CN37-1475/P Marine Geology Frontiers

李静, 崔传智, 于涌博, 等. 致密油藏含水条件下二氧化碳与短链烷烃竞争吸附特征的分子模拟[J]. 海洋地质前沿, 2025, 41(3): 78-88. LI Jing, CUI Chuanzhi, YU Yongbo, et al. Molecular simulation of competitive adsorption of CO2 and short-chain alkanes under water containing conditions in tight oil reservoirs[J]. Marine Geology Frontiers, 2025, 41(3): 78-88.

致密油藏含水条件下二氧化碳与短链烷烃竞争吸附 特征的分子模拟

李静1,2,崔传智1,2,3,4,5*,于涌博1,2,李宗阳6,张传宝6,张东6

(1中国石油大学(华东)石油工程学院, 青岛 266580; 2 深层油气全国重点实验室, 中国石油大学(华东), 青岛 266580; 3 青岛市海洋 地质碳封存重点实验室, 青岛 266237; 4 青岛市海洋地质碳封存工程研究中心, 青岛 266237; 5 海洋地质碳封存山东省工程研究中心, 青岛 266237; 6 中国石化胜利油田分公司勘探开发研究院, 东营 257015)

摘 要:致密储层因渗透率低、孔隙度小、微纳米孔隙广泛发育的特点,水驱开发效果差,采用 CCUS-EOR 技术可以在提高原油采收率的同时实现 CO, 在油藏的地质封存。目前,关于 CO。 封存机理的研究一般以咸水层封存机理为主, 对致密油藏含水条件下 CO。 驱油过程中的 吸附封存机理研究较少。针对以上问题,本文基于分子模拟方法采用羟基化石英晶胞构建致 密油藏孔隙壁面模型,分别建立 CO2、原油短链烷烃及水的流体组分模型,研究了含水条件下 CO2 和原油短链烷烃的竞争吸附特征。结果表明,含水条件下,CO2 和 CH_4 0、CO2 和 C_3H_6 竞 争吸附时的各组分吸附等温线均符合第 I 类吸附等温线, CO2 的绝对吸附量、过剩吸附量和吸 附热均大于 CH₄ 和 C₂H₆。CO₂ 和原油短链烷烃在石英壁面的吸附属于物理吸附。模拟条件 下,水分子数目对 CO;的吸附量影响较大,对 CH4的吸附量影响较小。CO;占比增大会使其 吸附量增大,使 CH_4 吸附量减少。温度的增大会减少 CO_2 和 CH_4 的绝对吸附量。孔隙尺寸 的增大会增加 CO_2 和 CH_4 的绝对吸附量和过剩吸附量。壁面矿物类型对 CO_2 和 CH_4 的吸 附量影响较大。

关键词:致密油藏; CO₂ 与短链烷烃; 竞争吸附特征; 分子模拟; 吸附量 中图分类号: TE357.45; P618.13 文献标识码:A **DOI:** 10.16028/j.1009-2722.2024.236

0 引言

CCUS(CO₂ 捕集、利用与封存)技术目前被认 为是碳减排的关键措施[1-2],在石油与天然气开采方 面,致密储层因渗透率低、孔隙度小、微纳米孔隙广 泛发育的特点^[3-5],水驱开发效果差。CCUS-EOR (CO₂ 捕集、驱油利用与封存)技术可大幅提高致密 油藏原油采收率并实现 CO2 在油藏的有效封存[6-7]。

收稿日期: 2024-10-11

资助项目: 国家自然科学基金"致密油藏多段压裂水平井时空耦合流动 模拟及参数优化方法"(51974343)

第一作者:李静(1991—),男,在读博士,主要从事油气田开发工程方面 的研究工作. E-mail: 408445325@qq.com

*通讯作者:崔传智(1970—),男,博士,教授,主要从事油气渗流理论、 油气田开发技术方面的研究工作. E-mail: ccz2008@126.com

目前,对 CO2 封存方式的研究一般以深层咸水层封 存机理为主,包括构造封存、残余气封存、溶解封存 和矿化封存[8]。致密油藏孔隙结构复杂,渗透率和 孔隙度极低^[9-10], CO₂ 驱油过程中在孔隙壁面的吸 附封存机理不容忽视。

关于CO2吸附特征的研究一般通过物理实验 和微观数值模拟开展,主要集中在吸附等温线变 化规律和吸附等温线拟合方面[11-12]。在物理实验 中,一般采用气体吸附仪对干燥样品进行吸附实 验,实验的温度和压力受仪器性能限制,并且对含 水、含油条件下的样品测试能力有限。目前,有 很多学者基于分子模拟方法对 CO2 在孔隙表面 的吸附行为进行了研究[13]。王海哲[14]以石墨烯 代表页岩纳米孔隙,采用巨正则蒙特卡洛方法 (GCMC)研究了不同温度下 CO₂ 和 CH₄ 在页岩纳

米孔隙中竞争吸附的微观机理。李田田等^[15] 采用 GCMC 方法研究了 CH₄和 CO₂ 在页岩主体矿物成分 SiO₂ 孔隙中的吸附性能。方暖等^[16] 采用 GCMC 方法探究了不同地质埋深条件下 CH₄和 CO₂ 在方解石-白云石岩层的吸附机理。以上研究表明,分子模拟方法适用于孔隙壁面的竞争吸附模拟,但是对 CO₂ 驱替过程中含水条件下 CO₂ 与原油轻质组分的竞争吸附研究较少,不能反映实际储层含水条件对 CO₂ 及原油轻质组分吸附行为的影响。

针对以上研究问题,本文采用羟基化石英构建 致密油藏孔隙壁面模型,并分别建立 CO₂、原油短 链烷烃及水的流体组分,研究含水条件下 CO₂ 和原 油短链烷烃的竞争吸附特征,并以 CH₄ 为原油短 链烷烃代表组分,分析了含水条件下水分子数目、 CO_2 与 CH_4 摩尔比、温度、孔隙尺寸和矿物类型等因素对 CO_2 与原油多组分竞争吸附特征的影响。此研究对矿场进一步认识驱油过程中 CO_2 的吸附封存机理具有借鉴指导意义。

1 模型构建

1.1 孔隙壁面模型构建

对致密岩芯 A-1 进行 X 射线衍射实验后得到 矿物成分质量百分比,如表 1 所示。由表可知,致密砂岩中石英含量最多,占比为 90.55%,黏土矿物占比次之,为 4.21%。

表 1 致密岩芯矿物成分参数

Table 1 Mineral composition parameters of tight core

实验岩芯	孔隙度/%	渗透率/10 ⁻³ μm ²	石英/%	斜长石/%	方解石/%	黏土矿物/%
A-1	9.53	0.29	90.55	2.33	2.91	4.21

基于压汞法得到岩芯的孔喉半径分布图,如图 1 所示。致密岩芯孔喉半径分布范围为 4~1 000 nm。因 CO₂ 在小孔隙中的吸附能力较强,且分子模拟中尺寸孔隙过大会造成计算量大幅增加,综合考虑实际孔隙尺寸及计算量后取 10~20 nm 直径范围进行模拟。

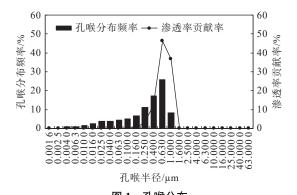


图 1 孔喉分布

Fig.1 The throat distribution

基于以上致密岩芯矿物成分数据,取石英为致密油藏主要壁面成分^[17],采用 Materials Studio 2020软件(简称 MS)建立壁面孔隙模型。石英模型取自软件自带数据库。石英的晶胞参数见表 2, 晶胞模型见图 2。

建立壁面孔隙步骤为:①基于石英单晶胞模型 通过 Supercell 命令建立超晶胞模型,参数为 6a× 6b×c; ②通过 Cleave surface 命令,沿上述超晶胞 (001)解理面切面形成 2 层壁面超晶胞结构; ③通过 Build layers 命令按照壁面超晶胞结构、真空层、壁面超晶胞结构的顺序组合,建立石英孔隙模型,壁面间的孔隙宽度取 10 nm; ④对石英壁面两侧表面进行加氢处理,构建羟基化石英壁面,使其润湿性呈现水湿。基于上述步骤建立的石英孔隙结构的参数见表 3^[18], 孔隙结构模型如图 3 所示。

表 2 石英晶胞参数

Table 2 The mineral cell parameters

_							
	参数名称	a/Å	b/Å	$c/\mathrm{\AA}$	$\alpha/(^{\circ})$	$\beta/(^{\circ})$	γ/(°)
	参数值	4.913	4.913	5.4052	90	90	120

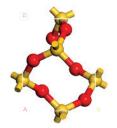


图 2 石英晶胞模型

Fig.2 The quartz crystal cell model

表 3 孔隙结构参数

Table 3 Mineral cell parameters

参数名称	a/Å	b/Å	c/Å	α/(°)	β/(°)	γ/(°)
参数值	29.478	29.478	125.589	90	90	120

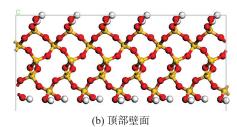


图 3 10 nm 孔隙结构模型

Fig.3 The 10 nm pore structure model

孔隙结构模型建立完成后需要进行结构优化,使模型处于能量最低状态。在 Forcite 模块中选择 Geometry Optimization 任务开展结构优化。算法选用 Smart, 力场选择 COMPASS, 电荷运用 Forcefield assigned 计算, 静电作用采用 Ewald 模拟方法, 范德华作用选择 Atom based 模拟方法。

1.2 流体模型构建

模拟流体组分包括气体组分(CO_2)、水组分(H_2O 、 Ca^{2+} 、Cl)和原油轻质短链烷烃(CH_4 、 C_2H_6)。在 MS 软件 Visualizer 模块中直接构建,之后在Forcite 模块中进行结构优化,得到不同组分平衡结构。 CO_2 分子模型见图 4, 水组分模型见图 5, 原油轻质短链烷烃组分模型见图 6。

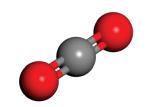


图 4 CO₂ 分子模型 Fig.4 The CO₂ molecular model

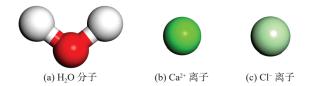


图 5 水组分模型 Fig.5 The water composition model

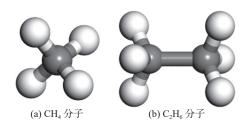


图 6 原油轻质短链烷烃组分模型 Fig.6 The model of light short chain alkane components in crude oil

不同流体组分经过结构优化后的键长及键角 参数见表 4^[19]。

表 4 流体组分结构参数

Table 4 Fluid component structure parameters

组分	化学键	键长/nm	键角/(°)
CO_2	C=O	0.12	180.00
$\rm H_2O$	О-Н	0.10	104.52
CH_4	С-Н	0.11	109.47
C ₂ H ₆	C-C	0.15	180.00
C ₂ H ₆	С-Н	0.11	107.91

2 模拟方法及参数设置

2.1 模拟方法

目前,分子模拟方法中的巨正则蒙特卡罗方法(GCMC)被广泛应用于微观吸附领域,在化学势及温度保持恒定的条件下,可以模拟微孔、介孔中吸附质的吸附平衡现象。在吸附模拟中,Sorption模块基于蒙特卡罗(GCMC)方法可以模拟单组分或多组分在微孔及介孔材料中的吸附量。在模拟过程中,Metropolis抽样方法不考虑吸附质在孔道中的扭转与形变,只考虑吸附质的空间位置与去向,并将其视为刚体^[20]。

2.2 模拟参数设置

采用巨正则系综蒙特卡洛方法(GCMC)开展含水条件下 CO_2 和原油轻质短链烷烃组分(CH_4 和 C_2H_6)的竞争吸附特征模拟。先选取 Fixed loading 任务吸附 $100 \land H_2O$ 分子、 $30 \land Ca^{2+}$ 、 $60 \land Cl$,模拟含水条件。然后在 Fixed pressure 任务中进行 CO_2 与原油轻质组分(CH_4 和 C_2H_6)在摩尔比为 1:1 条件下的竞争吸附模拟。选择 Fixed pressure 任务,抽样方法为 Metropolis,吸附温度为 348.15 K,吸附压力为 1.5、10、15、20 、25、30、35 和 40 MPa,

平衡步数为 1×10⁵ 步,生产步数为 1×10⁶ 步。力场选择 COMPASS,电荷采用 Forcefield assigned 计算,静电长程作用采用 Ewald 模拟方法,范德华作用选择基于原子的 Atom based 模拟方法,截断半径为 1.25 nm。模拟过程中固定壁面分子,假设壁面为刚性。模拟时需要将各组分的压力基于 Peng-Robinson(PR)方程转换为逸度,输入不同压力对应的逸度值。

3 模拟结果及分析

3.1 含水条件下 CO_2 和短链烷烃多组分竞争吸附 特征

3.1.1 吸附等温线拟合

经过分子模拟得到的吸附量为绝对吸附量。绝对吸附量指孔隙内处于吸附状态的气体总量。 CO_2 、 CH_4 和 C_2H_6 在石英壁面的吸附等温线均符合 I 类吸附等温线, 该类等温线一般采用 Langmuir 等温吸附模型进行拟合, 见公式(1):

$$V = \frac{V_{L}p}{p_{L} + p} \tag{1}$$

式中: V 为吸附量, mmol·g⁻¹;

 V_L 为压力趋于无穷大时的最大吸附量, mmol· g^{-1} ;

p 为气体平衡压力, MPa;

p_L为 Langmuir 压力, MPa。

Langmuir 等温吸附模型的应用基于以下假设: ① 吸附剂表面比较均匀, 所有吸附位具有的吸附能相同; ② 吸附剂上吸附的分子不相互作用; ③ 吸附为单分子层吸附。吸附过程中, 当吸附压力超过饱和蒸汽压力时, 吸附会在单层吸附的基础上产生多层吸附, 并存在一定的毛细凝结现象。为了在高压条件下能进一步应用 Langmuir 等温吸附模型, 对方程中的压力 p 进行修正, 引入含结合常数 K_b 的三参数 Langmuir-Freundlich 模型, 见公式(2):

$$V = V_{L} \frac{(K_{b}p)^{n}}{1 + (K_{b}p)^{n}}$$
 (2)

式中, K_b 为结合常数, MPa^{-1} ;

n 为模型参数,无量纲。

在含水条件下, 开展 CO₂-CH₄、CO₂-C₂H₆ 的多组分竞争吸附模拟, 并基于 Langmuir-Freundlich 模型拟合吸附等温线。

在 348.15 K 的含水条件下, CO₂ 和 CH₄ 的多

组分竞争吸附数据及拟合曲线见图 7, 拟合参数见表 5。由吸附等温拟合曲线可知, 含水条件下 CO_2 和 CH_4 竞争吸附时的绝对吸附量随压力增大而增大, 上升幅度逐渐减小, 吸附等温线符合第 I 类吸附等温线。在压力相同的竞争吸附条件下, CO_2 的绝对吸附量大于 CH_4 的绝对吸附量。在 40 MPa时, CO_2 和 CH_4 的绝对吸附量分别为 15.05和 9.86 mmol·g⁻¹。由表 5 可知, 相同模拟条件下, CO_2 的最大吸附量大于 CH_4 的最大吸附量。

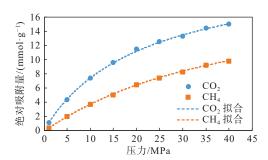


图 7 CO₂和 CH₄ 吸附等温拟合曲线

Fig.7 The fitting curves of CO₂ and CH₄ adsorption isotherm

表 5 CO₂ 和 CH₄ 吸附等温线拟合参数

Table 5 The fitting parameters of CO₂ and CH₄ adsorption

组分	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R^2	
CO_2	23.4845	0.0455	0.9786	0.999	
CH_4	19.1351	0.0266	1.0763	0.999	

在 348.15 K 的含水条件下, CO_2 和 C_2H_6 多组分竞争吸附数据及拟合曲线见图 8, 拟合参数见表 6。由吸附等温拟合曲线可知, 含水条件下 CO_2 和 C_2H_6 竞争吸附等温线符合第 I 类吸附等温线。对比 CO_2 与 CH_4 的竞争吸附量数据, 在含水条件下与 CO_2 竞争吸附时, C_2H_6 的绝对吸附量小于 CH_4 。由表 6 可知, 与 CO_2 和 CH_4 的竞争吸附相比, CO_2 的最大吸附量大于前者, C_2H_6 的最大吸附量小于前者。 C_2H_6 的分子较 CH_4 大, 吸附时受空间和

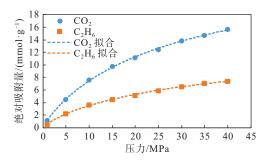


图 8 CO₂ 和 C₂H₆ 吸附等温拟合曲线

Fig.8 The fitting curves of CO₂ and C₂H₆ adsorption isotherm

表 6 CO₂ 和 C₂H₆ 吸附等温线拟合参数

Table 6 The fitting parameters of CO_2 and C_2H_6 adsorption isotherm

组分	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R^2
CO_2	27.7139	0.0330	0.8990	0.999
C_2H_6	14.6808	0.0255	0.8449	0.997

吸附位点限制,吸附量较低。

3.1.2 过剩吸附量

过剩吸附量指绝对吸附量与相同空间内自由 气体量的差值,根据 Gibbs-Helmholtz 方程计算,见 公式(3):

$$n_{\rm ex} = n_{\rm ab} \left(1 - \frac{\rho_{\rm g}}{\rho_{\rm ad}} \right) \tag{3}$$

式中: $n_{\rm ex}$ 为气体过剩吸附量, ${\rm mmol \cdot g}^{-1}$;

 $n_{\rm ab}$ 为气体绝对吸附量, mmol·g⁻¹;

 $\rho_{\rm g}$ 为气体体相密度, g·cm⁻³;

 $\rho_{\rm ad}$ 为气体吸附相密度, g·cm⁻³。

根据气体状态方程,各组分体相密度计算见公式(4):

$$\rho_{\rm g} = \frac{Mp}{{\rm R}ZT} \tag{4}$$

式中: M 为组分的摩尔分子量;

R 为气体常数, 8.314 J·(mol·K)⁻¹;

Z 为气体压缩系数;

T 为平衡温度, K。

各组分吸附相密度计算见公式(5)[21]:

$$\rho_{\rm ad} = \frac{8MP_{\rm c}}{RT_{\rm c}} \tag{5}$$

式中: P_c 为临界压力,MPa;

 T_c 为临界温度, K_o

在 348.15 K 的含水条件下, CO₂ 与 CH₄、CO₂ 与 C₂H₆ 竞争吸附时的过剩吸附量随压力的变化曲线见图 9。CO₂ 与 CH₄ 的过剩吸附量曲线为实线, CO₂ 与 C₂H₆ 的为虚线。图例中 CH₄-CO₂ 表示在 CO₂ 与 CH₄ 吸附模型中 CO₂ 的过剩吸附量, CH₄-CH₄ 表示在该模型中 CH₄ 的过剩吸附量,以此类推。由图 9 可知,当 CO₂ 与 CH₄ 竞争吸附时,过剩吸附量随压力增大先上升后下降, CO₂ 过剩吸附量峰值在压力为 15 MPa 处, CH₄ 为 20 MPa 处。CO₂ 的过剩吸附量大于 CH₄,且下降趋势较快,表明在 15 MPa 后, CO₂ 绝对吸附量增长幅度减缓,体相密度变化较大。当 CO₂ 与 C₂H₆ 竞争吸附时,曲线变化趋势同为先上升后下降,二者过剩吸附量峰值在压力为

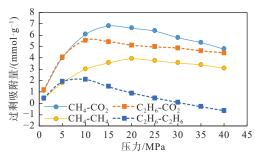


图 9 不同组分竞争吸附时过剩吸附量曲线

Fig.9 Excess adsorption curve during competitive adsorption of different components

10 MPa 处。 C_2H_6 的过剩吸附量小于 CO_2 , 但是下降趋势较快,表明 C_2H_6 在压力为 10 MPa 后,绝对吸附量增长缓慢,体相密度变化较大。

3.1.3 吸附热

在 348.15 K 的含水条件下, CO_2 与 CH_4 、 CO_2 与 C_2H_6 竞争吸附时的吸附热随压力的变化曲线见图 10。由图 10 可知, 2 种竞争吸附条件下, CO_2 的吸附热均大于原油短链烷烃分子, 各组分在壁面的吸附行为均为物理吸附^[21]。相同竞争吸附条件下, C_2H_6 的吸附热高于 CH_4 ; CO_2 与 C_2H_6 竞争吸附时 CO_2 的吸附热略高。 C_2H_6 分子尺寸较 CH_4 大, 色散力较大, 因此与壁面的相互作用能力较强。

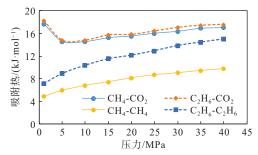


图 10 不同组分竞争吸附时吸附热曲线

Fig.10 Adsorption heat curve during competitive adsorption of different components

3.2 含水条件下 CO_2/CH_4 多组分竞争吸附特征影响因素分析

本部分取 CH₄ 代表原油短链烷烃组分,以温度为 348.15 K、孔径尺寸为 10 nm、CO₂ 与 CH₄ 的摩尔比为 1:1 的含钙离子水的吸附模型为基础模型,分析含水条件下水分子数目、摩尔比、温度、孔隙尺寸和矿物类型等因素对多组分竞争吸附特征的影响。基于 Langmuir-Freundlich 模型拟合吸附等温线,影响因素及取值见表 7。

表 7 影响因素及取值

Table 7 Influencing factors and values

水分子数/个	摩尔比	温度/K	孔隙尺寸/nm	矿物类型
80	2:3	348.15	10	石英
100	1:1	363.15	15	方解石
120	3:2	378.15	20	伊利石

3.2.1 水分子数对多组分竞争吸附特征的影响

不同水分子数时 CO2和 CH4的多组分竞争吸 附数据及拟合曲线见图 11, 拟合参数见表 8。由 CO, 吸附等温拟合曲线可知, 相同压力条件下, 随 水分子数增加, CO₂绝对吸附量先下降后上升。当 含水量较低时,水分子增加会占据吸附位点,减少 CO₂ 吸附量。随着水分子增多,分子间可能形成氢 键结构,改变水分子在孔隙壁面及孔隙中的分布, 使 CO₂ 吸附位点增多。氢键的形成主要源于静电 作用力。当氢原子与电负性很大而半径很小的原 子(如F、O、N)形成共价型氢化物时,由于原子间 共有电子对的强烈偏移, 氢原子几乎呈质子状态。 这个氢原子还可以和另一个电负性大且含有孤对 电子的原子产生静电吸引作用,这种引力称为氢键。 在水分子间, 氢键的形成是由于水分子中的氧原子 (O)具有较高的电负性,能够吸引另一个水分子中 的氢原子(H),形成 O-H···O型的氢键。这种氢键 结构使得水分子之间相互连接,形成网络状结构。 随着水分子的增多,水分子间的氢键网络变得更加 复杂和广泛,这种网络结构的变化可能会改变水分 子在孔隙壁面及孔隙中的分布。在孔隙中水分子 通过氢键重新排列后,可能会暴露出原本被水分子 占据的吸附位点,从而为CO。分子提供更多的吸附 空间^[22]。由 CH₄ 吸附等温拟合曲线可知,在压力 <25 MPa 时, 水分子数目对 CH₄绝对吸附量影响 不大。随着压力增加,水分子数为 120 时, CH₄ 绝 对吸附量增长幅度降低。竞争吸附时,水分子数目 的增长总体而言对 CH4 的绝对吸附量影响较小。

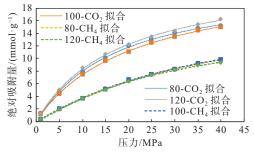


图 11 不同水分子数时 CO₂ 和 CH₄ 吸附等温拟合曲线

Fig.11 The fitting curves of CO₂ and CH₄ adsorption isotherms at different numbers of water molecules

表 8 不同水分子数时 CO₂ 和 CH₄ 吸附等温线拟合参数 Table 8 The fitting parameters of CO₂ and CH₄ adsorption

Table 8 The fitting parameters of CO₂ and CH₄ adsorption isotherms at different numbers of water molecules

吸附组分	水分子数/个	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R^2
	80	21.6844	0.0593	1.0358	0.998
CO_2	100	23.4845	0.0455	0.9786	0.999
	120	23.4954	0.0547	0.9923	0.999
	80	19.7556	0.0249	1.0594	0.999
CH ₄	100	19.1351	0.0266	1.0763	0.999
	120	15.4860	0.0363	1.1636	0.999

不同水分子数时 CO₂ 和 CH₄ 的过剩吸附量曲线见图 12。由 CO₂ 过剩吸附量曲线可知,相同压力条件下,水分子数越大,CO₂ 过剩吸附量呈先减小后增大趋势。由 CH₄ 过剩吸附量曲线可知,二者过剩吸附量曲线峰值均位于压力为 20 MPa 处。不同水分子条件下的过剩吸附量曲线差异较小,说明水分子数对 CH₄ 过剩吸附量影响不大。

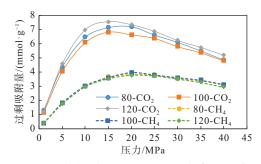


图 12 不同水分子数时 CO₂ 和 CH₄ 过剩吸附量曲线 Fig.12 Excess adsorption curves of CO₂ and CH₄ for different numbers of water molecules

3.2.2 摩尔比对多组分竞争吸附特征的影响

不同摩尔比时 CO₂ 和 CH₄ 的多组分竞争吸附数据及拟合曲线见图 13, 拟合参数见表 9。由 CO₂ 吸附等温拟合曲线可知, 相同压力条件下, 随着摩尔比增大, CO₂ 占比增大, CO₂ 的绝对吸附量增大。含水条件下竞争吸附时孔隙中 CO₂ 含量的增大会促进其在孔隙壁面吸附。由 CH₄ 吸附等温拟合曲线可知, CH₄ 占比越小时, 绝对吸附量曲线随压力增长的幅度越小。相同压力条件下, 随着摩尔比增大, CH₄ 占比减小, CH₄ 的绝对吸附量减小。

不同摩尔比时 CO₂ 和 CH₄ 的过剩吸附量曲线 见图 14。由 CO₂ 过剩吸附量曲线可知,摩尔比越大,相同压力条件下的 CO₂ 过剩吸附量越大。摩尔比为 2:3 时的过剩吸附量峰值在压力为 20 MPa 处,其他比的峰值均在 15 MPa 处。随摩尔比增加, CO₂ 过剩吸附量达到峰值的压力减小。由 CH₄ 过剩吸附量曲线可知,摩尔比越大,相同压力条件下的

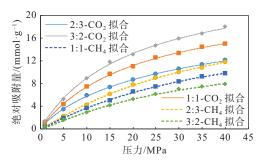


图 13 不同摩尔比时 CO₂ 和 CH₄ 吸附等温拟合曲线

Fig.13 The fitting curves of CO₂ and CH₄ adsorption isotherms at different molar ratios

表 9 不同摩尔比时 CO₂ 和 CH₄ 吸附等温线拟合参数
Table 9 The fitting parameters of CO₂ and CH₄ adsorption isotherms at different molar ratios

吸附组分	摩尔比(CO ₂ :CH ₄)	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R ²
CO_2	2:3	21.9618	0.0311	0.8821	0.999
	1:1	23.4845	0.0455	0.9786	0.999
	3:2	27.2403	0.0479	0.9696	0.998
	2:3	21.7089	0.0292	1.1130	0.999
$\mathrm{CH_4}$	1:1	19.1351	0.0266	1.0763	0.999
	3:2	14.1192	0.0318	1.1490	0.998

CH₄ 过剩吸附量越小。摩尔比为 2:3 时的过剩吸附量峰值在压力为 25 MPa 处,其他尔比的峰值均在 20 MPa 处。随摩尔比增加, CH₄ 过剩吸附量达到峰值的压力减小。

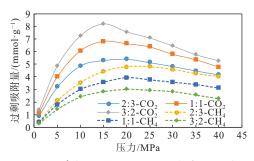


图 14 不同摩尔比时 CO₂ 和 CH₄ 过剩吸附量曲线 Fig.14 Excess adsorption curves of CO₂ and CH₄ for different molar ratios

3.2.3 温度对多组分竞争吸附特征的影响

不同温度时 CO₂ 和 CH₄ 的多组分竞争吸附数据及拟合曲线见图 15, 拟合参数见表 10。由 CO₂ 吸附等温拟合曲线可知, 相同压力条件下, 温度越高绝对吸附量越低。温度升高分子热运动加剧, 会减少与壁面接触的 CO₂ 分子数量, 减少吸附量。由 CH₄ 吸附等温拟合曲线可知, 温度的升高也会使 CH₄ 绝对吸附量降低。

不同温度时 CO_2 和 CH_4 的过剩吸附量曲线见图 16。由 CO_2 过剩吸附量曲线可知,过剩吸附

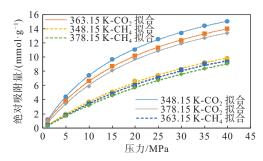


图 15 不同温度时 CO₂ 和 CH₄ 吸附等温拟合曲线

Fig.15 The fitting curves of CO₂ and CH₄ adsorption isotherms at different temperatures

表 10 不同温度时 CO₂ 和 CH₄ 吸附等温线拟合参数

Table 10 The fitting parameters of CO_2 and CH_4 adsorption isotherms at different temperatures

吸附组分	温度/K	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R ²
	348.15	23.4845	0.0455	0.9786	0.999
CO_2	363.15	22.8177	0.0401	0.9800	0.999
	378.15	21.1889	0.0420	1.0532	0.999
	348.15	19.1351	0.0266	1.0763	0.999
CH_4	363.15	17.8933	0.0279	1.1243	0.998
	378.15	16.2896	0.0292	1.1333	0.998

量随压力增大先上升后下降,在下降阶段出现了交叉点,温度越低,下降幅度越大。温度越高,体相密度变化幅度越小,下降阶段相对比较缓慢。在温度为348.15 K时,过剩吸附量峰值在15 MPa处,363.15 和378.15 K均在20 MPa处。温度升高使过剩吸附量达到最大值的压力增大。由CH₄过剩吸附量曲线可知,CH₄过剩吸附量随压力增大呈现为先上升后下降趋势,在下降阶段也出现交叉点。在20 MPa后,温度为348.15 K的曲线下降幅度最大;在35 MPa后,温度为363.15 K的曲线下降幅度超过378.15 K。

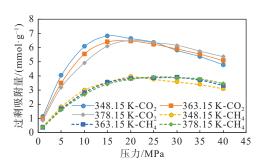


图 16 不同温度时 CO₂ 和 CH₄ 过剩吸附量曲线 Fig.16 Excess adsorption curves of CO₂ and CH₄ for different temperatures

3.2.4 孔隙尺寸对多组分竞争吸附特征的影响

不同孔隙尺寸时 CO₂ 和 CH₄ 的多组分竞争 吸附数据及拟合曲线见图 17, 拟合参数见表 11。

由 CO₂ 吸附等温拟合曲线可知, 压力为 1 MPa 时, 不同孔隙尺寸的绝对吸附量相差不大; 当压力 > 1 MPa 后, 相同压力时, 孔隙尺寸越大, CO₂ 绝对吸附量越大。孔隙空间的增大允许更多 CO₂ 分子与孔隙壁面相互作用, 形成吸附层。由 CH₄ 吸附等温拟合曲线可知, CH₄ 绝对吸附量均随压力增大而增大, 孔隙尺寸越大, 随压力增加的幅度越大。在相同模拟条件下 CH₄ 绝对吸附量小于 CO₂ 绝对吸附量。

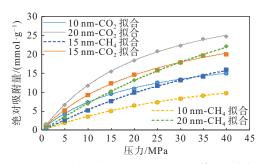


图 17 不同孔隙尺寸时 CO₂ 和 CH₄ 吸附等温拟合曲线 Fig.17 The fitting curves of CO₂ and CH₄ adsorption isotherms at different pore sizes

表 11 不同孔隙尺寸时 CO₂ 和 CH₄ 吸附等温线拟合参数 Table 11 The fitting parameters of CO₂ and CH₄ adsorption isotherms at different pore sizes

isomernis at afferent pere sizes						
吸附组分	孔隙尺寸/nm	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R^2	
	10	23.4845	0.0455	0.9786	0.999	
CO_2	15	34.2287	0.0370	0.9860	0.997	
	20	37.9542	0.0476	1.0498	0.999	
	10	19.1351	0.0266	1.0763	0.999	
$\mathrm{CH_4}$	15	32.3492	0.0240	1.1235	0.999	
	20	55.9876	0.0166	1.0718	0.999	

不同孔隙尺寸时 CO₂ 和 CH₄ 的过剩吸附量曲线见图 18。由 CO₂ 过剩吸附量曲线可知,相同压力条件下,孔隙尺寸越大,过剩吸附量越大。当孔隙尺寸为 10 nm 时,过剩吸附量峰值压力为 15 MPa;当孔隙尺寸为 15 和 20 nm 时,过剩吸附量峰值压力均为 20 MPa。孔隙尺寸增大会使过剩吸附量达到峰值的压力增大。由 CH₄ 过剩吸附量曲线可知,当孔隙尺寸为 10 和 15 nm 时, CH₄ 过剩吸附量峰值压力均为 20 MPa。当孔隙尺寸为 20 nm 时,过剩吸附量峰值压力均为 20 MPa。当孔隙尺寸为 20 nm 时,过剩吸附量峰值压力均为 25 MPa。孔隙尺寸的增大同样会使 CH₄ 过剩吸附量峰值压力增大。

3.2.5 矿物类型对多组分竞争吸附特征的影响

建立方解石与伊利石孔隙壁面模型后,开展矿物类型对多组分竞争吸附特征的影响研究。不同矿物类型时 CO₂ 和 CH₄ 的多组分竞争吸附数据及

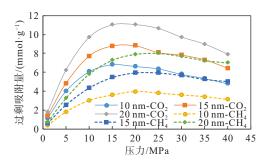


图 18 不同孔隙尺寸时 CO₂ 和 CH₄ 过剩吸附量曲线 Fig.18 Excess adsorption curves of CO₂ and CH₄ for different pore sizes

拟合曲线见图 19, 拟合参数见表 12。由 CO_2 吸附等温拟合曲线可知, 模拟压力范围内伊利石壁面的 CO_2 绝对吸附量相比石英和方解石壁面大, 在 5 MPa 以后达到平衡。方解石壁面的 CO_2 绝对吸附量上升幅度较石英壁面大。由 CH_4 吸附等温拟合曲线可知, 伊利石壁面对 CH_4 的绝对吸附量最少, 在 40 MPa 时仅为 1.2 $mmol\cdot g^{-1}$ 。黏土矿物亲水, 对短链烷烃的吸附能力较弱。相同压力下, 方解石壁面对 CH_4 的绝对吸附量大于石英壁面。

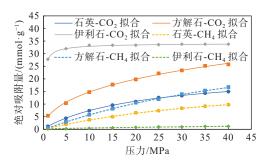


图 19 不同矿物类型时 CO₂ 和 CH₄ 吸附等温拟合曲线 Fig.19 The fitting curves of CO₂ and CH₄ adsorption isotherms at different mineral types

表 12 不同矿物类型时 CO₂ 和 CH₄ 吸附等温线拟合参数 Table 12 The fitting parameters of CO₂ and CH₄ adsorption isotherms at different mineral types

吸附组分	矿物类型	$V_L/(mmol \cdot g^{-1})$	K _b /MPa ⁻¹	n	R^2
	石英	23.4845	0.0455	0.9786	0.999
CO_2	方解石	96.9417	0.0036	0.5156	0.997
	伊利石	34.3944	6.9748	0.7483	0.992
	石英	19.1351	0.0266	1.0763	0.999
$\mathrm{CH_4}$	方解石	36.1303	0.0217	1.0873	0.999
	伊利石	12.7389	0.0014	0.7789	0.991

不同矿物类型时 CO_2 和 CH_4 的过剩吸附量曲 线见图 20。由 CO_2 过剩吸附量曲线可知,相同压力条件下,伊利石壁面对 CO_2 的过剩吸附量最大,方解石壁面次之,石英壁面最小。伊利石壁面的

CO₂ 过剩吸附量在 5 MPa 压力达到峰值。方解石与石英壁面的过剩吸附量峰值压力均为 15 MPa。由 CH₄ 过剩吸附量曲线可知,方解石和石英壁面的绝对吸附量下降趋势较明显,峰值压力均为 20 MPa。伊利石壁面的过剩吸附量因数值较小,变化不明显。

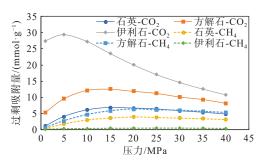


图 20 不同矿物类型时 CO₂ 和 CH₄ 过剩吸附量曲线 Fig.20 Excess adsorption curves of CO₂ and CH₄ for different mineral types

4 结论

- (1)含水条件下, CO_2 和 CH_4 、 CO_2 和 C_2H_6 竞 争吸附时的各组分吸附等温线符合第 I 类吸附等温线。在模拟压力范围内, CO_2 的绝对吸附量大于 CH_4 和 C_2H_6 的绝对吸附量。 C_2H_6 的绝对吸附量小于 CH_4 ,拟合得到的最大吸附量相差 4.454 3 mmol·g⁻¹。
- (2)含水条件下多组分竞争吸附时, CO_2 的过剩吸附量均大于 CH_4 和 C_2H_6 的过剩吸附量。 C_2H_6 的过剩吸附量在相同模拟压力下均小于 CH_4 。 CO_2 的吸附热均大于原油短链烷烃分子, 各组分在壁面的吸附行为均为物理吸附。
- (3)相同压力条件下,随水分子数增加,CO₂绝对吸附量和过剩吸附量均先下降后上升,对 CH₄影响较小;随着摩尔比增大,CO₂占比增大,CO₂的绝对吸附量和过剩吸附量增大,CH₄则相反;温度的增大会减少 CO₂和 CH₄的绝对吸附量,二者过剩吸附量在温度较低时的下降幅度较大;孔隙尺寸的增大会增加 CO₂和 CH₄的绝对吸附量和过剩吸附量。在模拟压力下,伊利石壁面的 CO₂绝对吸附量较大,CH₄的绝对吸附较小。

参考文献:

- [1] QIN J Z, ZHONG Q H, TANG Y, et al. CO₂ storage potential assessment of offshore saline aquifers in China[J]. Fuel, 2023, 341; 127681.
- [2] LIU Y L, RUI Z H. A storage-driven CO₂ EOR for a net-zero

- emission target[J]. Engineering, 2022, 18: 79-87.
- [3] 黄苏卫,刘峰, 戚家振. 西湖凹陷 Y 构造花港组致密砂岩成藏特征 [J]. 海洋地质前沿, 2023, 39(3): 71-80.

 HUANG S W, LIU F, QI J Z. Tight sandstone accumulation characteristics of Huagang Formation in Y Structure of Xihu Sag[J]. Marine Geology Frontiers, 2023, 39(3): 71-80.
- [4] 肖晓光, 秦兰芝, 张武, 等. 西湖凹陷西斜坡平湖组储层特征 及致密化过程分析 [J]. 海洋地质前沿, 2023, 39(4): 34-45. XIAO X G, QIN L Z, ZHANG W, et al. Reservoir characteristics and densification process of Pinghu Formation in western slope of Xihu Sag[J]. Marine Geology Frontiers, 2023, 39(4): 34-
- [5] 张岩,秦德文. 东海古近系致密碎屑岩 "甜点" 地震预测方法 及应用 [J]. 海洋地质前沿, 2023, 39(5): 93-100. ZHANG Y, QIN D W. Method and application of sweet spot seismic prediction of the Paleogene low-porosity low-permeability clastic rock in the East China Sea Basin[J]. Marine Geology Frontiers, 2023, 39(5): 93-100.
- [6] 杨勇. 中国碳捕集、驱油与封存技术进展及发展方向 [J]. 石油学报, 2024, 45(1): 325-338.

 YANG Y. Technology progress and development direction of carbon capture, oil-flooding and storage in China[J]. Acta Petrolei Sinica, 2024, 45(1): 325-338.
- [7] 王峰, 黎政权, 张德平. 吉林油田 CCUS-EOR 技术攻关与实践新进展 [J]. 天然气工业, 2024, 44(4): 76-82.

 WANG F, LI Z Q, ZHANG D P. New research and practice progresses of CCUS-EOR technology in Jilin Oilfield[J]. Natural Gas Industry, 2024, 44(4): 76-82.
- [8] 刘斌, 孙久强, 崔洋洋, 等. 深部咸水层中 CO₂ 埋存机理及埋存能力计算 [J]. 新型工业化, 2015, 5(3): 47-53.

 LIU B, SUN J Q, CUI Y Y, et al. CO₂ sequestration mechanism and capacity calculation in deep saline aquifer[J]. The Journal of New Industrialization, 2015, 5(3): 47-53.
- [9] 苏大鹏, 贺静, 闫琢玉, 等. 西沙石岛西科 1 井深层致密白云岩岩相学特征再研究 [J]. 海洋地质前沿, 2021, 37(6): 55-63. SU D P, HE J, YAN Z Y, et al. Restudy on petrographic characteristics of deep tight dolomite in Well Xike 1 of Shidao, Xisha Islands[J]. Marine Geology Frontiers, 2021, 37(6): 55-63.
- [10] 董刚, 刘新宇, 李绪深, 等. 南海西科 1 井致密白云岩特征及成岩环境 [J]. 海洋地质前沿, 2021, 37(6): 49-54.

 DONG G, LIU X Y, LI X S, et al. Characteristics and diagenetic environment of tight dolostone in Well Xike 1, South China Sea[J]. Marine Geology Frontiers, 2021, 37(6): 49-54.
- [11] 唐明云, 张海路, 段三壮, 等. 基于 Langmuir 模型温度对煤吸 附解吸甲烷影响研究 [J]. 煤炭科学技术, 2021, 49(5): 182-189.
 - TANG M Y, ZHANG H L, DUAN S Z, et al. Study on effect of temperature on methane adsorption and desorption in coal based on Langmuir model[J]. Coal Science and Technology, 2021, 49(5): 182-189.
- [12] 李晶辉, 韩鑫, 黄思婧, 等. 页岩干酪根吸附规律的分子模拟研究 [J]. 油气藏评价与开发, 2022, 12(3): 455-461.

- LI J H, HAN X, HUANG S J, et al. Molecular simulation of adsorption law for shale kerogen[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455-461.
- [13] 邓小鹏, 相建华. 东曲矿 8 号煤 CO₂ 和 CH₄ 竞争吸附特性分子模拟研究 [J]. 煤矿安全, 2024, 55(3): 18-24.

 DENG X P, XIANG J H. Molecular simulation study on competitive adsorption characteristics of CO₂ and CH₄ for 8st coal in Dongqu Mine[J]. Safety in Coal Mines, 2024, 55(3): 18-24.
- [14] 王海哲. 页岩纳米孔隙中 CO₂ 和 CH₄ 吸附扩散分子模拟研究 [J]. 能源与环保, 2024, 46(7): 156-160.
 WANG H Z. Molecular simulation study on adsorption and diffusion molecular of CO₂ and CH₄ in shale nanopores[J]. China Energy and Environmental Protection, 2024, 46(7): 156-160.
- [15] 李田田, 王淑彦, 邵宝力, 等. CH₄/CO₂ 在 SiO₂ 孔隙中的吸附和扩散性能研究 [J]. 当代化工, 2024, 53(5): 1035-1039. LI T T, WANG S Y, SHAO B L, et al. Adsorption and diffusion properties of CH₄/CO₂ in SiO₂ pores[J]. Contemporary Chemical Industry, 2024, 53(5): 1035-1039.
- [16] 方暖, 陈泽琴, 刘晓强, 等. 分子模拟 CH₄ 和 CO₂ 在方解石-白 云石岩层的吸附机理 [J]. 长江大学学报 (自然科学版), 2024, 21(3): 95-104.

 FANG N, CHEN Z Q, LIU X Q, et al. Molecular simulation of the adsorption mechanisms of CH₄ and CO₂ in calcite-dolomite nanopore[J]. Journal of Yangtze University (Natural Science Edition), 2024, 21(3): 95-104.
- [17] 任旭, 王杰, 董海海, 等. 考虑组分差异的致密油二氧化碳吞吐效果分子模拟 [J]. 断块油气田, 2022, 29(2): 229-233.

 REN X, WANG J, DONG H H, et al. Molecular simulation of CO₂ huff and puff effects in tight oil considering component dif-

- ferences[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 229-233.
- [18] 汪周华, 赵建飞, 白银, 等. 不同润湿性修饰石英吸附甲烷的模拟研究 [J]. 西南石油大学学报 (自然科学版), 2019, 41(6): 28-34.
 - WANG Z H, ZHAO J F, BAI Y, et al. Simulation of methane adsorption of quartz with different wettability[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6): 28-34.
- [19] 张明航. 伊利石及方解石中 CO₂-烷烃吸附扩散的分子模拟研究 [D]. 成都: 西南石油大学, 2017.

 ZHANG M H. The molecular simulation study on adsorption and diffusion in the process of alkanes displacement with carbon dioxide injection on illite and calcite[D]. Chengdu: Southw-
- [20] 刘洁翔, 董梅, 秦张峰, 等. C_5 烷烃分子在 $AlPO_4$ -5 分子筛中 吸附的分子模拟研究 [J]. 燃料化学学报, 2004, 32(5): 569-572.

est Petroleum University, 2017.

- LIU J X, DONG M, QIN Z F, et al. Molecular simulation of C_5 paraffins sorption in AlPO₄-5 molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2004, 32(5): 569-572.
- [21] 吴双, 汤达祯, 李松, 等. 温度/压力对甲烷超临界吸附能量参数的影响机制 [J]. 煤炭科学技术, 2019, 47(9): 60-67. WU S, TANG D Z, LI S, et al. Effect of temperature and pressure on energy parameters of methane supercritical adsorption[J]. Coal Science and Technology, 2019, 47(9): 60-67.
- [22] LIU S, WANG M H, WEI S X, et al. Enhanced CO₂ capture in partially interpenetrated MOFs: synergistic effects from functional group, pore size, and steric-hindrance[J]. Journal of Colloid and Interface Science, 2023, 650: 1361-1370.

Molecular simulation of competitive adsorption of CO₂ and short-chain alkanes under water containing conditions in tight oil reservoirs

LI Jing^{1,2}, CUI Chuanzhi^{1,2,3,4,5*}, YU Yongbo^{1,2}, LI Zongyang⁶, ZHANG Chuanbao⁶, ZHANG Dong⁶
(1 College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; 2 National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; 3 Qingdao Key Laboratory of Offshore CO₂ Geological Storage, Qingdao 266237, China; 4 Qingdao Engineering Research Center of Offshore CO₂ Geological Storage, Qingdao 266237, China; 5 Shandong Engineering Research Center of Offshore CO₂ Geological Storage, Qingdao 266237, China; 6 Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257015, China)

Abstract: Tight reservoirs have low permeability, small porosity, and pervasive micro-nano pores, so water flooding has poor development effects. The use of CCUS-EOR (Carbon Capture, Utilization, and Storage-Enhanced Oil Recovery) technology can realize the geological sequestration of CO₂ in the reservoir while improving the crude oil recovery efficiency. Currently, research on CO₂ sequestration mechanisms focuses mainly on saline aquifer sequestration, with less emphasis on adsorption and sequestration during CO₂ flooding in tight oil reservoirs under water containing conditions. To address the above problems, we established a pore wall model for tight reservoirs using hydroxylated quartz cells based on molecular simulation methods, in which the fluid component models of CO₂, crude oil short-chain alkanes, and water were contained; and investigated the competitive adsorption characteristics of CO₂ and crude oil short-chain alkanes under water containing conditions. Results show that under water containing conditions, the adsorption isotherms of each component during the competitive adsorption of CO₂ and CH₄, CO₂ and C₂H₆ were in accordance with the class I adsorption isotherm, and the absolute adsorption amount, excess adsorption amount, and heat adsorption of CO₂ were larger than those of CH₄ and C₂H₆. The adsorption of CO₂ and crude oil short-chain alkanes on the quartz wall was physical. Under simulation conditions, the number of water molecules had a significant impact on the adsorption amount of CO2 and a relatively small impact on the adsorption amount of CH₄. The increase in the proportion of CO₂ increased CO₂ adsorption amount but decreased CH4 adsorption amount. The increase of temperature reduced the absolute adsorption amount of CO₂ and CH₄. The increase of pore size increased the absolute and excess adsorption amounts of both CO₂ and CH₄. The type of wall mineral showed a significant impact on the adsorption capacity of CO₂ and CH₄. Key words: tight oil reservoir; CO2 and short chain alkanes; competitive adsorption characteristics; molecular simulation; adsorption amount