王 龙,陈培元,孙福亭,等.鄂尔多斯盆地彭阳地区延长组、延安组原油地球化学特征与油源对比[J].海洋地质前沿, 2019,35(12):49-54.

鄂尔多斯盆地彭阳地区延长组、延安组 原油地球化学特征与油源对比

王 龙¹,陈培元¹,孙福亭¹,王兴龙²,李 竞²

(1 中海油国际公司,北京 100028;2 中海油研究总院有限责任公司,北京 100028)

摘 要:鄂尔多斯盆地彭阳地区的中生界延长组、延安组油源还存在一定的不确定性,应 用分子地球化学的手段和方法,对彭阳地区延长组、延安组的原油及长7烃源岩样品和盆 地内部长7优质烃源岩样品开展生物标识化合物地球化学定量分析,并进行油源对比研 究。结果表明:鄂尔多斯盆地天环坳陷彭阳地区延长组、延安组原油形成于淡水、微咸水 且还原性较强的环境;生物标志化合物地球化学特征相似,属于同一成因类型,具有相同 的油源;原油母质类型为低等水生生物和陆生高等植物构成的混合型母质,原油已经成 熟。彭阳地区原油在成熟度、母源性质和沉积环境方面与盆地内部长7优质烃源岩具有 相似的特征,二者具有较好的亲缘关系,彭阳地区原油不是本地长7泥岩产物,主要来自 盆地内部长7优质烃源岩。

DOI:10.16028/j.1009-2722.2019.12006

0 引言

鄂尔多斯盆地是我国重要的含油气盆地,中 生代晚三叠世延长期长7沉积期沉积的一套深 湖一半深湖相富含有机质的暗色泥岩,是鄂尔多 斯盆地主力烃源岩^[1],同时,湖盆内河流三角洲和 扇三角洲沉积体系广泛分布^[2],这些有利的生储 组合为形成大型油藏奠定了良好的基础。彭阳地 区位于鄂尔多斯盆地西南缘,构造上属于天环坳 陷西翼,主要的勘探层位为三叠系延长组和侏罗 系延安组。近年来在延安组中发现了多个"小而 肥"的油藏,在延长组长3、长7、长8等油层组也 发现了油气显示,显示了彭阳地区具有较好的勘 探前景。目前对鄂尔多斯盆地中生界油源的研究 主要集中在陕北斜坡^[3-9],而对天环坳陷、特别是 天环坳陷西翼部位油气显示的油源研究较少。因 此有必要对鄂尔多斯盆地彭阳地区的延长组、延 安组油源分析研究,从而为该区中生界石油的进 一步勘探提供参考依据。

本文对彭阳地区延长组(长3、长7、长8)和 延安组原油样品、彭阳地区及盆地内部长7烃源 岩样品开展生物标识化合物定量分析,讨论研究 区延长组、延安组原油特征与油源问题。根据研 究需要,分别采集了10口井的原油样品和5口井 的泥岩样品(图1)。其中,延安组原油样品2个, 延长组原油样品8个,包括长3油层组3个,长7 油层组3个,长8油层组2个;彭阳地区长7泥岩 样品2个,盆地内部长7泥岩样品3个。实验样

收稿日期:2019-01-18

基金项目:"十三五"国家科技重大专项课题"海外重点油气田开 发钻采关键技术"(2017ZX05032-04-01)

作者简介:王 龙(1986—),男,硕士,工程师,主要从事油气田地 质、油气地球化学研究工作.E-mail: wanglong@cnooc.com.cn

图1 彭阳地区位置和采集样品井位示意图

Fig.1 Location of Pengyang Area and sampling wells

品的预处理和分析测试由胜利油田地质院分析测 试中心完成,其中饱和烃馏分用色谱-质谱(GC-MS)进行分析鉴定。

1 原油地球化学特征

1.1 正构烷烃组成特征

不同来源的正烷烃的组成特征有较大差异, 来源于陆源高等植物正烷烃碳数分布范围以 C_{25}^+ 为特征;而来源于浮游生物等水生生物的正烷烃 碳数分布范围小于 C_{20}^{100} 。一般常用正烷烃分布 指纹特征、主峰碳数、轻重比 $\Sigma C_{21}^-/\Sigma C_{22}^+$ 或(C_{21} + C_{22})/(C_{28} + C_{29})(低碳数分子烷烃与高碳数分 子烷烃含量比值)、碳数分布范围和碳优势指数 CPI 值等来确定有机质的生源组合特征及指示沉 积环境。

实验结果显示,彭阳地区延长组和延安组原 油的正构烷烃主峰碳均为 C_{21} (表 1),分布特征相 似,正构烷烃碳优势指数 CPI 为 1.08~1.13,奇 偶优势指数 OEP 多分布在 1.04~1.07 范围内, 反映原油均为成熟油。 $\Sigma C_{21}^{-}/\Sigma C_{22}^{+}$ 比值分布范 围为 0.44~1.01,(C₂₁+C₂₂)/(C₂₈+C₂₉)为 1.2 ~2.28,变化范围较大,说明原油的生油母质来源 较为复杂,由湖相低等水生生物和陆生高等植物 混合而成。

1.2 类异戊二烯烷烃

姥鲛烷、植烷及其比值常作为判断生油母质 沉积环境氧化-还原条件的标志,原油中的 Pr/ nC₁₇、Ph/nC₁₈常用来研究母质类型、形成环境和 成熟度^[11]。彭阳地区原油的 Pr/Ph 值为 0.84~ 1.18,表明形成的环境还原性较强。原油的类异 戊二烯烷烃的各个参数值均集中在一个较小的范 围内(表 1),其中 Pr/nC₁₇ 主要分布在 0.36~ 0.6,Ph/nC₁₈的分布范围为 0.28~0.44,说明彭 阳地区延长组、延安组原油具有统一的油源。

1.3 甾、萜烷特征

彭阳地区延安组和延长组原油甾萜烷特征相 似,表现为萜烷的主峰碳都为 C_{30} 藿烷, C_{29} Ts 含 量比较高, 伽马蜡烷含量都比较低; 甾烷的主峰碳 都为 αββ C_{29} 胆甾烷(20R), 重排甾烷和重排藿烷 含量很低(图 2)。

世日	样品	井号	层位			类异戊二烯烷烃					
位置				主峰碳	OEP	CDI	$(C_{21}+C_{22})$	$\Sigma C_{21}^{-}/$	Pr/	Pr/	Ph/
						CPI	$/(C_{28}+C_{29})$	ΣC_{22}^{\pm}	Ph	nC ₁₇	nC ₁₈
彭阳地区	原油	演 27	延 8	C21	1.06	1.08	1.2	0.44	1.12	0.52	0.41
		演 43	延 9	C21	1.06	1.1	1.68	0.64	1.01	0.58	0.44
		演 39	长 3	C21	1.05	1.09	1.65	0.75	1.1	0.42	0.32
		镇 86	长 3	C21	1.1	1.13	1.56	0.61	1.03	0.6	0.42
		演 33	长 3	C21	1.04	1.09	1.68	0.68	1.05	0.36	0.28
		演 34	长 7	C21	1.07	1.11	1.7	0.62	0.84	0.47	0.4
		演 54	长 7	C21	1.07	1.11	1.73	1.01	1.18	0.39	0.33
		镇 86	长 7	C21	1.04	1.1	2.28	0.79	1.01	0.46	0.34
		演 42	长 8	C21	1.07	1.09	1.65	0.78	1.05	0.39	0.33
		演 45	长 8	C21	1.06	1.09	1.92	0.66	0.94	0.47	0.36
	烃源岩	演 43	长 7	C25	0.93	1.24	1.41	0.4	3.82	3.17	0.54
		演 43	长 7	C25	0.91	1.21	1.45	0.48	3.72	3.23	0.58
盆地内部		镇 120	长 7	C17	2.91	1.08	1.3	2.2	1.16	0.37	0.33
		镇 146	长 7	C17	2.83	1.06	1.37	2.49	1.21	0.43	0.37
		镇 120	长7	C16	2.08	1.1	1.08	2.09	1.09	0.31	0.34

表1 原油、烃源岩饱和烃色谱参数 Table 1 Chromatogram parameters of saturated hydrocarbons of crude oil and source rock

图 2 彭阳地区原油生物标志化合物分布特征(演 39,1879m,长3原油)

Fig.2 The biomarker features of crude oil in Pengyang Area (Yan39,1 879 m,Chang3 oil)

1.3.1 甾烷特征

彭阳地区中生界原油甾烷系列化合物中,孕 甾烷、升孕甾烷含量普遍较低(图 2),反映原油形 成于盐度较低的淡水、微咸水环境^[12]。重排甾烷 的含量很低,重排甾烷/规则甾烷比值只有 0.07 ~0.08,反映较强的还原环境。甾族化合物在演化 过程中,手性碳原子发生构型的转变,由 R 生物构 型转化为 S 的地质构型;规则甾烷 14,17(H)发生 由 α 位转变为 β β $\dot{\alpha}$ ^[13],因此可通过甾族化合物不 同构型之间的相对含量来研究原油的成熟度。 $\alpha\alpha\alpha C_{29}$ 甾烷 20S/(20S+20R)值为 0.42~0.45、C₂₉ 甾烷 αββ/(ααα+αββ)值为 0.62~0.68(表 2),根据 原油成熟度判别标准^[14],达到了平衡点,表明原油 均为成熟油。一般来说,以 C₂₇ 甾烷为主的分布代 表低等生物生源为主,具有 C₂₉ 甾烷均势分布则 表示混合型母质输入特征,C₂₇、C₂₉ 甾烷均势分布则 表示混合型母质特征^[14],彭阳地区延长组、延安组 原油规则甾烷含量较高,C₂₇—C₂₉规则甾烷的含量 接近,分别为 30.6%~37.0%、29.9%~33.4%、 33.1%~36%,这说明彭阳地区原油的生油母质属 于低等水生生物和高等植物构成的混合型母质,与 正构烷烃参数反映的结果一致。

表 2 甾萜类化合物地化参数

Table 2	Geoche	emical	parameters	of	steride	and	terpenoid
---------	--------	--------	------------	----	---------	-----	-----------

井号	目位	样品							—————————————————————————————————————							
	运世		1	2	3	4	5	6	7	8	9	10	11	12	13	14
演 27	延 8	原油	0.07	0.45	0.62	36.1	30.4	33.5	0.11	0.37	0.08	0.06	0.07	0.56	0.61	1.22
演 34	长 7	原油	0.08	0.42	0.63	30.6	33.4	36.0	0.11	0.31	0.13	0.06	0.07	0.57	0.60	1.76
演 39	长 3	原油	0.07	0.42	0.68	34.5	31.9	33.6	0.15	0.34	0.12	0.06	0.06	0.56	0.59	1.40
演 42	长 8	原油	0.07	0.44	0.65	37.0	29.9	33.1	0.13	0.32	0.11	0.06	0.07	0.58	0.61	1.33
镇 120	长 7	烃源岩	0.05	0.42	0.63	31.0	34.0	35.0	0.17	0.26	0.13	0.06	0.07	0.56	0.59	0.10

注:1—重排甾烷/规则甾烷;2—aaaC₂₉甾烷 20S/(20S+20R);3—C₂₉甾烷 a $\beta\beta$ /(aaa+a $\beta\beta$);4—C₂₇%Raaa;5—C₂₈%Raaa;6—C₂₉%Raaa;7—三环萜/藿烷;8—升藿烷指数 C₃₅(22S+22R)/C₃₂(22S+22R);9—C₃₀重排藿烷/C₃₀藿烷;10—伽马蜡烷/C₃₀(藿烷+莫烷);11—伽马蜡烷/C₃₀灌烷;12—aaaC₃₁藿烷 22S/(22S+22R);13—aaaC₃₂藿烷 22S/(22S+22R);14—Ts/Tm

1.3.2 萜烷特征

萜烷组成中,三环萜含量普遍较低,三萜烷/ 源于低等水生生物,多形成于还原环境,同时也反 映有机质沉积时水体盐度,是沉积环境的良好的 指示标志[15],通常认为高含量的伽马蜡烷代表强 还原超盐环境的指示[16],研究区原油的伽马蜡烷 含量普遍很低,伽马蜡烷/C31 藿烷(22S+22R)为 0.18~0.22, 伽马蜡烷/C30(藿烷+莫烷) 的值均 为 0.06,反映典型的淡水、微咸水环境有机质沉 积特征。藿烷系列化合物中,升藿烷含量较低,升 藿烷指数为 0.31~0.37,重排藿烷含量较低,C30 重排藿烷/C₃₀藿烷为 0.08~0.13,说明有机质形 成的环境还原性较强,氧化性较弱。αααC₃₁ 藿烷 22S/(22S+22R)、αααC₃₂ 藿烷 22S/(22S+22R)、 Ts/Tm 是良好的反映成熟度的参数,αααC₃₁ 藿烷 22S/(22S+22R) 值为 0.56~0.58, αααC₃₂ 藿烷 22S/(22S+22R)的值为 0.59~0.61,Ts/Tm 值 为 1.22~1.76,均已达到热平衡,进一步验证了 原油为成熟油这一认识。

2 油源对比

2.1 正构烷烃特征对比

彭阳地区延长组、延安组原油与盆地内长 7 烃源岩(镇 120 井、镇 146 井长 7 烃源岩)具有相 似的正构烷烃分布特征,OEP、CPI、($C_{21} + C_{22}$)/ ($C_{28} + C_{29}$)等参数值都非常接近,而与本地的长 7 烃源岩(演 43 井长 7 泥岩)差別都较大(表 1),说 明彭阳地区原油并非本地长 7 泥岩的产物。储层 砂岩中残余的原油由于轻组分的挥发,正构烷烃 的分布会略重,所以原油的主峰碳数比优质烃源 岩的主峰碳要高, $\Sigma C_{21}^{-}/\Sigma C_{22}^{+}$ 的比值也略低。

2.2 类异戊二烯烷烃对比

彭阳地区中生界原油的类异戊二烯烷烃各个

参数都相近,与本地演 43 井长 7 泥岩差别较大 (表 2),而与盆地内部优质烃源岩(镇 120 井、镇 146 井长 7 烃源岩)分布在同一区域内(图 3),说 明彭阳地区中生界原油与盆地内部长 7 优质烃源 岩具有亲缘关系。

2.3 甾萜烷参数综合对比

彭阳地区原油具有重排藿烷、重排甾烷含量 低,伽马蜡烷含量较少,C₂₇—C₂₉规则甾烷含量接 近的特点,与镇120 井长7 烃源岩的特征一致(表 2)。前人对鄂尔多斯盆地中生界油源做过较为全 面的研究^[1],把中生界的原油分为了3类,A类原 油来自于长7 烃源岩,B类原油由长7、长9 烃源 岩混源形成,C 类原油主要来自于长9 烃源岩,彭 阳地区的原油均属于A 类原油,具有较低含量的 重排藿烷,油源为以镇120 井长7 烃源岩为代表 的盆地内部长7 优质烃源岩(图 4)。

Ordos Basin(from reference [1])

规则甾烷相对丰度三角图是最为常用的油源 对比关系图,对判断有机质类型与地球化学性质 非常有效^[10]。在 C₂₇、C₂₈、C₂₉-ααα-20R 甾烷三角 关系图中(图 5),所有原油样品和镇 120 井长 7 优质烃源岩的点均集中在一个区域内,体现了油-源相关关系。

Fig.5 Triangular diagram of relative abundance of C₂₇-C₂₉ regular sterane

油气形成后的漫长的地质历史时期中,在运移、聚集甚至储集层中都会经历一系列的变化,这样就会使得油-源之间的相似性降低,从而大大增加了对比的复杂性和多解性。所以在进行油源对比时,要充分考虑到各个对比参数在不同地区或不同层位的适用性,并且还要考虑到古环境、成熟度、运移作用甚至生物降解作用的影响。一般在研究中所用的参数越多,对比结果就越可靠,因此应该将各项指标综合应用,才能寻找出最为有效的办法。

为了准确判断出油-源关系,选取了反映成熟 度、母源类型和母源沉积环境的14个参数进行生 物标识化合物综合对比。其中成熟度参数5个: $\alpha\alpha\alpha C_{29}$ 甾烷20S/(20S+20R)、C₂₉甾烷 $\alpha\beta\beta$ /($\alpha\alpha\alpha$ + $\alpha\beta\beta$)、 $\alpha\alpha\alpha C_{31}$ 藿烷22S/(22S+22R)、 $\alpha\alpha\alpha C_{32}$ 藿 烷22S/(22S+22R)、Ts/Tm,沉积环境参数3 个:伽马蜡烷/C₃₀(藿烷+莫烷)、 $\alpha\alpha\alpha C_{29}$ 甾烷 20R/C₃₀藿烷、C₂₇/ $\alpha\alpha\alpha C_{29}$ 胆甾烷20R;母源参数3 个: $\alpha\alpha\alpha$ 甾烷20RC₂₇/C₂₉、 $\alpha\alpha\alpha$ 甾烷20RC₂₈/C₂₉、 伽马蜡烷/C₃₁藿烷22R。另外还考虑了C₂₇—C₂₉ 规则甾烷相对含量(图6)。从图中可以明显的看 到,彭阳地区原油样品的特征相似,说明它们具有 相同的油源,并且与盆地内优质烃源岩的生物标 识化合物特征一致,从而证明彭阳地区的原油都 来自盆地内部长7优质烃源岩。

$$\begin{split} 1-\alpha a\alpha C_{29} 甾烷 20S/(20S+20R); 2-C_{29} 甾烷 \alpha\beta\beta/(\alpha\alpha\alpha+\alpha\beta\beta); \\ 3-\alpha\alpha\alpha C_{31} 藿烷 22S/(22S+22R); 4-\alpha\alpha\alpha C_{32} 藿烷 22S/(22S+22R); 5-Ts/Tm; 6-伽马蜡烷/C_{30} (藿烷+莫烷); 7-\alpha\alpha\alpha C_{29} 甾烷 20R/C_{30} 藿烷; 8-C_{27}^{*}/\alpha\alpha\alpha C_{29} 胆甾烷 20R; 9-\alpha\alpha\alpha 甾烷 20RC_{27}/C_{29}; 10-\alpha\alpha\alpha 甾烷 20RC_{28}/C_{29}; 11-伽马蜡烷/C_{31} 藿烷 22R; 12-C_{27} % R\alpha\alpha\alpha; 13-C_{28} % R\alpha\alpha\alpha; 14-C_{29} % R\alpha\alpha\alpha \end{split}$$

图 6 彭阳地区原油与盆地内优质烃源岩 生物标志化合物参数指纹图

Fig.6 Comparison of biomarkers index fingerprints of the crude oil in Pengyang Area and intrabasinal high quality source rocks

3 结论

(1)鄂尔多斯盆地彭阳地区中生界三叠系延 长组和侏罗系延安组原油的生物标志化合物地球 化学特征非常相似,反映了它们来自同一油源。

(2)原油形成于淡水、微咸水且还原性较强的 环境,原油母质属于低等水生生物与陆生高等植 物构成的混合型母质,原油均已达到成熟阶段。

(3)油源分析结果表明,彭阳地区原油在成熟 度、母源性质和沉积环境方面与盆地内部长7优 质烃源岩具有相似的特征,二者具有较好的亲缘 关系,彭阳地区原油不是本地长7泥岩产物,主要 来自盆地内部长7优质烃源岩。

参考文献:

[1] 杨 华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗

透油气成藏富集中的主导作用:地质地球化学特征[J].地球 化学,2005,34(2):147-154.

- [2] 喻 建,杨亚娟,杜金良,鄂尔多斯盆地晚三叠世延长组湖 侵期沉积特征[J].石油勘探与开发,2010,37(2):181-187.
- [3] 段 毅,吴保祥,张 辉,等.鄂尔多斯盆地西峰油田原油地 球化学特征及其成因[J].地质学报,2006,80(2):301-310.
- [4] 侯林慧,彭平安,于赤灵,等.鄂尔多斯盆地姬源一西峰地区 原油地球化学特征及油源分析[J].地球化学,2007,36(5): 497-506.
- [5] 王传远,段 毅,车桂美,等.鄂尔多斯盆地上三叠统延长组 原油地球化学特征及油源分析[J].高校地质学报,2009,15
 (3):380-386.
- [6] 杨 华,张文正,蔺宏斌,等.鄂尔多斯盆地陕北地区长 10 油源及成藏条件分析[J].地球化学,2010,39(3):274-279.
- [7] 赵彦德,罗安湘,孙柏年,等.鄂尔多斯盆地西南缘三叠系烃 源岩评价与油源对比[J].兰州大学学报(自然科学版): 2012,48(3):1-13.
- [8] 王香增,任来义,张丽霞,等.鄂尔多斯盆地吴起一定边地区 延长组下组合油源对比研究[J].石油实验地质,2013,35 (4):426-431.
- [9] 赵 阳,姚泾利,段 毅,等.鄂尔多斯盆地陇东地区长9油 层组油源分析[J].沉积学报,2015,33(5):1024-1032.
- [10] 卢双舫,张 敏,钟宁宁.油气地球化学[M].北京:石油工 业出版社,2008:171-178.
- [11] 彼得斯 K E,莫尔多万 J M.生物标记化合物指南:古代沉积物和石油中分子化石的解释[M].姜乃煌,张水昌,林永汉,等,译.北京:石油工业出版社,1995:1-236.
- [12] 段 毅,王智平,张 辉,等.柴达木盆地原油烃类地球化学特征[J].石油实验地质,2004,26(4):359-364.
- [13] 戴鸿鸣,王顺玉,陈义才.油气勘探地球化学[M].北京:石 油工业出版社,2000:160-161.
- [14] Huang D F, Li J C, Zhang D J. Maturation sequence of continental crude oils in hydrocarbon basins in China and its significance [J]. Organic Geochemistry, 1990, 16 (1/2/ 3):521-529.
- [15] Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks [J]. SSPG Bulletin,1985, 69(8):1255-1268.
- [16] Mackenzie A S, Hoffmann C F, Maxwell J R. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-III. Changes in aromatic steroid hydrocarbons
 [J]. Geochimica et Cosmochimica Acta, 1981, 45: 1345-1355.

(下转第80页)