刘跃, 林冬, 王记鲁,等. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试,2022,41(6):1017-1028.

LIU Yue, LIN Dong, WANG Jilu, et al. Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/ Reaction Modes[J]. Rock and Mineral Analysis, 2022, 41(6):1017-1028. [DOI: 10.15898/j. cnki. 11-2131/td. 202112230206]

四种碰撞/反应模式-电感耦合等离子体串联质谱法测定 土壤和水系沉积物样品中的银

刘跃,林冬,王记鲁,李静,王鑫 (天津市生态环境监测中心,天津 300191)

摘要:由于受到铌、锆的质谱干扰,使用电感耦合等离子体质谱法(ICP-MS)很难准确测定土壤和水系沉积物中的银。本文采用电感耦合等离子体串联质谱法(ICP-MS/MS),通过研究⁹³Nb¹⁶O⁺、⁹¹Zr¹⁶OH⁺、⁹²Zr¹⁶OH⁺和¹⁰⁹Ag⁺在氦气、氧气和氨气中质谱信号变化,探讨不同碰撞/反应模式的干扰消除能力和消除机理。实验采用盐酸-硝酸-氢氟酸-高氯酸消解样品,选用氦气 MS/MS 模式、氧气 MS/MS 模式、氨气 MS/MS 模式、氨气 MS/MS 模式、氨气 MS/MS 模式、氯气 Mass-Shift 模式测定土壤和水系沉积物中的银含量。结果表明:在优化池气体流速后,四种模式下铌、锆对银的干扰程度分别降低 20、1500、1500 和 2000 多倍;方法检出限分别为 0.005mg/kg、0.002mg/kg、0.003 mg/kg 和 0.003mg/kg;准确度和精密度采用国家标准物质验证,测定值和标准值的相对误差分别在-1.4%~ 84.3%、-7.6%~7.2%、-15.0%~10.0%和-12.5%~8.6%之间,相对标准偏差(RSD)分别在 1.5%~6.3%、1.4%~8.3%、1.4%~5.9%和 0.7%~8.2%之间。氦气 MS/MS 模式消除干扰能力一般,仅适合测定铌、锆干扰较轻的样品;氧气 MS/MS 模式、氨气 MS/MS 模式、氨气 Mass-Shift 模式消除质谱干扰能力较强,可用于土壤和水系沉积物中痕量银的测定。与行业标准 DZ/T 0279.11—2016 相比,这三种方法检出限更低、测定范围更宽,并可实现多元素同时测定。

关键词:碰撞/反应模式;银;电感耦合等离子体串联质谱法;土壤;水系沉积物要点:

- (1) 氦气 MS/MS、氧气 MS/MS、氨气 MS/MS、氨气 Mass Shift 四种模式均能降低⁹³Nb¹⁶O⁺、⁹¹Zr¹⁶OH⁺
 ⁹²Zr¹⁶OH⁺对¹⁰⁹Ag⁺的质谱干扰并探讨其消除机理。
- (2)优化气体流速后,在氧气 MS/MS、氨气 MS/MS、氨气 Mass-Shift 三种模式下铌、锆溶液对银的干扰降低了1500 倍以上。
- (3) 建立了四种模式 ICP-MS/MS 直接测定土壤和水系沉积物中银的分析方法。

中图分类号: 0657.63; 0614.122 文献标识码: A

银作为土壤背景值的一个重要指标,是土壤环 境监测、矿产资源和地球化学调查的常规检测元素, 准确测定银含量在环境保护、监测工作和矿产资源 预测等方面具有很重要的现实意义。土壤和水系沉 积物中银的丰度很低,一般在 ng/g 级别,主要测试 方法有石墨炉原子吸收光谱法^[1-2]、交流电弧-发射 光 谱 法^[3-5]、电 感 耦 合 等 离 子 体 质 谱 法 (ICP-MS)^[6-8]等。其中,石墨炉原子吸收光谱法每次只能测定单个元素,测量时间长,且存在基体效应,需要选择合适的基体改进剂,不适用于批量样品的测定;交流电弧-发射光谱法的检出限相对较高,测定范围较窄,只适用于银硼锡钼等少数几种元素的测定;ICP-MS 具备多元素同时测定、干扰少、检出限低、线性范围宽的特点,是环境、地质、农业等部

收稿日期: 2021-12-23; 修回日期: 2022-01-27; 接受日期: 2022-03-13

基金项目: 生态环境部标准编制项目[2018-4]

作者简介:刘跃,硕士,工程师,主要从事环境监测及无机元素分析工作。E-mail: lymolei@163.com。

门检测银的一种重要手段。

ICP-MS 法在测定银元素时,银的两个天然同 位素¹⁰⁷Ag 和¹⁰⁹Ag 分别受到⁹¹Zr¹⁶O⁺、⁹⁰Zr¹⁶O¹H⁺、 ⁹³Nb¹⁴N⁺和⁹³Nb¹⁶O⁺、⁹¹Zr¹⁶OH⁺、⁹²Zr¹⁶OH⁺等多原子 离子质谱干扰。土壤和水系沉积物样品中铌、锆的 含量远高于银,这些干扰的存在使得 ICP-MS 法直 接测定土壤和水系沉积物样品中的银还存在一定的 问题^[7]。单四极杆 ICP-MS 法主要采取两类方法消 除这些质谱干扰:一是通过前处理过程分离基体或 富集银元素,包括三种途径,①采用王水^[9-10]、逆王 水^[11]不完全分解样品,减少铌、锆的溶出量,从而实 现银与铌、锆分离,但因该方法不能破坏硅酸盐结 构,故可能导致银元素无法完全溶出,使得这种方式 在应用上有一定的局限性:②采用氨水^[12]、磷 酸[13-14]等沉淀剂处理消解液以分离银元素和干扰 基体,有效地解决了铌、锆干扰的问题,但这类操作 过程复杂,可能存在沉淀吸附现象,对沉淀剂的纯度 有一定的要求以防引入污染;③采用泡塑^[15]、P₅₀₇ 树脂^[16]选择性吸附富集消解液中银元素,实现银与 干扰基体分离,但操作繁琐,流程较长,不利于大批 量样品测试。二是在测试过程中采用干扰消除技 术:①采用膜去溶技术[17]减少溶剂进入等离子体, 有效地抑制氧化物或氢氧化物的产生,可将锆的氧 化物和氢氧化物产率降低至 0.0005%,并通过多种 类型地质样品验证方法的可行性,但一般实验室不 具备膜去溶设备,且该设备对样品基体的要求较高; ②采用在线干扰方程进行校正^[18-19]实现了土壤和 水系沉积物中银的测定,但实际应用过程中干扰系 数并不相同:③采用碰撞/反应技术^[20-23]可降低质 谱干扰对测定的影响,如王家恒等^[20]采用单四极杆 ICP-MS 反应模式能将 2mg/L 的铌、锆混合溶液对 银的干扰降低 250 多倍,但对干扰更严重的样品其 消除干扰能力有限,碰撞模式会降低灵敏度且不适 用于铌、锆干扰较强的样品,针对不同类型的样品可 能需要选用不同的去除干扰方法。相比于单四极杆 ICP-MS, 电感耦合等离子体串联质谱仪 (ICP-MS/MS)在碰撞反应池前增加了一组四极杆 质量过滤器,能够利用第一组四极杆(Q₁)进行质量 筛选,有效地筛选目标离子进入碰撞/反应池(Q_{2}), 通过各种反应气体(氧气、氨气、甲烷等)与待测离 子或干扰离子反应,再通过第二组四极杆质量过滤 器(Q_3)检测通过碰撞反应池产生的反应生成物,使 得待测离子和干扰离子分离从而降低干扰[24-26]。

本文探讨了采用 ICP-MS/MS 碰撞/反应技术 - 1018 -- 消除铌、锆氧化物和氢氧化物对银测定的质谱干扰, 选用三种气体(氦气、氧气、氨气)作为碰撞/反应气 体,根据铌、锆对银的干扰情况和土壤及水系沉积物 中三种元素的丰度选择合适的分析同位素,通过不 同气体模式下 m/z=109 处银与铌、锆的氧化物和氢 氧化物质谱行为及信号强度变化,研究了相应的干 扰消除原理及效果并选择了合适的测定模式,优化 气体流速考察了四种测定模式(氦气 MS/MS 模式、 氧气 MS/MS 模式、氨气 MS/MS 模式、氨气 Mass-Shift 模式)的干扰消除程度并通过测定不同浓度 铌、锆溶液进一步验证了四种模式消除干扰的效果。 优化仪器条件后,比较了四种测定模式的检出限、灵 敏度,并用土壤和水系沉积物国家标准物质进行了 精密度、准确度验证实验,建立了采用不同模式准确 分析土壤和水系沉积物中银含量的方法。

1 实验部分

1.1 仪器与设备

NexION 5000 型电感耦合等离子体串联质谱仪 (美国 PerkinElmer 公司),进样系统包括 PC³ 雾室 制冷器、micro-flow 雾化器、石英旋流雾室等。

BSA-CW型万分之一分析天平(德国 Sartorius 公司);ST60型全自动石墨消解仪(中国普立泰科 公司);Milli-Q型去离子水机(美国 Millipore 公司) 等。

1.2 标准溶液和主要试剂

1000mg/L银(Ag)、铌(Nb)、锆(Zr)、铑(Rh)标 准溶液(国家有色金属及电子材料分析测试中心)。

仪器调谐液:Be、Ce、Fe、In、Li、Mg、Pb、U的浓 度均为 200ng/L(美国 PerkinElmer 公司)。

硝酸、盐酸、氢氟酸和高氯酸均为电子级(天津 市风船化学试剂科技有限公司);去离子水(电阻率 18.2MΩ・cm)。

1.3 实验样品及制备方法

选取目标元素、干扰元素及干扰元素与目标元 素比值均具有一定浓度梯度、样品性质有代表性的 土壤标准物质 GBW07403~GBW07405、GBW07407、 GBW07451 和水系沉积物标准物质 GBW07302a、 GBW07305a、GBW07309、GBW07311、GBW07375 (中国地质科学院地球物理地球化学勘查研究所), 其中银含量为 0.040~4.4mg/kg,铌含量为 6.2~ 64mg/kg,锆含量为 87.6~500mg/kg;铌含量与银含 量比值在 8~1123 倍之间,锆含量与银含量比值在 48~7143 倍之间。 样品制备方法如下:称取 0.1000g 样品于 50mL 聚四氟乙烯消解管中,用去离子水润湿样品,加入 5mL 盐酸、10mL 硝酸、5mL 氢氟酸、1mL 高氯酸, 将消解管置于石墨消解仪上,先升温至 120℃加热 60min,再升温至 160℃加热 60min,最后升温至 180℃加热至冒白烟,并蒸至白烟几乎冒尽,内溶物 呈不流动状,趁热加入 2%的硝酸溶液湿热溶解残 渣,冷却至室温后,用 2%的硝酸溶液定容至 50mL。 同时做空白实验。

1.4 质谱分析主要测量模式及工作条件

1.4.1 产物离子扫描模式

产物离子扫描模式是指第一组四极杆设置一个 固定的质荷比(m/z),使特定质荷比的离子进入碰 撞/反应池与不同的气体发生作用;第二组四极杆质 量过滤器扫描的是整个(或部分)质量范围,该模式 可以用于研究所选前体离子与不同的气体发生作用 后得到的反应产物离子。本实验采用该模式主要用 于研究 m/z = 109 处各种离子(109 Ag⁺、 93 Nb¹⁶O⁺、 $^{91}Zr^{16}OH_{2}^{*}$ 、 $^{92}Zr^{16}OH^{+}$ 等)在不同气体条件(标准、氦 气、氧气和氨气)下质谱行为及信号强度变化,从而 确定选择合适的测量模式。

1.4.2 测量模式

ICP-MS/MS 主要有两种测量模式:一种是原位 质量模式(MS/MS),主要用于测量未与池气体反应 的元素,检测具有初始质荷比的离子($Q_1 = Q_3$);另 一种是质量转移模式(Mass-Shift),主要用于测量 与池气体反应的元素,检测 m/z 值与其初始值不同 的离子($Q_1 \neq Q_3$),这两种模式均可搭配不同的碰 撞/反应气体使用。本实验采用标准 MS/MS 模式、 氦气 MS/MS 模式、氧气 MS/MS 模式、氦气 MS/MS 模式和氦气 Mass-Shift 模式,比较不同测量模式下 质谱干扰情况及消除效果,进行池气体流速优化和 方法适用性研究。

1.4.3 工作条件

等离子体功率 1600W;雾化气流速 0.90L/min;

表1 ICP-MS/MS 仪器工作参数

Table 1 Working parameters of ICP-MS/MS instrument

雾室温度 5.0℃;在线加入内标 Rh,浓度为 10µg/L; 标准 MS/MS 模式、氦气 MS/MS 模式、氧气 MS/MS 模 式、氨气 MS/MS 模式和氨气 Mass-Shift 模式 5 种测 量模式的参数见表 1,产物离子扫描模式除 Q_3 设置 为 m/z = 80~200 外其他条件与上述测量模式相同。

2 结果与讨论

2.1 分析同位素的选择

银的两个天然同位素¹⁰⁷Ag(51.8%)、¹⁰⁹Ag (48.2%)其丰度相近、灵敏度相当且均受到不同程 度的铌、锆氧化物或氢氧化物的质谱干扰。ICP-MS 测试土壤和水系沉积物中银元素时,刘彤彤等[14]考 虑到107Ag主要受到锆的干扰而109Ag同时受到铌、 锆的干扰,选择¹⁰⁷Ag作为分析同位素;而 Guo 等^[21] 考虑到锆的氧化物与氧气反应焓变大于0,氧气消 除效果不佳,故选用¹⁰⁹Ag作为分析同位素。为了考 察铌、锆的氧化物或氢氧化物对不同银同位素测定 的质谱干扰程度从而选择合适的分析同位素.ICP-MS/MS 分析中在标准 MS/MS 模式下($Q_1 = Q_3 =$ 107、109)分别引入 1µg/L 的银标准溶液、10mg/L 的锆标准溶液和 1mg/L 的铌标准溶液,得到它们在 *m*/*z* = 107 处的信号强度分别为 146303cps、 7215605cps 和 858cps.在 m/z=109 处的信号强度分 别为131429cps、86679cps和1425361cps。由上述数 据可推知,¹⁰⁷Ag 主要受到错的氧化物和氢氧化物质 谱干扰(⁹¹Zr¹⁶O⁺、⁹⁰Zr¹⁶O¹H⁺等)和少量铌的氮化物 质谱干扰(⁹³Nb¹⁴N⁺),10mg/L的锆和 1mg/L的铌在 m/z=107 处产生的干扰相当于 50µg/L 和 0.006 μg/L的银;¹⁰⁹Ag 主要受到铌的氧化物质谱干扰 (⁹³Nb¹⁶O⁺)和少量锆的氢氧化物质谱干扰 (⁹²Zr¹⁶OH⁺,⁹¹Zr¹⁶OH⁺等), 1mg/L 的铌和 10mg/L 的锆在 m/z=109 处产生的干扰相当于 11µg/L 和 0.7μg/L 的银, 与徐进力等^[23] 报道的¹⁰⁷ Ag 主要受 到锆干扰而¹⁰⁹Ag同时受到锆、铌干扰的结论相同。

在《中国土壤地球化学参数》专著中^[27], 锆、铌、 银元素在中国土壤背景值分别为 257μg/g、16μg/g、

工作参数	标准 MS/MS 模式	氦气 MS/MS 模式	氧气 MS/MS 模式	氨气 MS/MS 模式	氨气 Mass-Shift 模式
产物离子	$^{109}{ m Ag}^+$	$^{109}{ m Ag}^+$	$^{109} \mathrm{Ag}^{+}$	$^{109}{ m Ag}^+$	$^{109}\mathrm{Ag}^{17}(\mathrm{NH}_3)^+_2$
$Q_1 \rightarrow Q_3(m/z)$	109→109	109→109	109→109	109→109	109→143
质量切割参数(RPq)	0.25	0.25	0.45	0.45	0.45
池气体	-	He	O_2	NH ₃	NH ₃
气体流速 (mL/min)	-	7.0	2.6	1.8	1.8

0.066μg/g;在《应用地球化学元素丰度数据手册》 中^[28],锆、银、银在总陆壳的丰度分别为 146μg/g、 10μg/g、0.057μg/g。考虑到土壤和水系沉积物样 品中锆的丰度一般大于铌,且氢氧化物干扰程度低 于氧化物,¹⁰⁷Ag 较¹⁰⁹Ag 受到锆、铌的干扰更为严 重,本文在后续的实验中选用¹⁰⁹Ag 来考察不同测试 模式下的质谱行为、干扰的消除程度及方法适用性 研究。

2.2 测量模式的选择

由 2.1 节可知, 锆、铌的氧化物与氢氧化物对 ¹⁰⁹ Ag存在一定的干扰, 土壤和水系沉积物中的铌、 锆等含量远高于银的含量, 这些多原子离子干扰导 致 ICP - MS 无法准确测定样品中的银。王家恒 等^[20]、Guo等^[21]采用单四极杆 ICP - MS 验证了氧气 反 应 模 式 可 有 效 地 消 除⁹³ Nb¹⁶O⁺、⁹¹Zr¹⁶OH²、 ⁹²Zr¹⁶OH⁺等对¹⁰⁹Ag 的质量重叠干扰, 徐进力等^[23] 采用单四极杆 ICP - MS 验证了氦气(动能歧视作 用)有效地抑制⁹¹Zr¹⁶O⁺、⁹⁰Zr¹⁶O¹H⁺等对¹⁰⁷Ag 的质 谱干扰,本实验考虑采用 ICP - MS/MS 研究不同的 碰撞/反应气体消除这些质谱干扰。

为了考察目标元素银及干扰元素铌、锆在不同 气体条件下的信号强度及质谱行为,选择合适的测 量模式来消除干扰,ICP-MS/MS采用产物离子扫描 模式,在标准(无气体)、氦气、氧气、氨气条件下分 别测定1μg/L的银标准溶液、10mg/L的锆标准溶 液和 1mg/L 的铌标准溶液,设置 $Q_1 = 109$,使 m/z = 109 的离子 (¹⁰⁹Ag⁺、⁹³Nb¹⁶O⁺、⁹¹Zr¹⁶OH⁺ $\stackrel{92}{,}$ ⁹²Zr¹⁶OH⁺ 等)通过 Q_1 进入碰撞/反应池中, Q_3 扫描 m/z 在 80 ~200 之间的所有质荷比的信号强度,得到目标元素 和干扰元素在不同模式下的质谱扫描信号,主要产物离子及信号强度见图 1。

2.2.1 氦气-产物离子扫描

碰撞/反应池中的离子可与氦气发生碰撞,通过 动能歧视或诱导解离来消除质谱干扰。由图1可知, 碰撞/反应池通入氦气后,银和铌与其在标准条件下 相比,除了 m/z=109 处外并无其他信号出现,但由于 受到碰撞而造成能量损失,银在 m/z=109 处信号强 度下降了18倍(从标准条件下41662cps降低到氦气 条件下 2360cps), 铌在 m/z=109 处信号强度下降了 161 倍(从 551475cps 降低到 3421cps); 锆与其在标准 条件下相比, m/z = 108、109 处均出现了信号, 其中 m/z=108 处信号可能是⁹²Zr¹⁶OH⁺、⁹¹Zr¹⁶OH⁺, 等与氦 气碰撞发生诱导解离产生⁹²Zr¹⁶O⁺、⁹¹Zr¹⁶OH⁺和氢原 子. 锆在 m/z = 109 处信号强度下降了 166 倍 (从 26531cps 降 低 到 160cps)。相比于⁹³Nb¹⁶O⁺、 ⁹¹Zr¹⁶OH⁺, ⁹²Zr¹⁶OH⁺等多原子离子, ¹⁰⁹Ag⁺在氦气条件 信号强度下降要小很多,主要是因为多原子离子体积 更大,与氦气发生碰撞的几率越大,能量损失更多。 徐进力等^[23]研究发现单极杆 ICP-MS 在动能歧视模 式下能降低锆、铌氧化物的产率,基本上消除了锆、铌

图 1 1μg/L 银溶液(a)、1mg/L 铌标准溶液(b)和 10mg/L 锆溶液(c)在不同模式下的主要产物离子和信号强度
 Fig. 1 Main product ions and signal intensives of 1μg/L Ag solution(a), 1mg/L Nb solution(b) and 10mg/L Zr solution(c) in different modes

-1020 -

氧化物对痕量银的多原子离子干扰,与本实验的结论相符。综上说明在氦气条件下可通过 MS/MS 模式(Q₁=Q₃=109)在一定程度上消除锆、铌氧化物和 氢氧化物对银的干扰。

2.2.2 氧气产物-离子扫描

氧气分子与碰撞/反应池中的分子离子团发生 反应,使得 Ag⁺与干扰离子团分离从而消除质量重 叠干扰。由图1可知,碰撞/反应池通入氧气后,银 与其在标准条件下相比,除了 m/z=109 以外并无其 他的信号出现,信号强度变化不大,说明 Ag⁺不与氧 气反应; 铌在 m/z=125、143、161 处出现了信号, 而 m/z=109 处信号消失,由化学键结合能数据^[29]可知 NbO 和氧气的反应焓变小于 0,可以自发地与氧结 合:NbO⁺+O₂→NbO⁺₂+O(ΔH_r=-0.63eV),结合图 1 说明⁹³Nb¹⁶O⁺可以与氧气反应,主要生成⁹³Nb¹⁶O⁺ (m/z=125); 锆在 m/z=107、108、124、125、142、143、 160、161 处均出现了信号,且 m/z=109 处信号明显 减小(387cps),推断⁹¹Zr¹⁶OH⁺₂、⁹²Zr¹⁶OH⁺与氧气发生 了 电 荷 转 移、加 氧 去 氢 等 反 应,生 成 了 91 Zr 16 O_mH_n⁺、 92 Zr 16 O_mH_n⁺等分子离子团,与王家恒 等^[20]、Guo 等^[21]报道的单四极杆 ICP-MS 氧气反应 模式反应机理相似。在氧气条件下,银在 m/z=109 处的信号强度变化不大, 锆和铌在m/z=109 处的信 号强度明显减少甚至消失,说明氧气条件下可通过 MS/MS模式($Q_1 = Q_3 = 109$)有效地消除锆、铌氧化 物和氢氧化物对银的干扰。

2.2.3 氨气产物-离子扫描

氨气分子具有孤对电子,具有高反应活性,可以 与大部分元素发生络合反应^[30]。王振伟等^[29]报道 了 ICP - MS/MS 利用氨气在线消除⁹⁰Zr¹⁶O¹H⁺、 ⁹¹Zr¹⁶O⁺、⁹³Nb¹⁶O⁺、⁹²Zr¹⁶O¹H⁺等多原子离子对银测 定的干扰,1mg/L的锆、铌溶液在¹⁰⁷Ag、¹⁰⁹Ag处产生 的干扰基本能完全消除,但对干扰消除机理缺乏进 一步研究。本实验采用 Q1 过滤除 m/z=109 外的其 他离子,通过生成产物离子推断可能的干扰消除反 应。由图1可知,在氨气条件下,与标准条件下相 比,银在 m/z=109、126、143、160 处均出现信号,说 明 Ag⁺ 可 以 与 氨 分 子 发 生 络 合 反 应, 生 成 ¹⁰⁹Ag¹⁷(NH₃)⁺、¹⁰⁹Ag¹⁷(NH₃)⁺2、¹⁰⁹Ag¹⁷(NH₃)⁺3 等氨 基团簇离子,其中¹⁰⁹Ag¹⁷(NH₃)⁺₂(m/z=143)是主要 产物离子,m/z=109处仍存在较强的信号强度;铌在 质量轴上 m/z = 109、158、175 处出现了信号, m/z=109 处的信号明显减小(33cps),说明⁹³Nb¹⁶O⁺ 可以与氨发生络合反应生成 93 Nb¹⁷NH₃¹⁶(NH₂)⁺₃、 ⁹³Nb¹⁷(NH₃)₂¹⁶(NH₂)⁺₃ 等 氨 基 团 簇 离 子,其 中 m/z=175的氨基团簇离子是主要产物离子;锆在 m/z=109、143、160、175、176、177处均出现了信号, m/z=109处的信号强度明显减小(80cps),说明 ⁹¹Zr¹⁶OH⁺₂、⁹²Zr¹⁶OH⁺可以和氨发生络合反应生成 ⁹¹Zr¹⁴N_m⁻¹H_n⁺、⁹²Zr¹⁴N_m⁻¹H_n⁺等氨基团簇离子。氨气条 件下,银在m/z=109、143处存在较强的信号,锆和 铌在m/z=109处信号强度明显减少,锆在m/z=143处虽有信号但信号强度较小(40cps),说明氨气条件 下可通过 MS/MS 模式($Q_1 = Q_3 = 109$)或者 Mass – Shift 模式($Q_1 = 109, Q_3 = 143$)消除锆、铌氧化物和氢 氧化物对银的干扰,与 Eduardo 等^[31]报道在氨气条 件下,ICP – MS/MS 测定¹⁰⁷Ag 可选用 MS/MS 模式 ($Q_1 = Q_3 = 107$)或者 Mass – Shift 模式($Q_1 = 107, Q_3 = 141$)消除干扰的结论相符。

综上,氦气 MS/MS 模式、氧气 MS/MS 模式、氨 气 MS/MS 模式、氨气 Mass-Shift 模式均能在一定程 度上消除锆、铌氧化物和氢氧化物对银的干扰,可通 过优化实验条件进一步研究不同模式具体的干扰消 除效果。

2.3 不同测量模式下铌锆多原子离子对¹⁰⁹Ag 干扰 消除程度

在 ICP-MS/MS 的碰撞/反应模式下,干扰消除 程度主要与池气体流速有关,流速的改变既会影响 干扰元素的反应进行程度,也会影响银元素的信号 强度^[26]。实验采用背景等效浓度(BEC)作为条件优 化的评价标准,以 1mg/L 铌和 10mg/L 锆混合溶液作 为基体空白溶液模拟土壤干扰基体,1µg/L 银、1mg/L 铌和 10mg/L 锆混合溶液作为基体加标溶液,在不同 模式下,通过改变池气体流速,观察基体空白溶液、 基体加标溶液信号强度和背景等效浓度的变化情 况,以便确定最佳池气体流速,结果如图 2 所示。

2.3.1 氦气 MS/MS 模式

在氦气 MS/MS 模式下,氦气流速在 0.5~ 7.0mL/min 范围内,由于受到动能歧视的影响,随着 氦气流速的增加,基体空白溶液和基体加标溶液中 的各种离子与氦气碰撞加剧,能量损失加大而导致 信号强度逐渐降低,背景等效浓度呈现先升高后降 低的趋势,当氦气流速达到 7.0mL/min 时,BEC 降 低至 0.431µg/L,相比于标准 MS/MS 模式干扰程度 (11.7µg/L)下降了 20 倍以上。

2.3.2 氧气 MS/MS 模式

在氧气 MS/MS 模式下,氧气流速在 0.5~ 3.0mL/min 范围内,⁹³Nb¹⁶O⁺、⁹¹Zr¹⁶OH⁺、⁹²Zr¹⁶OH⁺等

图 2 (a) 氦气 MS/MS 模式、(b) 氧气 MS/MS 模式、(c) 氨气 MS/MS 模式、(d) 氨气 Mass-Shift 模式下池气体流速对基体空白 溶液、基体加标溶液信号强度和背景等效浓度的影响

Fig. 2 Effects of cell gas flow rate on signal intensities of matrix blank solutions, matrix spiked solutions and BEC by (a) helium MS/MS mode, (b) oxygen MS/MS mode, (c) ammonia MS/MS mode, and (d) ammonia Mass-Shift mode

干扰多原子离子与氧气发生反应,基体空白溶液和 基体加标溶液的信号强度随着氧气流速的增加而逐 渐降低,背景等效浓度呈下降趋势;当氧气流速大于 1.5min/L后,背景等效浓度趋于稳定,在氧气流速 达到 2.6mL/min 时,BEC 降至最低(7.60ng/L),相 比于标准 MS/MS 模式干扰程度下降了 1500 多倍。 Zhang 等^[32-33]报道了单四极杆 ICP-MS 优化氧气流 速为 2.7mL/min 时,BEC 降到 0.02~0.03µg/L,与 单四极杆 ICP-MS 反应模式相比,ICP-MS/MS 消除 干扰能力更强。

2.3.3 氨气 MS/MS 模式

在氨气 MS/MS 模式下,氨气流速在 0.3~2.0 mL/min 范围内,由于氨气分子与⁹³Nb¹⁶O⁺、⁹¹Zr¹⁶OH⁺、⁹²Zr¹⁶OH⁺等干扰多原子离子反应速率大于与¹⁰⁹Ag⁺的反应速率,基体空白溶液信号强度随着氨气流速的增加而迅速降低,基体加标溶液信号强度缓慢降低,背景等效浓度呈下降趋势;当氨气流速增加到 1.1mL/min 时,背景等效浓度下降速率变缓,当氨气流速增加到 1.8mL/min 时,BEC 降到最低(7.39 ng/L),相比于标准 MS/MS 模式干扰程度下降了 — 1022 —

1500多倍。与 Naoki 等^[34]报道 ICP-MS/MS 采用氨 气原位质量模式测定¹⁰⁹Ag 时,10mg/L 的铌、锆混合 溶液的 BEC 可降到 0.006μg/L 的结论相符。

2.3.4 氨气 Mass-Shift 模式

在氨气 Mass-Shift 模式下,氨气流速在 0.3~ 2.0mL/min 范围内,基体空白溶液信号强度随着氨 气流速的增加而逐渐降低,基体加标溶液信号强度 先降低后增加[氨气流速增加有利于¹⁰⁹Ag¹⁷(NH₃)⁺ 的生成],背景等效浓度呈下降趋势;当氨气流速增 加至 1.0mL/min 时,背景等效浓度趋于稳定,在氨 气流速增至 1.8mL/min 时,BEC 降至最低(5.78 ng/L),相比于标准 MS/MS 模式干扰程度下降了 2000 多倍。

综上,氦气 MS/MS 模式、氧气 MS/MS 模式、氨气 MS/MS 模式、氨气 MS/MS 模式、氨气 Mass-Shift 模式均能有效地降低干扰,其中氦气 MS/MS 模式降低干扰能力较弱,1mg/L 铌和 10mg/L 锆混合溶液对银的干扰只能降低 20 多倍;氧气 MS/MS 模式和氨气 MS/MS 模式降低干扰能力较强,干扰可降低 1500 多倍;氦气 Mass-Shift 模式 降低干扰能力最强,高达 2000 余倍。

2.4 四种测量模式下干扰消除效果

为了进一步验证四种测量模式消除干扰的效果,实验在氦气 MS/MS 模式、氧气 MS/MS 模式、氨气 MS/MS 模式、氨气 MS/MS 模式、氨气 Mass-Shift 模式下分别引入不同浓度的错溶液(10~1000mg/L)和铌溶液(1~1000mg/L)进行分析,分析结果见表2。

表 2 不同浓度的锆、铌溶液在不同测量模式下对¹⁰⁹Ag 干扰情况

Table 2 Interference effects of different concentrations of Zr and Nb solutions on $^{109}\mathrm{Ag}$ in different measurement modes

	锆或铌 溶液浓度 (mg/L)	¹⁰⁹ Ag测定值(µg/L)							
溶液 类型		氦气 MS/MS 模式	氧气 MS/MS 模式	氨气 MS/MS 模式	氨气 Mass-Shift 模式				
锆溶液	10.0	0.013	0.006	0.006	0.005				
	50.0	0.061	0.008	0.007	0.007				
	100	0.140	0.019	0.022	0.020				
	500	1.047	0.035	0.030	0.030				
	1000	2.432	0.050	0.047	0.046				
铌溶液	1.00	0.441	0.000	0.000	0.000				
	5.00	2.630	0.005	0.007	0.003				
	10.0	4.960	0.009	0.011	0.005				
	50.0	26.542	0.036	0.037	0.013				
	100	43.441	0.077	0.074	0.026				
	500	411.726	0.472	0.356	0.128				
	1000	978.826	1.006	0.780	0.261				

由表2测定结果可知,随着两种溶液浓度分别 增加,四种模式在¹⁰⁹Ag处产生的干扰均存在增大的 趋势,说明随着干扰物浓度的增加,干扰消除的效果 存在一定程度地减弱,赵志飞等[26]在采用氧气反应 模式-ICP-MS/MS 法测定土壤中的镉时也发现随着 锆、钼浓度的增加,由于反应不完全会造成干扰消除 不完全。本实验表明,当锆溶液浓度大于 100mg/L 后,氦气 MS/MS 模式下在¹⁰⁹Ag 处产生的干扰大于 0.140µg/L,这对于土壤和水系沉积物中痕量银测定 的影响已经不可忽略;而当锆溶液浓度大于1000 mg/L 后,其他三种模式只从 0.005µg/L 增加到 0.050µg/L,对银测定的影响尚可接受,进一步证明了 氧气和氨气消除锆的干扰能力更强。1mg/L以上铌 溶液在氦气 MS/MS 模式下于¹⁰⁹Ag 处产生的干扰已 经大于0.441µg/L,干扰已不可忽略;当铌溶液浓度增 加到 500mg/L 后,氧气 MS/MS 模式下干扰增加到 0.472µg/L, 氨气 MS/MS 模式下增加到 0.356µg/L, 氨气 Mass-Shift 模式下增加到 0.128µg/L,此时三种 模式下 500mg/L 铌溶液已明显影响银的定量,相比之下氨气 Mass-Shift 模式下干扰最小,说明其降低干扰能力最佳,和上文结论一致。

考虑到土壤和水系沉积物消解液中铌、锆浓度一般在几十个 µg/L 到几个 mg/L 范围内(按 0.1g 样品 消解定容至 50mL 计算),在这个范围内四种模式均能 一定程度地消除干扰,可用于方法适用性研究。

2.5 四种模式下分析方法质量参数

2.5.1 标准曲线和方法检出限

在实验条件优化下,ICP-MS/MS在不同的模式 下直接测定银标准系列溶液,以银的质量浓度为横 坐标,银元素与内标元素(Rh)的质谱强度比值为纵 坐标进行线性回归,得到不同模式下的标准曲线方 程;按样品分析步骤制备 12 份空白溶液, ICP-MS/MS 分别在氦气 MS/MS 模式、氧气 MS/MS 模式、氨气 MS/MS 模式和氨气 Mass-Shift 模式下进 行测定,计算样品空白测定结果的标准偏差(SD), 以3倍标准偏差计算得到不同模式下的方法检出 限。实验结果表明,四种模式下的线性相关系数均 大于 0.999,线性关系良好,检出限分别为 0.005 mg/kg、0.002mg/kg、0.003mg/kg和0.003mg/kg,均 低于石墨炉原子吸收光谱法[1-2]和地质行业标准 《区域地球化学样品分析方法 第11部分:银、硼和 锡量测定 交流电弧-发射光谱法》(DZ/T 0279.11-2016)的检出限,与单四极杆 ICP-MS 法^[8-10]的检出 限相当,测定下限以4倍检出限计,能够满足当前土壤 和水系沉积物检测的需求。四种模式下灵敏度分别为 7131cps \cdot (µg/L)⁻¹ 74179cps \cdot (µg/L)⁻¹ 6255cps \cdot (µg/L)⁻¹、13327cps · (µg/L)⁻¹,均能满足测试需 求。氦气碰撞造成 Ag⁺动能损失,导致氦气 MS/MS 模式灵敏度较低;Ag+可与氨气发生络合反应而不与 氧气反应,导致氨气 MS/MS 模式和氨气 Mass-Shift 下灵敏度不如氧气 MS/MS 模式。

2.5.2 方法准确度和精密度

选取具有一定浓度梯度、干扰元素、样品性质有 代表性的土壤和水系沉积物有证标准物质共10个, 按照制定的样品分析方法对每个标准物质分析6 次,计算相对标准偏差(RSD)和相对误差。由表3 可知,氦气 MS/MS 模式、氧气 MS/MS 模式、氨气 MS/MS 模式和氨气 Mass-Shift 模式下银元素的测定 结果的 RSD 分别在1.5%~6.3%、1.4%~8.3%、 1.4%~5.9%和0.7%~8.2%之间,精密度良好。氧 气 MS/MS 模式、氨气 MS/MS 模式和氨气 Mass-Shift 模式下标准物质的测定值均在标准值的范围内,

表 3 不同测量模式下方法准确度和精密度

Table 3 Accuracy and precision tests of the method by different measurement modes

	银标准值 (mg/kg)	Nb/Ag Zi	Zr/Ag	氦气 MS/MS 模式		氧气 MS/MS 模式		氨气 MS/MS 模式			氨气 Mass-Shift 模式				
标准物质 编号				银测定 平均值 (mg/kg)	RSD (%)	相对 误差 (%)	银测定 平均值 (mg/kg)	RSD (%)	相对 误差 (%)	银测定 平均值 (mg/kg)	RSD (%)	相对 误差 (%)	银测定 平均值 (mg/kg)	RSD (%)	相对 误差 (%)
GBW07403	0.091±0.007	102	2703	0.096	2.4	5.5	0.094	2.2	3.3	0.095	3.1	4.4	0.093	2.6	2.2
GBW07404	0.070±0.011	543	7143	0.115	3.0	64.3	0.075	4.0	7.2	0.077	3.8	10.0	0.076	4.6	8.6
GBW07405	4.4±0.4	5	62	4.42	1.5	0.5	4.41	1.4	0.3	4.31	2.8	-2.1	4.40	2.4	0
GBW07407	0.057±0.011	1123	5579	0.105	4.9	84.3	0.053	4.2	-7.1	0.051	5.1	-10.6	0.055	5.6	-3.6
GBW07451	0.074±0.006	208	3446	0.073	5.0	-1.4	0.074	2.7	0	0.072	4.2	-2.8	0.070	2.8	-5.5
GBW07302a	0.040±0.011	1000	3550	0.072	4.7	80.0	0.038	8.3	-5.0	0.034	5.9	-15.0	0.035	7.5	-12.5
GBW07305a	0.63 ± 0.06	27	437	0.652	3.3	3.5	0.629	1.8	-0.2	0.626	1.4	-0.7	0.628	0.7	-0.4
GBW07309	0.089±0.010	202	4157	0.088	3.1	-1.2	0.086	1.8	-3.4	0.083	2.9	-6.8	0.087	3.6	-2.3
GBW07311	3.2±0.4	8	48	3.20	2.0	0	3.21	1.4	0.4	3.18	1.6	-0.7	3.28	2.2	2.5
GBW07375	0.040 ± 0.004	155	2190	0.043	6.3	7.5	0.037	4.5	-7.6	0.038	5.6	-5.0	0.037	8.2	-7.5

洏 试

注: Nb/Ag 和 Zr/Ag 分别为标准样品中铌和锆的含量与银含量的比值。

相对误差分别在-7.6%~7.2%、-15.0%~10.0%、 -12.5%~8.6%之间,说明这些模式有良好的准确 性,可用于土壤和水系沉积物中银的测定:氦气 MS/MS 模式下测定值的相对误差在-1.4%~84.3% 之间,铌、锆干扰较严重的标准样品测试结果偏差较 大(如 GBW07304、GBW07307、GBW07302a), 说明 采用氦气模式消除铌、锆氧化物和氢氧化物的质谱 干扰能力较弱,与图2结论一致,氦气 MS/MS 模式 仅适合测定铌、锆干扰较轻的土壤和水系沉积物 样品。

结论 3

-1024 -

本文采用氦气 MS/MS 模式、氧气 MS/MS 模式、 氨气 MS/MS 模式、氨气 Mass-Shift 模式测定土壤和 水系沉积物中的银,分别研究了银、铌、锆三种元素 在不同模式下的质谱行为,探讨了不同碰撞/反应模 式消除铌、锆的氧化物及氢氧化物对银元素测定的 质谱干扰情况,在优化各模式下的气体流速后,其干 扰分别降低了 20、1500、1500、2000 多倍。同时,对 四种模式的方法适用性进行了研究,这四种模式的 精密度和检出限均能满足测试需求。氦气 MS/MS 模式灵敏度和干扰消除能力均较弱,应用于实际样 品测试时需谨慎,不适用于铌、锆含量高的样品。其 他三种模式均可满足土壤和水系沉积物中银元素测 定的需求:氨气 MS/MS 模式灵敏度较弱,干扰消除 能力适中;氧气 MS/MS 模式灵敏度最佳,干扰消除 能力适中;氨气 Mass-Shift 模式灵敏度适中,干扰消 除能力最佳。本研究为土壤和水系沉积物中银元素

测定提供了多种方便、准确的方法,无需复杂前处理 过程,提高了分析效率并可实现多元素同时测定。

本研究在前人工作的基础上进一步探讨了不同 碰撞/反应模式下铌、锆氧化物和氢氧化物的干扰消 除机理和消除效果,实验中以 1mg/L 铌溶液、10 mg/L 锆溶液模拟土壤或水系沉积物中干扰基体,优 化池气体流速,采用背景等效浓度评价干扰消除程 度。同时也研究了四种模式对不同浓度铌、锆溶液 的抗干扰能力,实验发现不同模式对极限浓度干扰 物的消除能力并不相同。当实际样品消解液中铌、 锆溶液浓度远大于本文实验条件时,可通过背景等 效浓度重新评价各种模式的干扰消除程度,结合前 处理富集分离和优化仪器参数进一步降低干扰,得 到更准确的结果。

参考文献 4

- 赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量 [1] 银的研究[J]. 岩石矿物学杂志, 2019, 38 (2): 254-258. Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry [J]. Acta Petrologica et Mineralogica, 2019,38(2):254-258. [2] 夏辉,张永花,李景文,等.石墨炉原子吸收光谱法测
- 定化探样中痕量银的方法改进[J]. 岩矿测试, 2013, 32(1):48-52.

Xia H, Zhang Y H, Li J W, et al. An improved method for determination of trace silver in geochemical exploration samples by graphite furnace atomic absorption

spectrometry[J]. Rock and Mineral Analysis, 2013, 32
(1):48-52.

[3] 谭龙奇.直接滴加液体缓冲剂 CCD-I型交流电弧直 读发射光谱法测定土壤中银锡[J].中国无机分析化 学,2020,10(2):39-41.

Tan L Q. Determination of Ag and Sn in soil by direct addition of liquid buffer CCD- I emission spectrometer [J]. Chinese Journal of Inorganic Analytical Chemistry, 2020,10(2):39-41.

[4] 黄海波,沈加林,陈宇,等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试,2020,39
 (4):555-565.

Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum [J]. Rock and Mineral Analysis, 2020,39(4):555-565.

 [5] 肖细炼,王亚夫,陈燕波,等.交流电弧光电直读发射 光谱法测定地球化学样品中银硼锡[J].冶金分析, 2018,38(7):27-32.

> Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry [J]. Metallurgical Analysis, 2018, 38(7):27-32.

[6] 黄俐,陈秀梅,张晔霞. 微波消解-电感耦合等离子体 质谱法测定土壤中的银[J]. 环境科学导刊,2020,39 (4):94-96.

Huang L, Chen X M, Zhang Y X. Determination of silver in soil by microwave digestion method and inductively coupled plasma – mass spectrometry [J]. Environmental Science Survey, 2020, 39(4):94–96.

[7] 于亚辉,闫红岭,陈浩凤,等.电感耦合等离子体质谱 法测定地球化学样品中的银[J].理化检验(化学分册),2016,52(7):834-836.

> Yu Y H, Yan H L, Chen H F, et al. Determination of silver in geochemical samples by inductively coupled plasma mass spectrometry [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(7):834-836.

 [8] 刘静波,张更宇. 全自动消解电感耦合等离子体质谱 仪测定环境土壤中铍钡铊银[J]. 分析试验室,2018, 37(2):207-211.

> Liu J B,Zhang G Y. Determination of Be,Ba,Tl and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument [J]. Chinese Journal of Analysis Laboratory, 2018, 37 (2): 207–211.

[9] 张志喜,黄惠琴. 电感耦合等离子体质谱法测定地球 化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014,4(1):46-49.
Zhang Z X, Huang H Q. Determination of silver, arsenic,

antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition [J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):46–49.

- [10] 杨艳明. 电感耦合等离子体质谱法测定水系沉积物 中银铜砷锑铋镉[J]. 冶金分析,2019,39(7):58-64.
 Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry [J]. Metallurgical Analysis,2019,39(7):58-64.
- [11] Wu Y, Huang D M, Feng T, et al. Determination of silver in geological samples using aerosol dilution ICP - MS after water-bath extraction with inverse aqua regia[J]. Atomic Spectroscopy, 2021, 42(6):374-382.
- [12] 刘海明,武明丽,成景特.酸溶分解-电感耦合等离子 体质谱内标法测定地质样品中的痕量银[J]. 岩矿测 试,2021,40(3):444-450.

Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration [J]. Rock and Mineral Analysis,2021,40(3):444-450.

 [13] 刘彤彤,钱银弟,黄登丽.磷酸沉淀分离-电感耦合等 离子体质谱法测定化探样品中的痕量银[J]. 岩矿测 试,2021,40(5):650-658.
 Liu T T, Qian Y D, Huang D L. Determination of trace

silver in geological samples by inductively coupled plasma – mass spectrometry with phosphoric acid precipitation separation [J]. Rock and Mineral Analysis, 2021,40(5):650–658.

[14] 刘彤彤,黄登丽.王水溶样-电感耦合等离子体质谱
 法测定化探样品中痕量银[J].冶金分析,2021,41
 (7):61-66.

Liu T T, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia [J]. Metallurgical Analysis, 2021, 41(7):61-66.

[15] 刘向磊,孙文军,文田耀,等.负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学,2015,43(9):1371-1376.
Liu X L,Sun W J,Wen T Y,et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry [J]. Chinese Journal of Analytical Chemistry,2015,43

520.

(9):1371-1376.

[16] 高玉花,毕建玲,殷学博.P₅₀₇负载泡塑分离-ICP-MS 测定地质样品中的痕量银[J].山东国土资源,2015, 31(12):70-73.

Gao Y H, Bi J L, Yin X B. Determination of trace Ag in geological samples by using P_{507} to separate ICP – MS loaded polyfoam [J]. Shandong Land and Resources, 2015,31(12):70–73.

 [17] 徐娟,胡兆初,刘勇胜,等. 膜去溶-电感耦合等离子 质谱测定 21 种国际地质标样中的银[J]. 分析化学, 2008,36(11):1493-1498.

> Xu J, Hu Z C, Liu Y S, et al. Direct determination of Ag in 21 international geological reference materials by membrane desolvation-inductively coupled plasma-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2008, 36(11):1493-1498.

- [18] 朱志刚,李美丽,孙元芳,等. ICP-MS 测定银的干扰现 象分析与方法建立[J]. 分析仪器,2016(5):70-74.
 Zhu Z G, Li M L, Sun Y F, et al. Analysis of interference phenomenon for determination of silver by ICP-MS[J].
 Analytical Instrumentation,2016(5):70-74.
- [19] 薛志伟,乔宁强,朱晓贤,等. ICP-MS 测定土壤和水 系沉积物中的微量银[J].中国测试,2015,41(3): 51-54.

Xue Z W, Qiao N Q, Zhu X X, et al. Determination of trace silver in soil and water sediments by ICP-MS[J]. China Measurement & Test, 2015, 41(3):51-54.

[20] 王家恒,刘冬云.动态反应池-电感耦合等离子体质 谱法同时测定地质样品中的金和银[J].分析试验 室,2017,36(7):819-822.

Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry [J]. Chinese Journal of Analysis Laboratory, 2017, 36(7):819-822.

- [21] Guo W, Hu S H, Zhang J Y, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP - MS with ion - molecule reactions [J]. Science of the Total Environment, 2011, 409 (15): 2981-2986.
- [22] Chang C C, Liu H T, Jiang S J. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo [J]. Analytica Chimica Acta, 2003, 493(2):213-218.
- [23] 徐进力,邢夏,唐瑞玲,等.动能歧视模式 ICP-MS 测定地球化学样品中 14 种痕量元素[J]. 岩矿测试, 2019,38(4):394-402.

Xu J L, Xing X, Tang R L, et al. Determination of 14 - 1026 - trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode [J]. Rock and Mineral Analysis,2019,38(4):394-402.

[24] 黄智敏,吴伟明,杨雪,等. 电感耦合等离子体串联质 谱法直接测定高纯铽中稀土杂质[J].分析试验室, 2021,40(11):1345-1350.
Huang Z M, Wu W M, Yang X, et al. Direct determination of rare earth impurities in highly pure terbium by inductively coupled plasma - tandem mass

2021,40(11):1345-1350. [25] 李爱阳,伍素云,刘宁,等.ICP-MS/MS 法测定壳聚糖 中的重金属元素[J].分析试验室,2020,39(5):516-

spectrometry [J]. Chinese Journal of Analysis Laboratory,

Li A Y, Wu S Y, Liu N, et al. Determination of heavy metal elements in chitosan by inductively coupled plasma tandem mass spectrometry [J]. Chinese Journal of Analysis Laboratory, 2020, 39(5):516–520.

[26] 赵志飞,任小荣,李策,等.氧气反应模式-电感耦合 等离子体串联质谱法测定土壤中的镉[J]. 岩矿测 试,2021,40(1):95-102.

Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis,2021,40 (1):95-102.

[27] 奚小环,侯青叶,杨忠芳,等.基于大数据的中国土壤 背景值与基准值及其变化特征研究——写在《中国 土壤地球化学参数》出版之际[J].物探与化探, 2021,45(5):1095-1108.

> Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of <Soil Geochemical Parameters > of China's publication[J]. Geophysical and Geochemical Exploration, 2021,45(5):1095-1108.

- [28] 迟清华,鄢明才.应用地球化学元素丰度数据手册
 [M].北京:地质出版社,2007:140-142.
 Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry [M]. Beijing: Geological Publishing House,2007:140-142.
- [29] 王振伟,王维宇,郭朝,等. 电感耦合等离子体串联质 谱氨气模式测定土壤中的银[J]. 环境化学,2021,40
 (4):1285-1287.
 Wang Z Y, Wang W Y, Guo Z, et al. Determination of silver

Wang Z Y, Wang W Y, Guo Z, et al. Determination of silver in soil by ICP tandem mass spectrometry ammonia mode [J]. Environmental Chemistry, 2021, 40(4):1285–1287.

[30] Zhu Y B, Ariga T, Nakano K, et al. Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell[J]. Atomic Spectroscopy,2021,42(6):304-305.

- [31] Eduardo B F, Ana R I, Martin R, et al. To shift, or not to shift: Adequate selection of an internal standard in massshift approaches using tandem ICP – mass spectrometry (ICP – MS/MS) [J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6):1135–1149.
- [32] Zhang J Y, Dong Y H, Xu Z F. Determination of silver in geological samples by dynamic reaction cell inductively coupled plasma mass spectrometry after extraction from boiling aqua regia [J]. Atomic Spectroscopy, 2017, 38

(2): 37-41.

- [33] Zhang J Y, Dong Y H, Xu Z F. A simple method for the simultaneous determination of trace cadmium and silver in soil samples by dynamic reaction cell inductively coupled plasma mass spectrometry [J]. Atomic Spectroscopy, 2016, 37(4):131-135.
- [34] Naoki S, Yasuyuki S. Removal of spectral interferences on noble metal elements using MS/MS reaction cell mode of a triple quadrupole ICP - MS [J]. Journal of Analytical Atomic Spectrometry, 2015, 30 (12): 2481-2487.

Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes

LIU Yue, LIN Dong, WANG Jilu, LI Jing, WANG Xin

(Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China)

HIGHLIGHTS

- (1) The four modes, helium MS/MS, oxygen MS/MS, ammonia MS/MS, ammonia Mass-Shift, could reduce the mass spectrum interference of ⁹³Nb¹⁶O⁺, ⁹¹Zr¹⁶OH₂⁺, ⁹²Zr¹⁶OH⁺ on ¹⁰⁹Ag⁺, and the elimination mechanism was discussed.
- (2) With the optimal cell gas flow rate, the interference of niobium and zirconium to silver was decreased more than 1500 times in the oxygen MS/MS, ammonia MS/MS, and ammonia Mass-Shift modes.
- (3) Four collision/reaction modes of ICP-MS/MS were utilized for the direct determination of Ag in soil and stream sediments.

MS/MS mode

Mass-Shift mode

ABSTRACT

BACKGROUND: It is difficult to accurately determine the content of Ag in soil and sediment due to the mass spectrum interference of niobium, zirconium oxide and hydroxide during inductively coupled plasma – mass spectrometry (ICP-MS) analysis.

OBJECTIVES: To develop methods for the determination of trace Ag in soil and sediment samples by four collision/reaction modes.

METHODS: The changes of mass spectrum signals of 93 Nb 16 O⁺, 91 Zr 16 OH ${}^{+}_{2}$, 92 Zr 16 OH⁺ and 109 Ag⁺ in helium, oxygen and ammonia were determined using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). The interference elimination ability and elimination mechanism of different collision/reaction modes were investigated. The samples were digested by HCl-HNO₃-HF-HClO₄. The content of Ag in soil and stream sediments was determined by helium MS/MS mode, oxygen MS/MS mode, ammonia MS/MS mode and ammonia Mass-Shift mode.

RESULTS: With the optimal gas flow rate in the tank of the four collision/reaction modes, the interference degree of niobium and zirconium on Ag were decreased more than 20, 1500, 1500 and 2000 times, respectively. The detection limits of the method were 0.005mg/kg, 0.002mg/kg, 0.003mg/kg and 0.003mg/kg, respectively. The accuracy and precision were verified by national reference materials of soil and sediment, while the relative errors of measured values and certified values were -1.4%-84.3%, -7.6%-7.2%, -15.0%-10.0% and -12.5%-8.6%, respectively. The relative standard deviations were 1.5%-6.3%, 1.4%-8.3%, 1.4%-5.9% and 0.7%-8.2%, respectively.

CONCLUSIONS: Helium MS/MS mode has a low capacity to eliminate mass spectrometry interference, and is suitable for the determination of samples with little interference of niobium and zirconium. Oxygen MS/MS, ammonia MS/MS and ammonia Mass-Shift modes have a strong ability to eliminate mass spectrometry interference, which can be used for the determination of trace Ag in soil and stream sediments; and have the advantages of lower detection limit, wider linear range, and simultaneous determination of multiple elements, when compared with the industry standard DZ/T 0279. 11–2016.

KEY WORDS: collision/reaction modes; silver; inductively coupled plasma-tandem mass spectrometry; soil; stream sediments