
	子 西 亦 目 矿 枷	普通角闪石	365 550 ~ 565 666 ~ 672 901 1029	39	43.8	
	土安党前则初一	斜长石	108 ~ 109 \184 ~ 191 \284 ~ 293 \472 ~ 485 \507 ~ 512 \1100	22	24.7	
	とすず日でも	石英	130 ~ 131 ,201 ~ 208 ,357 ,465 ~ 466	11	12.4	
样品 2	(人安受前例初)	富镁黑云母	188 ~ 190 ,550 ~ 557 ,677 ~ 682 ,783 ,901	9	10.1	
	副变晶矿物	磁铁矿	223,667~669	4	4.5	
		方解石	155 ~ 157 283 714 1088	2	2.3	
		榍石	163 ,255 ,309 ,335 ,469 ,549 ,609	1	1.1	
		锆石	203 \214 \225 \357 \392 \439 \974 \1001	1	1.1	

注:区域占比=每类矿物数据个数/矿物数据总数。

表2 长石族矿物主要拉曼特征峰位

Table 2 Feldspar group main Raman characteristic peak positions

系列(亚族)		变种	主要拉曼特征峰(cm ⁻¹)		
	钠长石		112 ~ 114 \150 \161 ~ 169 \183 ~ 187 \196 \209 \284 ~ 291 \329 \407 \457 \473 ~ 480 \507 ~ 515 \ 763 ~ 764 \815 \978 \1097 ~ 1100		
钠钙长石	更(奥)长石		113 ,152 ,165 ,172 ,186 ,201 ~ 209 ,290 ~ 291 ,413 ,479 ~ 480 ,507 ~ 508 ,570 ,763 ~ 766 ,802 ~ 815 ,966 ,1032 ,1100 ~ 1103		
(斜长石)	中长石		176 ,281 ,479 ~ 482 ,508 ~ 509 ,564 ~ 568 ,711 ,778 ,930 ,1000 ,1090		
	拉长石		176 ,289 ,481 ,509 ~ 513 ,561 ,709 ,762 ,916 ,980 ,1083		
	培长石		-		
	钙长石		484 、503 、557 、680 、751 、912 、955 、980		
		正长石	160 ~ 165 ,197 ~ 198 ,283 ~ 287 ,473 ~ 476 ,512 ~ 513		
		微斜长石	108 ~ 109 \125 ~ 127 \149 ~ 152 \156 ~ 158 \179 \199 \264 \281 ~ 284 \410 \452 ~ 454 \475 ~ 476 \		
	Ant		512 ~ 513 651 747 ~ 749 754 813 994 ~ 998 1121 ~ 1123 1134 ~ 1135 1199 1330		
钾钠长石	钾 长 石	天河石	108 ~ 113 ,125 ,156 ~ 161 ,178 ~ 186 ,198 ~ 209 ,265 ,284 ~ 290 ,452 ,475 ~ 479 ,507 ~ 512 ,748 , 812		
(碱性长石)	1	透长石	156 ~ 157 ,174 ,197 ,282 ,456 ,475 ~ 477 ,513 ~ 514 ,823 ,1115 ,1610		
		歪长石	113 \162 ~ 169 \193 \251 ~ 259 \281 ~ 291 \379 \401 ~ 408 \472 ~ 479 \507 ~ 513 \573 \764 \795 \		
			1099 ~ 1108		
	冰长石		125 ,143 ,152 ,165 ,199 ,264 ~ 268 ,284 ~ 285 ,402 ,465 ~ 475 ,513 ~ 514 ,650 ,745 ,1126		
	单钠长石		-		
钾钡长石		钡冰长石	161 ,283 ,362 ,472 ,514		

注:表中所有数据来源于文献[33]和[34];"-"表示文献中未见该矿物拉曼实验数据;表中亚族和变种分类方案参考文献[32]和[33]。

综合上述分析方法,理论上可以利用拉曼光谱 对长石族进行区分,但实际情况下还需考虑各峰位 波数重叠情况。如韩景仪等^[34]所收录的长石拉曼 光谱图显示,钠长石最明显的拉曼特征峰波数可在 473~480cm⁻¹、507~515cm⁻¹区间变化,这就与大 多数长石变种重叠,目易造成与碱性长石的混淆。 从表2可以看出,同一亚族下该情况更为明显,如钠 长石与更长石、正长石与微斜长石等,彼此中频区间 多数峰位均有重叠,需结合低频和高频区的拉曼谱 峰来进行分析。但低频区和高频区的拉曼谱峰强度 都相对较弱,又易被过高的背景基线掩盖。就本实 验样品而言,长石拉曼峰位在样品1中为106~ 112 cm^{-1} , 151 ~ 153 cm $^{-1}$, 157 ~ 159 cm $^{-1}$, 161 ~ 162 cm^{-1} , $185 \sim 190 \text{ cm}^{-1}$, 194 cm^{-1} , $284 \sim 294 \text{ cm}^{-1}$, 472~483cm⁻¹、506~514cm⁻¹、1123cm⁻¹区间;在样 品 2 中为 108 ~ 109 cm⁻¹、184 ~ 191 cm⁻¹、284 ~ 293 cm^{-1} $472 \sim 485 \text{ cm}^{-1}$ $507 \sim 512 \text{ cm}^{-1}$ 1100 cm^{-1} 区间(表1)。两个样品均具有最明显的拉曼特征峰 组合(472~485cm⁻¹、507~514cm⁻¹),符合长石族 矿物 510 cm⁻¹、475 cm⁻¹的拉曼峰特征(表 2)。但由 于荧光干扰,大部分可辨认的拉曼光谱峰都在低-中频区间,还有一些仅剩最明显的 480 cm⁻¹、 510cm⁻¹附近特征峰。在这种情况下,仅凭拉曼光 谱来对长石进行划分就变得困难且不可靠,最简便 的是结合镜下矿物光性特征来辅助分析。

以样品1中的长石为例,由于钠长石的拉曼特征 峰位在斜长石变种中较为特殊,与碱性长石有相似之 处,可在不考虑钠长石的基础上先确定斜长石亚族 (主峰 <510 cm⁻¹,位于 506 ~509 cm⁻¹区间且拥有 290 ~293 cm⁻¹、479 ~483 cm⁻¹波数组合),再根据钠长石 与碱性长石之间的差异峰来区分两者。由表2可知 185 ~190 cm⁻¹、194 cm⁻¹拉曼峰基本为钠长石独有,碱 性长石主峰 >510 cm⁻¹,位于 512 ~514 cm⁻¹区间且拥 有 106 ~110 cm⁻¹、157 ~158 cm⁻¹、284 ~286 cm⁻¹、472 ~476 cm⁻¹、1123 cm⁻¹峰位组合。剩余不易区分部分 则通过观察双晶特征来判断(图 2a 和图 2b)。

经分析,样品1中斜长石要多于碱性长石,其变 种在钠长石~中长石范围间,由于镜下观察有环带结 构和卡纳联晶、聚片双晶(细密),因此考虑以钠长石、 更长石为主,有少量中长石存在^[32]。碱性长石峰位 组合属于正长石~微斜长石范围,部分峰位与两者有 些微差异(相差1~2cm⁻¹),结合镜下出现的条纹特 征和卡式双晶,判断其为条纹长石(高温形成的正长 石在冷却为低温微斜长石过程中因钾、钠分子固溶体 分离而形成的交生体)^[32,35]。样品2长石拉曼特征 峰组合均可归于斜长石亚族,并与变种钠长石、拉长 石类似,结合峰位组合和光性特征来判断,以拉长石 为主(表1、表2)。

— 495 —

2.2.2 类质同象系列矿物——角闪石族矿物拉曼 光谱特征

角闪石是由 Si—O 四面体组成的双链结构的硅酸盐矿物的统称,类质同象现象十分普遍,其晶体结构特性会使 Ca²⁺、Mg²⁺、Fe²⁺、Fe³⁺等阳离子互相取代而形成多种固溶体系列(如钙质角闪石类、镁铁质角闪石类、碱质角闪石类等)^[32]。早期角闪石类拉曼光谱研究多集中于透闪石 – 阳起石系列,主要是利用拉曼光谱分析阳离子分布对 O—H 键的影响来确定阳离子在角闪石结构中的占位情况^[36-38]。随后黄恩萍^[39]对角闪石开展了整体性研究,对角闪石族拉曼光谱特征进行了分类,指出角闪石族的拉

曼光谱以 Si—O—Si 之对称拉伸振动为基础,最明显的峰位在 660~675 cm⁻¹之间,并随阳离子含量的增减呈现向低频或高频移动的特点,不同固溶体系峰位组合复杂且具有明显差异,在研究峰位变化时,需结合多种离子相互替代的综合因素来考虑。近来亦有韩景仪等^[34]收录了大部分角闪石类的拉曼光谱图,以及代路路等^[40]对主要成分为阳起石、透闪石的青玉和碧玉作了谱学特征研究。这些研究丰富了拉曼光谱在角闪石族中的应用范围,拓展了角闪石的拉曼光谱图种类。

本文结合已有资料整理出角闪石族矿物主要拉 曼特征峰位,具体见表3,以方便进行区分和比对。

表 3 角闪石族矿物主要拉曼特征峰位

Table 3	Hornblende	group	main	Raman	characteristic	peak	positions
---------	------------	-------	------	-------	----------------	------	-----------

亚族	矿物系列	种属	主要拉曼特征峰值范围					
		韭闪石	271 ~ 294 、313 ~ 334 、360 ~ 368 、378 ~ 399 、420 ~ 431 、535 ~ 549 、666 ~ 671 、684 ~ 688 、718 ~ 736 、7 ~ 805 、911 ~ 922 、995 ~ 1013 、1006 ~ 1025 、1093 、3659					
	普通 角闪石	铁质普通 角闪石	262 ~ 294、360 ~ 367、385 ~ 386、415、531 ~ 544、554 ~ 568、664 ~ 673、718 ~ 731、772 ~ 774、 895 ~ 942、1013、1021 ~ 1031、1054、3660 229、319 ~ 323、369 ~ 375、389 ~ 397、418、524 ~ 545、564、666 ~ 682、728 ~ 732、746、794 ~ 796、 929 ~ 937、1011、1022 ~ 1031、1068、3660 ~ 3666、3721					
	系列	淡(浅)闪石						
		钛闪石	218,372,432,554,666,751,896,1018,3686					
-		阳起石	231 249 262 303 347 370 388 ~ 393 415 434 516 528 ~ 532 671 ~ 673 749 929 946 1027 ~ 1029 1056 ~ 1059 3644 3660 3674 ~ 3675					
钙质 角闪石类		铁阳起石	220、364 ~ 371、386、418、529 ~ 535、666 ~ 669、913 ~ 929、975、1030 ~ 1031、1051、3620 ~ 3621、 3639 ~ 3640、3655 ~ 3661、3669 ~ 3674					
	透闪石 - 阳起石 系列	闪(碧)玉	225 ~ 230 、245 ~ 247 、264 、286 、298 ~ 300 、329 、341 、347 ~ 350 、364 ~ 371 、390 ~ 391 、412 ~ 413 、 433 ~ 435 、511 、525 ~ 529 、651 ~ 653 、669 ~ 673 、738 、747 、927 ~ 930 、1025 ~ 1029 、1055 ~ 1059 、 3643 ~ 3644 、3658 ~ 3661 、3672 ~ 3674					
		软玉	223 ,249 ,351 ,369 ,393 ,416 ,436 ,528 ,673 ,930 ,1029 ,1060 ,3675					
		透闪石	223 ~ 228 、248 ~ 250 、265 、287 ~ 288 、301 ~ 303 、332 、341 ~ 342 、349 ~ 352 、367 ~ 372 、391 ~ 395 、 413 ~ 417 、433 ~ 437 、513 ~ 518 、522 ~ 530 、651 ~ 653 、672 ~ 676 、738 ~ 741 、747 ~ 749 、928 ~ 931 、945 ~ 949 、1027 ~ 1030 、1056 ~ 1062 、3660 ~ 3661 、3673 ~ 3676 、3720					
		钠透闪石	212 ~ 233 、397 ~ 399 、679 ~ 683 、888 、923 、1079 、3705 ~ 3709 、3725 ~ 3728					
	氧角闪石	韭闪石	242 ,289 ,326 ,372 ,520 ,587 ,664 ,778 ,1023					
	系列	淡(浅)闪石	243 ~ 247 , 289 ~ 298 , 344 ~ 356 , 382 , 482 , 513 , 581 ~ 583 , 671 ~ 670 , 763 ~ 761 , 784 , 885 , 1021					
镁铁质 角闪石类	铁闪石 系列	铁闪石	351 \368 \408 \425 \510 \530 \662 \746 \763 \910 \969 \1023 \3619 \3638 \3655 \3668					
		蓝闪石	152 ,169 ,208 ,219 ~ 226 ,254 ,336 ,386 ,404 ,445 ,520 ~ 539 ,558 ,609 ,668 ~ 669 ,681 ,739 ,775 ,788 , 895 ,971 ~ 985 ,1007 ,1045 ,1104 ,3617 ,3623 ,3634 ~ 3636 ,3644 ,3649 ~ 3650 ,3662 ~ 3667					
		褐闪石	349 ,366 ,403 ,422 ,509 ,530 ,660 ,746 ,763 ,907 ,969 ,1021 ,3619 ,3637 ,3653 ,2667					
碱质 角闪石类	监闪石 - 镁钠闪石	镁铝钠闪石	208 255 304 335 385 404 445 488 525 554 608 688 742 775 787 887 985 1005 1045 1023 3618 3623 3633 3644 3650 3663 3663					
	术 ∕ 川	镁红闪石	224 、302 、359 、432 、539 、673 、967 、1058 、3666					
		亚铁钠闪石	220 ~ 224 、243 、353 ~ 369 、538 ~ 542 、574 、672 ~ 680 、758 、884 ~ 891 、975 ~ 978 、1058 、3622 、 3650 ~ 3656 、3671 、3078					
		镁亚铁钠闪石	171 ,222 ,335 ,369 ,390 ,422 ,539 ,589 ,681 ,725 ,897 ,923 ,977 ,1074 ,3655 ,3670 ,3707 ,3734					
注 主由版本	粉捉本酒王、	ア献[34] [36 _	10]. 分米古安会考立甜[32]和[30]					

但综合来看,闪石族矿物的拉曼谱峰情况与长 石族矿物类似,依然存在各种属间波数重叠的现象, 再加上本实验中矿物弱峰易被荧光掩盖的特点,解 析时也需借助矿物光性特征来判断。如样品1和样 品2中的部分矿物拉曼光谱图仅显示 660~ 680cm⁻¹特征主峰,并无其他峰位可参考,既可将其 视为角闪石(660~675 cm⁻¹),也可视为磁铁矿(663 ~668cm⁻¹,图2中的a和f)。此时,通过该矿物的 镜下光性特征(透明矿物,具淡绿-绿色多色性、半 自形粒状-柱状),即可判断为角闪石^[32,34]。再结 合岩性特征、矿物组合考虑,在317cm⁻¹、365cm⁻¹、 371 cm^{-1} , 550 ~ 565 cm⁻¹, 663 ~ 680 cm⁻¹, 731 cm⁻¹, 746 cm^{-1} , 797 cm^{-1} , 901 cm^{-1} , $929 \sim 940 \text{ cm}^{-1}$, $1020 \sim$ 1023 cm⁻¹、1029 cm⁻¹ 峰位组合的基础上,样品1与 样品2中的所有角闪石可大致归为普通角闪石系列 中的非闪石~淡闪石类。

2.2.3 其他矿物的拉曼光谱特征

除类质同象矿物外,其余矿物的拉曼特征峰经 软件中标准谱图库拟合比对,均可准确识别,具体峰 位呈现范围详见表1,在此不作赘述。其中富镁与 富铁黑云母的峰位略有不同,资料显示富镁黑云母 548cm⁻¹峰不显著,因此样品1中的云母可能为富 铁黑云母(548cm⁻¹),样品2则可能为富镁黑云母 $(188 \sim 190 \text{ cm}^{-1} 550 \sim 557 \text{ cm}^{-1} 677 \sim 682 \text{ cm}^{-1})$ 783 cm⁻¹、901 cm⁻¹)^[41-42]。值得注意的是,部分矿 物间存在紧密伴生的情况(如石英与长石、榍石与 角闪石),或次生蚀变的情况(长石碳酸盐化蚀变为 方解石等),此时一个数据采集点位获得的拉曼光 谱图可能包含不只一个矿物的特征峰信息,故在分 析每个拉曼谱图时需根据峰位组合进行仔细分辨, 以免造成误判而影响含量的准确统计,如图 2d 的石 英(129cm⁻¹、356cm⁻¹、465cm⁻¹)与长石(480cm⁻¹、 513cm⁻¹);图 2g 的方解石 (155cm⁻¹、282cm⁻¹、 1088cm⁻¹) 与磁铁矿 (669cm⁻¹), 方解石 (1085cm⁻¹)与长石(109cm⁻¹、475cm⁻¹、513cm⁻¹); 图 2h 的 榍 石 (163cm⁻¹、255cm⁻¹、335cm⁻¹、 469cm⁻¹、549cm⁻¹、609cm⁻¹) 与角闪石(669cm⁻¹、 365cm⁻¹)。此外,需注意不同的矿物间也存在单个 拉曼峰位相同的情况,如绿帘石和方解石都具有 1086 cm^{-1} 左右的拉曼特征峰(图2中e和g),因此 谱图解析时切忌仅凭单个特征峰位来进行判断。

2.2.4 含量统计

经过对每个拉曼光谱图进行分析,识别出不同 的矿物种类后,根据各类矿物与总矿物数据的比值, 来确定其在扫描区域内的占比,并以此作为相对含量来参与其后的综合定名(表1)。分析表明,样品1中以长石为主,其中斜长石和碱性长石各占总量的49.1%、21.1%,二者同为主要矿物。其次为石英、普通角闪石和富铁黑云母,分别占16%、7.8%和0.4%,共同构成次要矿物。磁铁矿、方解石、榍石、绿帘石和磷灰石,总体约5.6%,为副矿物。样品2中的矿物以普通角闪石和斜长石为主,分别占比43.8%、24.7%。石英和富镁黑云母为次,各占比12.4%和10.1%。副矿物有磁铁矿、方解石、榍石和锆石,共占比10%左右。

2.3 综合定名

根据以上矿物种类及含量分析结果,依据《岩石分类和命名方案火成岩岩石分类和命名方案》 (GB/T 17412.1—1998)中"附加修饰词+基本名称"定命原则以及定名步骤,首先将样品1的石英 (Q)、斜长石(P)、碱性长石(A)各自含量按总量 100%重新换算为18.56%、56.96%和24.48%。并 将其代入斜长石比率公式 P'(%)=100×P/(A+ P)计算出 P'=69.9%,用以上结果进行 QAPF 分类 投图,显示其"基本名称"为石英二长闪长岩;接着 通过观察矿物粒径、结构、含量等信息,按标准规范 来确认参与定名的"附加修饰词"组成内容,最终将 该样品定名"细粒角闪石英二长闪长岩"。

样品2定名过程与样品1相似,其依据为《岩石 分类和命名方案变质岩岩石分类和命名方案》 (GB/T 17412.3—1998)。综合主矿物成分(斜长 石、角闪石)及各自含量(角闪石>40%,斜长石约 24%,暗色矿物黑云母>10%)、结构(粒柱状变晶 结构)、粒径(细粒)和矿物定向程度,最终将其定名 为细粒黑云母斜长角闪岩。

3 方法对比及影响因素分析

3.1 拉曼 Mapping 技术与主要岩矿鉴定方法对比

本实验通过拉曼 Mapping 技术完成了岩石薄片 全区域鉴定,将上述实验结果与样品所附原鉴定报 告(经由传统人工鉴定方法分析)进行对比,无论是 鉴定内容(矿物组成、含量分析),还是综合定名,均 较为一致,其差异主要体现在对细微矿物的识别以 及对个别矿物的含量统计方面(表4)。

从表4中可以看出,与传统鉴定方法相比,拉曼 光谱依托1~2μm的光斑和 Mapping 面扫技术的自 动性和精确性,在矿物种类识别方面,不仅能检测出 石英、长石、角闪石等主要矿物,对绿帘石、榍石、磷

图 2 样品中矿物的拉曼光谱图

Fig. 2 Raman spectra of mineral in the samples

灰石、锆石和磁铁矿这类在样品中含量极少的微细 矿物和不透明矿物的识别率也较强,基本覆盖了传 统鉴定方法鉴定出的全部矿物,且更为精确(如样 品1中的方解石、榍石、绿帘石和磷灰石,样品2中 的方解石、锆石)。传统鉴定往往会将这类微细矿 物遗漏或忽略,或因光性特征相似性等问题,与其他 矿物混淆,从而影响鉴定结果(如样品2中的磷灰 石)。在含量分析方面,拉曼光谱 Mapping 技术运用 统计法,以矿物识别为基础,扫描区域内步长间距设 置越短,矿物识别率越高,谱图解析越准确,含量统 计越精确,弥补了传统目估法所欠缺的客观性。 表4中两个方法在石英、长石、角闪石等个别矿物含 量上存在差异性,亦不乏上述原因。在确定实验条 件的正确设置、矿物识别率和谱图解析度较高的情 况下,应以拉曼光谱的分析为准。

表4 拉曼 Mapping 和传统鉴定方法对比

 Table 4
 Comparison between Raman mapping and conventional identification methods

样品	传统显得	数镜鉴定法	拉曼 Mapping 鉴定法		
编号	成分(含量)	野外定名	室内定名	成分(含量)	定名
1	斜长石(48%) 碱性长石(20%) 石英(12%) 角闪石(18%) 黑云母(1%) 磁铁矿(1%)	黑云母 二长 花岗岩	细粒角闪 石英二长 闪长岩	斜长石(49.1%) 碱性长石(21.1%) 石英(16.0%) 普通角闪石 (7.8%) 黑云母(0.4%) 磁铁矿(2.2%) 方解石(0.9%) 榻石(1.7%) 绿帘石(0.4%) 磷灰石(0.4%)	细粒角闪 石英二长 闪长岩
2	普通角闪石 (42%) 斜长石(45%) 石英(2%) 黑云母(8%) 磁铁矿(2%) 楣石+磷灰石 (0.2%)	闪长质包体	细粒黑云 斜长 角闪岩	普通角闪石 (43.8%) 斜长石(24.7%) 石英(12.4%) 黑云母(4.5%) 磁铁矿(10.1%) 方解石(2.3%) 锆石(1.1%) 榍石(1.1%)	细粒 黑云母 斜长 角闪岩

此外,相较于岩矿测试领域其他前沿技术(如 AMICS-SEM-EDS^[18]、薄片扫描法^[19]等),拉曼光 谱 Mapping 技术最主要的优势就是操作方便快捷, 且对样品无损,可大范围扫描最小到1~2μm的微 细矿物。该优势使其无需考虑样品形状、大小以及 再加工(如扫描电镜片镀碳等)会对矿物镜下观测 带来的影响,也便于后续研究对样品的再利用。而 通过连接的光学显微镜和开放的自动平台,亦可在 方便样品换取的同时,通过透射光或反射光在50X ~1000X 视域下直观地对薄片样品中的矿物进行观 测操作,避免了因无透射光或因放大倍数太大需要 先对所需区域圈点再来观测带来的不便。

这些特点使拉曼光谱 Mapping 技术在岩矿鉴定 领域自有其优越性,但相应的,该方法受技术所限, 也会受一些因素的影响而造成鉴定准确率下降,测 试前充分考虑这些影响因素可有效降低测试难度并 提升准确度。

3.2 影响拉曼 Mapping 鉴定准确性的因素及解决 方法

对于传统鉴定来说,准确率为方法自身条件所 局限,一直就是鉴定的难点^[13];而对于激光拉曼光 谱这类高精度的方法来说,影响因素主要有:①实验 条件的设置(主要为激光功率和步长的设置)。 ②荧光干扰。③标准谱图库和相关文献资料的缺 失。④类质同象矿物拉曼光谱的相似性干扰。 ⑤蚀变矿物的峰位偏移。

其中①和②是主要因素,由条件实验结果可知正确进行参数设置直接影响区域内矿物数据的采集率, 必须考虑到不同矿物种类对于功率接收的不均衡性 以及矿物颗粒大小对于步长设置的合理性。而荧光 干扰则历来是拉曼检测的难点,目前尚无完全的解决 方法,只有通过选择不同的激光器避免(如1064nm 的激光器)。其次,定性分析是一个由未知到已知的 过程,通常需要对照标准谱图库和前人研究资料来完 成,资料的缺失、峰位相似度过高均会对拉曼光谱图 解析造成困难,从而间接降低矿物的识别率。因此 ③~⑤也是影响因素之一,更多的是影响拉曼光谱图 的解析率,这就要求解析这类矿物的拉曼光谱时结合 全部拉曼峰位及峰位组合来综合分析,必要情况下还 需结合矿物镜下光性特征来进行判断。

鉴于上述情况,若在 Mapping 分析之前就对部 分复杂矿物进行特征分析,可减小后期数据处理的 繁杂程度。另外,本次研究样品表面蚀变程度轻微, 拉曼谱峰位置普遍在标准峰位范围内,当退晶化、蚀 变程度较重时,其矿物的拉曼特征峰会发生一些偏 移,若通过观察光性特征亦无法解决,则需用其他成 分分析技术(如扫描电镜 – 能谱等)协助判断。而 灵活运用以上方法解决测试中遇到的问题,则需研 究人员具有一定的拉曼光谱解析和岩矿鉴定能力。

4 结论

基于拉曼光谱 Mapping 技术,以普通光薄片为 研究对象,对实验条件、矿物识别、含量统计、综合定 名等方面进行系统的岩矿鉴定。其鉴定结果与传统 鉴定方法比较,仅在微细矿物识别和个别矿物含量 统计上有差异,总体精确度、相似度较高。此研究成 果弥补了传统岩矿鉴定方法受人为影响因素较大、 主观性强等方面的不足,为直观地进行镜下微细矿 物识别和鉴定提供了一种准确、有效的研究方法。 但需注意的是,该方法本身易受荧光干扰、实验 条件设置的影响;矿物识别和种属划分一方面受标 准谱图库和前人研究资料的限制,另一方面依然取 决于研究人员对拉曼光谱的解析和鉴定能力。建议 针对以下方面进行深入研究:①建立能有效降低荧 光干扰对 Mapping 扫谱影响的方法;②开展常见类 质同象矿物的拉曼光谱研究,建立专门的各亚族矿 物标准图库;③加强与其他定量技术方法的联用及 提升专业人员能力,形成一套完善的岩矿鉴定标准 化体系。

5 参考文献

 [1] 贾福东,张长青,化志新,等.云南麻花坪钨铍矿床蓝 柱石的鉴定特征及成分与成因分析[J].光谱学与光 谱分析,2020,40(10):3185-3192.

> Jia F D, Zhang C Q, Hua Z X, et al. Identification characteristics, composition and genesis of euclase in Mahuaping tungsten – beryllium polymetallic deposit in Yunnan Province, southwest China[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3185 – 3192.

 [2] 秦亚超,孙荣涛,王红,等.南黄海西部日照海域海侵 沉积地层及其古环境意义[J].沉积学报,2020,38
 (4):790-809.

> Qin Y C, Sun R T, Wang H, et al. Transgressive succession offshore rizhao in western South Yellow Sea and paleo – environmental implications [J]. Acta Sedimentologica Sinica,2020,38(4):790-809.

[3] 冯子辉,柳波,邵红梅,等.松辽盆地古龙地区青山口 组泥页岩成岩演化与储集性能[J].大庆石油地质与 开发,2020,39(3):72-85.

> Feng Z H, Liu B, Shao H M, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong Area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3):72 - 85.

- [4] Tian T, Wu H, Kong F F. Fine grained lithofacies types and sedimentary evolution characteristics of the Lower Es3 to the Upper Es4 of the Eocene Shahejie Formation in Jiyang Depression [J]. International Core Journal of Engineering, 2021, 7(5):147 – 160.
- [5] 杨富成,李文昌,祝向平,等.藏东芒康县巴达铜金矿 床地质特征及找矿方向研究[J].地学前缘,2020,27
 (4):232-243.

Yang F C, Li W C, Zhu X P, et al. Geological characteristics and prospecting of the Bada Cu – Au deposit in Mangkang County, East Tibet [J]. Earth Science Frontiers, 2020, 27(4):232 – 243.

[6] 张殿伟,郝运轻,张荣强,等.四川盆地湄潭组生烃潜 力分析及勘探意义[J]. 沉积学报,2020,38(3):
635-647.
Zhang D W, Hao Y Q, Zhang R Q, et al. Hydrocarbon

potential analysis and exploration significance of the Meitan Formation, Sichuan Basin [J]. Acta Sedimentologica Sinica, 2020, 38(3):635-647.

[7] 文博杰,陈毓川,王高尚,等. 2035年中国能源与矿产资源需求展望[J].中国工程科学,2019,21(1): 68-73.

Wen B J, Chen Y C, Wang G S, et al. China's demand for energy and mineral resources by 2035 [J]. Strategic Study of CAE, 2019, 21(1):68 – 73.

- [8] 王焰新."同一健康"视角下医学地质学的创新发展
 [J].地球科学,2020,45(4):1093-1102.
 Wang Y X. Innovative development of medical geology: A one health perspective [J]. Earth Science, 2020,45 (4):1093-1102.
- [9] Chen H W, Lin S G, Li Z G, et al. Comparing arsenic(V) adsorption by two types of red soil weathered from granite and sandstone in Hunan, China [J]. Environmental Earth Sciences, 2021, 80(10):376 - 387.
- [10] Kirsten M, Mikutta R, Vogel C, et al. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics[J]. Scientific Reports, 2021,11(1):5076-5088.
- [11] 朱强,李建国,苗培森,等.鄂尔多斯盆地镇原地区洛河组黏土矿物特征及找铀意义[J].大地构造与成矿学,2020,44(4):619-632.
 Zhu Q, Li J G, Miao P S, et al. Characteristics of clay minerals in the Luohe Formation in Zhenyuan Area, Ordos Basin, and its uranium prospecting significance
 [J]. Geotectonica Et Metallogenia, 2020, 44 (4): 619-632.
- [12] 李光柱,李梅,肖赫,等. 不同粒度下微山稀土矿物颗粒 赋存研究[J]. 有色金属(选矿部分),2021(1):1-5.
 Li G Z, Li M, Xiao H, et al. Study on the occurrence of rare earth mineral particles in Weishan with different particle sizes[J]. Nonferrous Metals (Mineral Processing Section),2021(1):1-5.
- [13] 李余亮. 岩矿鉴定存在的问题与改进方式分析[J]. 冶金管理,2020(13):17-18.
 Li Y L. Problems of rock ore appraisal and improvement way analysis [J]. Metallurgical Industry Management, 2020(13):17-18.
- [14] Coblinski J A,Inda A V,Demattê J A M,et al. Identification of minerals in subtropical soils with different textural classes by Vis - NIR - SWIR reflectance spectroscopy

— 500 —

[J]. Catena, 2021, 203:105334.

- [15] 何佳乐,潘忠习,冉敬.激光拉曼光谱在岩矿鉴定中的应用[J].四川地质学报,2016,36(2):346-349.
 He J L, Pan Z X, Ran J. The application of laser Raman spectroscopy to rock and mineral identification[J]. Acta Geologica Sichuan,2016,36(2):346-349.
- [16] 李映葵,曹建劲,吴政权,等.内蒙古扎木敖包铁、石 墨矿床钻孔样品的 NIR 和 XRD 分析[J].光谱学与光 谱分析,2015,35(1):83-88.

Li Y K, Chao J J, Wu Z Q, et al. NIR and XRD analysis of drill – hole samples from Zhamuaobao iron – graphite deposit, Inner Mongolia [J]. Spectroscopy and Spectral Analysis, 2015, 35(1):83–88.

- [17] 迟广成,殷晓,伍月,等. 扫描电镜/能谱仪用于变质 岩中榍石的鉴定[J]. 冶金分析,2016,36(4):11-16.
 Chi G C, Yin X, Wu Y, et al. Application of scanning electron microscope/energy dispersive spectrometer in the identification of sphene in metamorphic rock [J]. Metallurgical Analysis,2016,36(4):11-16.
- [18] 张然,叶丽娟,党飞鹏,等.自动矿物分析技术在鄂尔 多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的 应用[J]. 岩矿测试,2021,40(1):61-73.

Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone – type uranium deposits in the Ordos Basin [J]. Rock and Mineral Analysis,2021,40(1):61 – 73.

[19] 张贵山,彭仁,邱红信.扫描仪在岩矿鉴定与岩相学研究中的应用——薄片扫描法[J].矿物学报,2020, 40(1):1-8.

> Zhang G S, Peng R, Qiu H X. Application of scanner for the rock – mineral identification and petrography—— Thin section scanning method [J]. Acta Mineralogica Sinica,2020,40(1):1-8.

- [20] 魏广超, 尤静林, 马楠, 等. 链状硅酸盐矿物的拉曼光 谱研究[J]. 光散射学报, 2017, 29(1):62-69.
 Wei G C, You J L, Ma L, et al. Raman spectroscopic study of the chain silicate minerals [J]. The Journal of Light Scattering, 2017, 29(1):62-69.
- [21] 付宛璐,袁学银.镁对方解石相变压力和拉曼光谱影 响的实验研究[J].光谱学与光谱分析,2019,39(7): 2053-2058.

Fu W L, Yuan X Y. Study on the influence of magnesium on the phase transition pressures and Raman vibrations of calcite[J]. Spectroscopy and Spectral Analysis, 2019, 39 (7):2053-2058.

[22] 何佳乐,潘忠习,冉敬.激光拉曼光谱法在单个流体 包裹体研究中的应用进展[J]. 岩矿测试,2015,34 (4):383-391.

He J L, Pan Z X, Ran J. Research progress on the application of laser Raman spectroscopy in single fluid inclusions [J]. Rock and Mineral Analysis, 2015, 34 (4):383-391.

- [23] 宋彦军,李甘雨,张健,等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试,2020,39(5):709-719.
 Song Y J, Li G Y, Zhang J, et al. Mineralogical characteristics and coloration mechanism of yellow green alunite jade[J]. Rock and Mineral Analysis,2020, 39(5):709-719.
- [24] Kouketsu Y, Mizukami T, Mori H, et al. A new approach to develop the Raman carbonaceous material geother – mometer for low – grade metamorphism using peak width [J]. Island Arc, 2014, 23(1):33 – 50.
- [25] 张聪,夏响华,杨玉茹,等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试,2019,38(1):26-34.
 Zhang C, Xia X H, Yang Y R, et al. Raman spectrum characteristics of organic matter in Silurian Longmaxi Forma tion shale of well Anye 1 and its geological signific ance[J]. Rock and Mineral Analysis,2019,38(1):26-34.
- [26] Zhang S Y, Chen H, Li R Y, et al. Raman spectroscopy and mapping technique for the identification of expired drugs[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 224:1386 - 1425.
- [27] 刘丹童,宋洋,李菲菲,等. 基于显微拉曼面扫的小尺 寸微塑料检测方法[J]. 中国环境科学,2020,40 (10):4429-4438.
 Liu D T, Song Y, Li F F, et al. A detection method of small - sized microplastics based on micro - Raman mapping[J]. China Environmental Science, 2020,40 (10):4429-4438.
- [28] 崔楠楠,杜增丰,张鑫,等. 共聚焦拉曼光谱在贻贝介 壳探测中的应用[J]. 光谱学与光谱分析, 2020, 40
 (3):750-754.
 Cui N N, Du Z F, Zhang X, et al. The application of confocal Raman spectroscopy in mussels shell [J].
 Spectroscopy and Spectral Analysis, 2020, 40 (3): 750-754.
- [29] Fernando P A, Niels H, Philippe M. High spatial resolution Raman mapping of complex mineral assemblages: Application on phosphate mineral sequences in pegmatites[J]. Journal of Raman Spectroscopy, 2020, 52 (3):690 - 708.
- [30] Chu H X, Chi G X, Xue C J. Quantification of solute composition in H₂ O - NaCl - CaCl₂ solutions using

cryogenic 2D Raman mapping [J]. Minerals, 2020, 10 (11):1043.

- [31] Burke E A J. Raman microspectrometry of fluid inclusions
 [J]. Lithos, 2001, 55(1-4):139-158.
- [32] 常丽华,陈曼云,金巍,等.透明矿物薄片鉴定手册
 [M].北京:地质出版社,2006.
 Chang L H, Chen M Y, Jin W, et al. Handbook for the identification of transparent mineral flakes[M]. Beijing: Geological Publishing House,2006.
- [33] 谢俊. 铝硅酸盐精细结构及长石的拉曼光谱研究 [D]. 北京:中国地质大学(北京),2008.

Xie J. A Raman spectroscopy study of hyperfine structure of aluminosilicate and feldspar [D]. Beijing: China University of Geosciences (Beijing), 2008.

[34] 韩景仪,郭立鹤,陈伟. 矿物拉曼光谱图集[M].
 北京:地质出版社,2016:147-151.
 Han J Y, Guo L H, Chen W. Raman spectral atlas of

minerals [M]. Beijing: Geological Publishing House, $2016\,;147-151.$

[35] 刘伟.碱性长石在次固相下的微组构重组织:碱性长石流体相互作用[J].地学前缘,2001,8(4): 391-397.

Liu W. Microtextural reorganization of alkali feldspar during deuteric alteration: Alkali feldspar – fluid interaction [J]. Earth Science Frontiers, 2001, 8(4):391–397.

- [36] Lazarev A N, Tenisheva T F. The vibration spectra and structures of some rare earth element silicates [J]. Russian Chemical Bulletin, 1961, 10(6):894-901.
- [37] Blaha J J, Rosasco G J. Raman microprobe spectra of

individual microcrystals and fibers of talc, tremolite, and related silicate minerals[J]. Analytical Chemistry, 1978, 50(7):892-896.

- [38] Wang A, Dhamelincourt P, Turrell G. Raman micro - spectroscopic study of the cation distribution in amphiboles [J]. Applied Spectroscopy, 1988, 42 (8): 1441-1450.
- [39] 黄恩萍.角闪石类矿物之拉曼光谱研究[D].台北: 国立成功大学,2003.
 Huang E P. Raman spectroscopic study of amphiboles
 [D]. Taipei: National Cheng Gung University,2003.
- [40] 代路路,姜炎,杨明星."黑青""黑碧"的谱学鉴别特征探究[J].光谱学与光谱分析,2021,41(1):292-298.
 Dai L L, Jiang Y, Yang M X. Study on the spectral identification characteristics of "Haisins" and "Haiki"

identification characteristics of "Heiqing" and "Heibi" [J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 292 – 298.

- [41] Frezzotti M L, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis [J]. Journal of Geochemical Exploration, 2012, 112:1 – 20.
- [42] 沈昆,舒磊,刘鹏瑞,等.山东邹平王家庄铜(钼)矿床 蚀变围岩中含云母流体包裹体的成因及其意义[J]. 岩石学报,2018,34(12):3509-3524.
 Shen K,Shu L,Liu P R, et al. Origin and significance of mica - bearing fluid inclusions in the altered wallrocks of the Wangjiazhuang copper - molybdenum deposit, Zouping County,Shandong Province[J]. Acta Petrologica Sinica,2018,34(12):3509-3524.

Raman Imaging Analysis Method of Fine Minerals in Rock Ore

HE Jia $-le^1$, GONG Ting $-ting^2$, PAN Zhong $-xi^{1*}$, DU Gu¹

(1. Chengdu Center of Geological Survey, China Geological Survey, Chengdu 610081, China;

2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China)

HIGHLIGHTS

- (1) StreamLineHR was used to identify fine minerals and to systematically analyze their composition and concentrations.
- (2) The effects of experimental conditions, fluorescence interference, and spectral fitting parameters on the Raman mapping results were analyzed.
- (3) The differences among the mapping technique, traditional identification methods, SEM, and other technical methods were compared.

ABSTRACT

BACKGROUND: Mineral identification is the basis of all types of geological work, and its appraisal level and quality directly affect the depth and degree of research of a study. Conventional identification methods are significantly influenced by experience level, optical microscope resolution, and other factors. It is difficult to accurately identify fine rare minerals and clay minerals that need to be studied. Additionally, most of the technical methods relying on high – precision large – scale instruments have special requirements for sample preparation, which is not conducive to the reuse of the samples. It is also inconvenient to explore and observe specific fine transparent minerals under high multiple reflected lights, such as scanning electron microscopy and electron microprobe.

OBJECTIVES: To develop a more rapid and accurate method for identifying fine minerals.

METHODS: The laser Raman high – resolution large – area fast imaging method (StreamLineHR) was applied to the whole – area large – area scanning spectrum of two standard rock slices.

RESULTS: The transparent minerals were identified as alkali feldspar, plagioclase, quartz, amphibole, biotite, calcite, sphene, apatite, zircon, and epidote. The opaque mineral was identified as magnetite. Some of the minerals were closely associated (e.g., quartz and feldspar as well as sphene and hornblende), and some minerals showed secondary alterations (e.g., feldspar was transformed to calcite). Based on the content statistics, the two thin sections were named fine – grained amphibolite monzonite and fine – grained biotite plagioclase amphibolite.

CONCLUSIONS: Experimental results showed that this method was more accurate than the conventional methods used for the identification of fine minerals with very low content. However, the interference caused by the fluorescence effect, similarity in peak positions of similar minerals (feldspar, amphibole), and shift of the peak position of altered minerals during mineral identification and spectral fitting were solved by combining the optical characteristics under the mineral objective lens when necessary. In addition, the smaller the setting of the surface sweep step size, the more accurate the analysis, and the time cost correspondingly increased. This method realized the rapid identification of fine minerals over a large range, which was convenient, intuitive, and accurate. It compensated for the shortcomings of conventional rock and ore identification and other technical methods and expanded the application scope of Raman spectroscopy in geological studies.

KEY WORDS: laser Raman spectroscopy; Mapping technology; rapid imaging; rock and ore identification; mineral identification