

中文核心期刊 CSCD核心期刊 中科双效期刊 中国科技核心期刊 Caj-cd规范获奖期刊

落石冲击混凝土板与缓冲层组合结构的动力响应

吴建利,胡卸文,梅雪峰,许泽鹏,罗 刚,韩 玫

Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact

WU Jianli, HU Xiewen, MEI Xuefeng, XU Zepeng, LUO Gang, and HAN Mei

在线阅读 View online: https://doi.org/10.16030/j.cnki.issn.1000-3665.202004029

您可能感兴趣的其他文章

Articles you may be interested in

高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应

Dynamic response of RC plate with different cushion layers under the high-level rockfall impact 吴建利, 胡卸文, 梅雪峰, 许泽鹏 水文地质工程地质. 2020, 47(4): 114-122

滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例

Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway 袁博, 祝介旺 水文地质工程地质. 2019, 46(6): 57–66

滑坡--碎屑流冲击导引结构的离散元模拟

Discrete element simulation of the landslide-debris flow impact guiding structure 张睿骁, 樊晓一, 姜元俊, 杨海龙 水文地质工程地质. 2019, 46(5): 161-168

土工格室加筋垫层路堤破坏模式和稳定性评价

Failure mode and stability evaluation of geocell-reinforced cushion embankment 金家庆, 徐超, 梁程, 刘若桐 水文地质工程地质. 2019, 46(1): 86-86

滑坡碎屑流冲击拦挡结构的离散元模拟

Discrete element simulation of the impact of landslide debris flow on resistive structures 张睿骁, 樊晓一, 姜元俊 水文地质工程地质. 2019, 46(1): 148-148

郑万高铁宜万段边坡危岩崩落破坏特征

Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high – speed railway 黄海宁, 巨能攀, 黄健, 张成强 水文地质工程地质. 2020, 47(3): 164–172

关注微信公众号,获得更多资讯信息

DOI: 10.16030/j.cnki.issn.1000-3665.202004029

落石冲击混凝土板与缓冲层组合结构的动力响应

吴建利¹, 胡卸文^{1,2}, 梅雪峰^{1,3}, 许泽鹏¹, 罗 刚¹, 韩 玫⁴

(1. 西南交通大学地球科学与环境工程学院,四川成都 610031;

2. 西南交通大学,高速铁路运营安全空间信息技术国家地方联合工程实验室,四川成都 610031;
 3. 山东理工大学建筑工程学院,山东淄博 255049;4. 西南交通大学数学学院,四川成都 610031)

摘要:钢筋混凝土(RC)板与一定厚度的土颗粒缓冲层组合结构被广泛用于山区高位单体及群发性崩塌落石的防治,为研 究此类防护结构在落石作用下的冲击力衰减规律及 RC 板的破坏模式,开展了室外系列落石冲击试验。结果表明,增大缓 冲层厚度能够有效减小最大冲击力,峰值加速度随缓冲层厚度减小而增大,尤其在缓冲层厚度为 0.1 m 及 0.2 m 时,最大值 急剧增大,峰值加速度与缓冲层厚度的变化满足指数函数关系;根据量纲分析原理得到缓冲层最大冲击深度与动能的平方 成正比、与最大入射冲击力成反比的计算公式,且与实测值较吻合;入射冲击力在缓冲层内的衰减率随缓冲层厚度的增加 以指数函数递增,在 0.6 m 缓冲层厚度下可使峰值冲击力衰减 70% 左右;随累积冲击能级的增大, RC 板经历了弯曲起裂及 扩展、次级弯曲裂纹和剪裂纹产生及跨中弯曲裂纹贯通的过程,试验结束时 RC 板整体表现出典型的弯曲破坏特征。 关键词:落石冲击试验;缓冲层;衰减规律;组合结构; RC 板破坏模式 中图分类号: P642.21 文献标志码: A 文章编号: 1000-3665(2021)01-0078-10

Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact

WU Jianli¹, HU Xiewen^{1,2}, MEI Xuefeng^{1,3}, XU Zepeng¹, LUO Gang¹, HAN Mei⁴

 (1. Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Engineering Laboratory combined with national and local of spatial information technology of high speed railway operation safety, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;
 3. School of Architectural Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; 4. School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China)

Abstract: The structure of reinforced concrete (RC) slab with cushion layer composed of sandy soil is widely used in the prevention and control of high-level single rockfalls and rockfall group in mountainous areas. In order to study the impact attenuation law and the failure mode of RC slab under the rockfall load, an outdoor series impact test was carried out. The results show that an increase in the thickness of the cushion can effectively reduce the maximum impact force, and the peak acceleration increases with the thickness of the cushion, especially when the thickness of the buffer layer is 0.1 m and 0.2 m, the maximum value increases sharply. It can be obviously observed that there exists an exponential relation between the peak acceleration and the thickness of the cushion.

收稿日期: 2020-04-10; 修订日期: 2020-06-05

基金项目:国家重点研发计划项目资助(2018YFC1505401);四川省自然资源厅"8.8"九寨沟地震灾区生态化地质灾害防治重大科技支撑研 究课题资助(KJ-2018-20);地质灾害防治与地质环境保护国家重点实验室开放式基金资助(SKLGP2018K011);国家自然科学基 金青年基金项目资助(41907225)

第一作者:吴建利(1988-),男,博士研究生,主要从事工程地质灾害研究。E-mail:wujianli@my.swjtu.edu.cn

通讯作者: 胡卸文(1963-), 男, 博士, 教授, 博士生导师, 主要从事工程地质、环境地质研究。E-mail: huxiewen@163.com

According to the principle of dimensional analysis, the maximum impact depth of the cushion layer is directly proportional to the square of the kinetic energy, and the calculation formula is inversely proportional to the maximum incident impact force, respectively. The maximum impact depth of the cushion layer is also in good agreement with the actual measured value. The attenuation rate of the incident impact force in the cushion layer increases exponentially with the increase of the thickness of the cushion, and the peak impact force can be attenuated by about 70% under the thickness of the cushion layer of 0.6 m. With the increase of the cumulative impact energy level, the RC slab undergoes bending initiation and expansion, secondary bending cracks, shear cracks appearing, and further central bending cracks penetration, At the end of the test, the RC slab showed the typical bending failure characteristics.

Keywords: rockfall impact test; cushion layer; attenuation law; structure combination; failure mode of RC slab

崩塌落石是高山峡谷区常发的边坡地质灾害之 一^[1]。针对高位(坡度大于 25°, 高差大于 100 m)落石 突发、高能的动力特性,棚洞及桩板拦石墙结构由于 刚度大、防护性能好而被广泛应用^[2-3]。典型的棚 洞、桩板拦石墙通常由 RC 板及上覆、前置砂、碎石土 缓冲层组成,可有效避免钢筋混凝土结构直接与落石 接触发生刚性破坏。砂土或碎石土具有流、固两相 性,作为一种多孔、松散、易压缩的颗粒材料,波在土 体传播过程中表现出极强的弥散特性[4-5],被广泛用 于防护结构消能分配层。土颗粒受到冲击载荷时,即 使颗粒密度非常高,也仅会发生冲压,不会发生广义 的破坏。对于"合理"的结构,最大化消能层能量耗散 及最小化混凝土结构吸能,能减小钢筋混凝土的损伤 并增加结构的耐久性。一些学者研究了波在缓冲层 介质内的传播规律。Calvetti⁶⁰通过实验提出了土-结 构相互作用机制及对冲击载荷扩散区域外土层的影 响。Prisco^[7]提出黏弹性本构模型,用于解释冲击波穿 透土层过程。马炜^[8]根据冲击速度,用相对密实、颗 粒位错与滑移、颗粒射流三种形态描述砂土的流、固 两相性。Seamen⁹⁹采用落锤试验,研究了高岭土和黏 土中应力波传播规律。于潇等^[10]基于 SHPB 装置研 究了珊瑚砂应力衰减规律后,认为土颗粒级配决定了 应力波衰减系数、峰值压力等。此外,最大冲击力及 最大冲击深度是设计缓冲层厚度的重要参数。袁进科[11] 基于室内模型试验,研究了落石重量、入射速度、缓 冲层厚度等不同特征参量下的缓冲层表面冲击力变 化规律。王星^[12]、Ronco^[13]、杨其新^[14]、叶四桥^[15]等学 者分析了落石冲击过程中最大冲击力及冲击深度计 算方法。Wang^[16]通过能量原理推导了块状落石冲击 土层时最大侵彻深度的计算方法。此外,路基设计规

范^[17]给出了一种计算弹坑最大深度的经验公式。关于落石防护结构的抗冲击方面的研究, Mougin等^[18]建立了 1/3 钢筋混凝土板缩尺物理模型, 研究了 135 kJ冲击能量下板的动力响应并分析了板的破坏模式。 Delhomme等^[19]采用数值模型对 Mougin等的试验结 果进行了验证与分析。Zhao等^[20]基于模型试验研究 了钢棚洞与砂土、EPE、EPS 不同组合形式的缓冲层 在落石冲击作用下的缓冲效果。袁博^[21]基于 LS-DYNA 有限元分析了川藏公路一处棚洞结构在落石荷载作 用下的动力响应,并提出使用橡胶圈缓冲层以防止落 石堆积的优化建议。

鉴于混凝土板与散体颗粒的复杂性,目前相关研究仍多见于单一材料分析,无法综合考虑组合结构的 耦合影响,更多的学者采用数值模拟手段,缺乏更为 可靠的试验验证。实际应用中,规范基于相关研究建 议采用经验-半经验公式得到缓冲层表面的入射冲击 力,通过应力扩散求得作用于下部防护结构的冲击压 力,计算仅考虑冲击力的扩散忽略力的衰减,这会造 成结构整体自重增大或占用更多的空间。基于以上 问题,本文开展了物理模型试验,综合分析了缓冲层 与 RC 板之间的相互作用,研究了冲击过程中峰值冲 击力的衰减规律,揭示了 RC 板在不同冲击工况下的 损伤累积与动态破坏模式。本文结果对落石防护结 构的设计及优化具有指导意义。

1 试验方案设计

为研究上覆缓冲层的 RC 板结构在落石荷载下的 动态响应及缓冲层耗能规律,开展了落锤冲击试验。 考虑到传统室内小型落锤装置试验尺度受限问题,本 文设计了用于开展上覆缓冲层 RC 板室外落石冲击试

验平台(图1)。试验用 RC 板长 2.4 m、宽 1.6 m、厚 0.25 m。混凝土采用 42.5 级硅酸盐水泥, 粗骨料采用 粒径为 5~15 mm 连续级配的碎石,细骨料为天然河 砂,板内垂直正交上下铺设2层 @14 @200 mm 钢筋网, 混凝土保护层厚 20 mm。实验所用的落石采用钢模内 浇注混凝土而成,包括2种不同尺寸立方体块,编号 C1、C2, 边长分别为 0.35 m 和 0.5 m, 质量分别为 107.3 kg 和 290.8 kg。在设计最大冲高 7 m 下, 对应的最大冲 击能量分别为 7.4 kJ 和 20.0 kJ。2 种球体编号 B1、B2, 半径分别为0.15m 和0.2m, 质量分别为32.4kg 和70.7kg, 对应最大冲击能量分别为 2.2 kJ 和 4.9 kJ。对试验用 土颗粒缓冲层取样进行室内土工试验,相关的物理力 学参数见表 1,因在试验过程中未观察到明显的落石 回弹,故回弹系数取零。RC板上下表面及板内钢筋 网布置电阻式应变片,其中应变片布置方式上下层相 同(图 2)。混凝土板下表面中心点放置自复位式位移 传感器,板上表面中心点布置1个动态压力传感器。 试验采集指标主要包括落石冲击过程加速度、混凝土 及钢筋应变、板竖向位移及板表面(缓冲层底面)压应 力。为避免混凝土板提前破坏,需控制试验次序,按 落石锤质量由小至大先进行 B1、B2 及 C1 在 0.6 m 缓 冲厚度下的试验工况。冲击高度从4m开始由小到 大,按每1m递增至最大7m。在以上试验完成后,缓 冲层厚度减小 0.1m, 按照同样次序进行。当 B1、 B2及C1落石锤试验全部完毕后,采用C2落石锤按 照相同的试验次序进行测试。冲击试验工况及最大 冲击能量见表2。每次试验前,需挖除比影响范围更 大的土体重新回填压实并对数据采集仪清零,故所得 结果仅为落石单次冲击的荷载效应。

图 1 冲击试验平台 Fig. 1 Impact test set-up

表1 缓冲层参数										
Table 1 Cushion parameters										
天然密度/ (g·cm ⁻³)	弹性模量/ MPa	含水率/ %	泊松比	内摩擦角/ (°)	回弹系数					

图 2 应变片布置 (括号内数字为下表面应变片编号)

Fig. 2 Strain gauges (the number in parentheses is the bottom strain gauge)

表 2 试验冲击工况

Table 2	Conditions	for	each	experiment
---------	------------	-----	------	------------

菠石编早	缓冲层厚度/	落石高度/	落石质量/	落石体积/	最大能量/	
宿口畑ワ	m	m	kg	m ³	kJ	
B1	$0.1\sim 0.6$	4 ~ 7	32.4	0.014	2.2	
B2	$0.1\sim 0.6$	4 ~ 7	70.7	0.033	4.9	
C1	$0.1\sim 0.6$	4 ~ 7	107.3	0.043	7.4	
C2	$0.5 \sim 0.6$	$1 \sim 7$	290.8	0.125	20.0	
C2	0.4	1 ~ 6	290.8	0.125	17.1	

2 试验结果与分析

2.1 缓冲结构层受力分析

2.1.1 加速度分析

为方便分析,文中工况编号统一采用:落石锤编 号-缓冲层厚度-冲击高度,如 B2-0.1m-7m,代表 B2 落 锤-0.1m 厚缓冲层-7m 冲击高度, 典型的加速度时程曲 线如图3所示。加速度由初始值由零快速增大至峰 值,该阶段为压缩加载阶段,随后加速度由峰值降至 稳定,表征一次冲击过程完成。整个冲击历程持续时 长约12ms。根据牛顿定律,作用于缓冲层表面的峰 值入射冲击力可由峰值加速度求得:

(1)

 $F_0 = ma$ 式中: F_0 — 最大入射冲击力/N:

Fig. 3 Acceleration time history curve of the condition B2-0.1m-7m

目前一些关于冲击力计算公式通常认为缓冲层 厚度对峰值冲击力无影响^[22-23]。本文的实测数据表 明(图4),随着缓冲层厚度的减小,峰值加速度与缓冲 层厚度服从指数函数关系。当缓冲层厚度为0.6 m, 0.5 m和0.4 m时,峰值加速度随缓冲层厚度的减小增 大的趋势较平缓,在缓冲层厚度减小至0.2 m和0.1 m 时,峰值加速度随缓冲层厚度减小而迅速增大,其中 在相同冲击高度下0.1 m缓冲层厚度对应的峰值加速 度比0.2 m时大2~4倍。因此,不考虑缓冲层厚度的 冲击力计算公式可能会导致计算结果失效。

2.1.2 弹坑深度与冲击力关系分析

落石冲击过程中穿透缓冲层的最大深度通常被 用作缓冲层厚度的最小设计值。本文在试验过程中 测得冲击深度的最大值。由于多数研究冲击深度的 计算方法仅适用于球状落石,为方便与前人的研究成 果进行对比分析,本文仅统计了球状落石锤的相关数 据。根据实测结果,在 Ronco^[13] 基础上提出了最大冲 击深度的计算方法:

$$\delta = \frac{m{v_0}^2}{F_0} = \frac{2mgH}{F_0} \tag{2}$$

式中: δ——弹坑最大冲击深度/m;

m——落石质量/kg;

v0——冲击接触时最大的速度;

H----冲击高度/m;

g----重力加速度,取9.81 m/s²;

F0——峰值入射冲击力/N。

由式(2)可知,弹坑的最大冲击深度与落石冲击 速度(高度)及最大冲击力有关。实际工程应用中,速 度与冲击力是最基本的2个特征量,通过式(2)即可 计算出落石的最大冲击深度,从而进一步进行缓冲层 厚度的设计。将其他学者的计算结果与本试验实测 数据及本文公式计算结果进行对比分析,结果见图5。 其中 x 轴是试验过程中实测数据, y 轴为王星等^[12]、 路基规范法[17] 及本文公式计算值,计算所需的参数见 表1。结果表明,3种计算结果趋势一致,路基规范法 计算的结果均大于实测值。王星等模型和本文建议 的方法与试验所测数据吻合度最优。但路基规范法 要考虑缓冲层的内摩擦角及落石重度等参数,而王星 等的计算公式要考虑恢复系数等。本文方法只需考 虑最大冲击力及冲击速度两个基本特征参量,可避开 复杂参数洗取,作为缓冲层最小厚度设计依据是科学的。 2.1.3 冲击力衰减规律分析

通常由于上部缓冲层的消能作用,入射冲击力 F₀穿透缓冲层至下部 RC 板的透射冲击力合力 F₁已 大大减小(图 6)。根据 Ronco 等^[13]的数值模拟研究结 果表明,冲击力以压缩波的形式从冲击点开始呈锥形 向墙体后方传播,土体在被压缩的过程中,80%~ 85%动能通过土体击实的方式塑性耗散。F₁的大小

Fig. 4 Relationship between the peak acceleration and thickness of the cushion layer

图 5 冲击深度试验值与规范及其他方法对比

由影响区内透射力积分得到:

$$F_1 = \iint_{\Sigma} P_i \mathrm{d} s_i \tag{3}$$

式中: *F*₁——作用于混凝土板上表面透射冲击力合力/N; *P_i*——影响范围内测点压力荷载值/Pa; ds_i——微单元面积/m²。

落石在冲击过程中,入射冲击波以一定的角度向 缓冲层深部扩散称为扩散角。目前隧道设计规范中^[24] 给出了扩散角的具体数值,一般来说扩散角与缓冲层 性质有关,根据与本试验相关土体的性质,本文采用 的扩散角及扩散半径^[25]为:

$$\begin{cases} \theta = 45^{\circ} - \frac{\varphi}{2} \\ L = r + h \tan \theta \end{cases}$$
(4)

式中: θ——缓冲层扩散角/(°), 与缓冲层性质有关;

φ——土体内摩擦角/(°);

L──影响区半径/m;

r——落石的等效半径/m;

h——缓冲层厚度/m。

目前关于透射冲击力的分布形式,得到的结果主 要有指数分布^[7,26]及线性分布^[14,27]。为简化计算过程, 本文采用线性分布规律进行分析。选取典型的不同 冲击工况下透射力时程曲线,并定义无量纲峰值冲击 力η为:

$$\eta = F_1 / F_0 \tag{5}$$

图 7 为位于 RC 板上表面中心点位置的力传感器 在不同冲击工况下的透射力时程曲线。峰值透射力 与冲击高度及冲击质量正相关。相对于落石加速度 时程曲线,透射冲击力由零增加到最大值几乎无滞 后,在整个冲击时长 20~30 ms 时间内可视为1个脉 冲荷载。随缓冲层厚度增大,曲线末期存在明显缓降 平台,随后逐渐趋于零。

图 8 为 C1、B1、B2 落锤在冲击高度分别为 4, 5, 6, 7 m 对应不同厚度缓冲层下的衰减规律。结果表 明, 无量纲峰值冲击力与缓冲层厚度关系符合指数函 数。随缓冲层厚度的减小, 无量纲峰值冲击力η增大, 入射冲击力衰减程度越来越小。如 C1 落锤在 0.3 m 厚缓冲层最大入射力衰减了约 47%, 当缓冲层增大至 0.6 m时, 入射力衰减了约73%, 这证明缓冲层的耗能效果明显。与B1、B2相比, 相同工况下平底落石C1的衰减效应稍强, 这可能是由于平底接触面的冲击力更分散导致的。此外, 随着缓冲层厚度不断增大衰减值趋于平缓, 也即缓冲层厚度的衰减效应越来越弱。以C1 落锤为例, 根据衰减趋势, 当缓冲层厚度增加到1.5 m

图 8 缓冲层厚度与无量纲峰值冲击力间的关系

Fig. 8 Relationship between the cushion layer thickness and dimensionless impact force

时,最大入射力衰减率大于 90%,但是过大的缓冲层 厚度显然是不经济的。因此通过本文的衰减规律可 以评估缓冲层厚度增加对入射冲击力衰减的影响程 度。进一步对无量纲峰值冲击力与缓冲层厚度 h 的 关系拟合。采用麦考特(Levenberg-Marquardt)算法拟 合为指数函数,拟合函数的相关系数均大于 0.95,证 明拟合效果较优,具体表达式为:

$$\eta = F_1 / F_0 = A e^{-h/\lambda} \tag{6}$$

式中: A——缓冲层材料参数, 与土体的密实度及颗粒 级配等相关;

λ——与落石尺寸有关的参数;

h——缓冲层厚度/m。

对于本文所涉及的缓冲层拟合值 A=0.990, 对于 B1 落石锤 $\lambda=0.498 \text{ m}^{-1}$, B2 落石锤 $\lambda=0.475 \text{ m}^{-1}$, C1 落石 锤 $\lambda=0.456 \text{ m}^{-1}$ 。可以看出落石锤尺寸越大, 对应 λ 越 小。实际应用中,可以根据具体所使用缓冲层土体进 行试验确定。

2.2 RC 板结构动态响应

2.2.1 混凝土板位移特征分析

选取冲击过程中 RC 板下表面中心点典型的位移 时程曲线见图 9。结果表明, RC 板位移特征基本可分 为 2 个阶段: (1) 板跨中挠度由零迅速增加至峰值。 (2) 以峰值为界, RC 板发生回弹, 跨中挠度迅速减小, 在冲击能量较大的情况下 RC 板会产生一定的残余 变形。

Fig. 9 Central deflection characteristics of RC slab

图 9表明,冲击能量对 RC 板的变形具有关键作 用。对于 B1, B2 落石锤,无论何总冲击高度, RC 板基 本处于弹性工作状态不产生塑性变形。此外,在 0.5 m 缓冲层厚度下, C2 产生的峰值位移及残余变形远大 于 C1。相同落锤及冲击高度下,较大缓冲层厚度能有 效减小残余变形,缓冲层消能效果明显。C2 落石在缓 冲层厚度为 0.5 m 和 0.4 m、高度 4~6 m 工况下,残余 变形分别为 0.862, 3.23, 5.36, 2.367, 6.74, 10.53 mm。 缓冲层减小 0.1 cm, 4~6 m 工况下残余变形分别增加 174%、108%、96%。

表 3 汇 总 了 4 组 典 型 的 试 验 数 据 。 对 比 C1 与 B2 分别在缓冲层厚度 0.3 m 和 0.5 m 时的冲击试验数 据发现,虽然质量更大的 C1 入射冲击力远大于 B2, 但由于缓冲层厚度的差别使得两者透射力差距较小, 表现为钢筋及混凝土各测点应变值及 RC 板中心点的 最大位移基本一致。以混凝土中心点 S8 测点为例, 在冲击高度为 5~7 m 时, C1-0.5 m 冲击工况下对应的 应变值分别为 102.3, 126.9, 164.0 με, 而 B2-0.3 m 冲击 工况下的应变值分别为 112.2, 126.1, 147.6 με。因此本 文衰减理论能够合理反映不同冲击工况下冲击力衰 减情况。。

图 10 为 C2 落锤在 0.5 m 厚度缓冲层-7 m 冲击高 度工况下的应变及位移变化曲线,由于数据采集于混 凝土破坏末期,钢筋及混凝土各测点应变值普遍增

 \cdot 83 \cdot

水文地质工程地质

表 3 典型试验数据

Table 5 Typical tests data													
组号 高度/m	产 庄(冲击力/kN		19	混凝土应变/με						12-14		
	F_0	F_1	- η/%	<i>S</i> _{<i>x</i>} -8	<i>S_y</i> -11	<i>S</i> _{<i>y</i>} -14	<i>S</i> _{<i>x</i>} -17	<i>G</i> _{<i>x</i>} -2	<i>G</i> _{<i>x</i>} -6	<i>G</i> _{<i>y</i>} -10	<i>G</i> _{<i>x</i>} -11	1业移/mm	
5 C1-0.5m 6 7	5	107.6	34.5	32.1	102.3	20.5	24.8	56.2	324.8	489.7	47.2	20.0	3.42
	6	127.1	44.5	35.0	126.9	23.5	25.3	67.4	409.4	603.0	65.0	45.3	4.28
	7	146.0	49.4	33.8	164.0	27.2	26.4	76.0	482.7	667.5	75.9	76.0	4.89
5 B1-0.3m 6 7	5	36.2	17.9	49.5	61.4	5.3	3.0	4.4	191.0	171.7	23.3	10.2	1.41
	6	40.1	19.6	48.8	70.0	6.7	6.8	7.5	209.6	183.0	37.2	17.5	1.57
	7	42.4	22.3	52.5	77.2	8.4	8.3	11.6	225.9	210.2	42.6	21.0	1.72
B2-0.3m	5	58.5	30.2	51.7	112.2	5.7	4.5	25.0	362.1	397.2	54.1	21.2	2.83
	6	67.1	33.0	49.1	126.1	4.0	7.1	31.3	385.2	449.9	124.2	28.8	3.20
	7	76.6	38.5	50.2	147.6	10.7	9.1	34.2	414.5	488.1	147.1	43.9	3.45
C2-0.5m	5	224.2	64.1	28.6	555.0	152.5	9.3	72.2	472.8	1 321.2	545.0	164.8	11.96
	6	239.9	78.7	32.8	910.8	221.8	13.8	133.1	1 103.4	1 369.1	728.0	204.7	14.94
	7	263.9	83.4	31.6	947.0	256.0	17.7	511.3	1 250.5	1 526.3	1 041.2	244.2	18.69

大,其中跨中测点 S8 及 S11 迅速增大,除由于 RC 板 吸收的能量较大外,可能也与前期累积能量使得混凝 土屈服有关。具体表现为产生大量不可逆应变及塑 性位移,应变回弹很小,峰值应变约等于塑性应变。 2.2.2 钢筋混凝土板破坏特征

冲击过程中,初始输入总能量为不同高度所对应 的重力势能。其中一部分能量被缓冲层耗散,另一部 分被 RC 板吸收。对透射力-位移曲线进行积分可得 到透射力对 RC 板所做的功。图 11 为 C1 落石锤在缓 冲层厚度为 0.3 m、冲击高度分别为 4,5,6,7 m 冲击 工况下的透射力-位移曲线。结果表明,透射力可视为 脉冲荷载瞬时作用于 RC 板。曲线围成的面积即为透 射力对 RC 板所做的功。随冲击高度的增加,透射力-位移曲线所围面积明显增大。当位移达到最大值时, RC 板发生回弹并在震荡中趋于零,说明未产生塑性 变形。

图 12 汇总了冲击过程中的输入总能量以及透射冲击力对 RC 板所做的功。整个试验产生了约 588 kJ 能量,由于缓冲层的缓冲消能作用,约 82% 的能量被 缓冲层吸收。其中在 C1 与 C2 落石锤的冲击工况中, RC 板累计吸收的能量为 82.7 kJ,占 RC 板吸收总能量 的 80%。

图 13 选取了冲击过程中 RC 板不同时刻对应的 典型破坏照片。分析随累积撞击能级逐渐增大, RC 板裂纹的形成与扩展过程:(I)弯曲起裂及扩展 (图 13a)。初始变形由 RC 板跨中底部产生弯曲裂纹 Crack 1 开始。随着输入能量的增大,裂缝竖直向上延 伸至 20 cm,但宽度小于 1 mm。由于落石锤质量小, 单次冲击能量较小,因此产生的损伤最小, RC 板处于 带裂缝弹性工作状态。至主裂缝向上扩展至 20 cm 的 过程内,累积输入能量约 157 kJ, RC 板吸收能量约 22 kJ。 (II)次级弯曲裂纹的产生与扩展(图 13b)。在随缓冲

Fig. 12 Energy distribution ratio

(a) 跨中弯曲主裂纹产生及扩展 (Crack 1)

(b) 次级弯曲裂纹产生

(c)弯曲裂纹贯通与剪切裂纹形成

(d) 最终破坏形态

Fig. 13 RC slab failure process

层厚度减小、累积能量增加的情况下,跨中弯曲主裂 纹基本贯通至顶部,两侧开始产生新的次级弯曲裂 纹,如图 13(b)中的 Crack 2、Crack 3。与(I)相比,跨 中主裂纹宽度急剧变大,由开始的 0.8 mm 增大至 12 mm。 RC板吸收的能量主要贡献于跨中弯曲裂纹变宽及次 级弯曲裂纹产生, RC 板发生明显的塑性变形。弯曲 破坏仍为主要变形模式。此过程累积输入能量约116kJ, RC 板吸收的能量约 34 kJ。(III) 剪裂纹产生及弯曲裂 纹贯通(图 13c)。在C2 落石锤冲击缓冲厚度分别为 0.6 m 及 0.5 m 工况下, 随缓冲层厚度减小, 累积能量 增大,裂纹 Crack1 宽度进一步加剧,跨中两侧开始产 生明显的剪切斜裂纹及旁侧羽状随机裂纹, RC 板兼 有弯曲与剪切变形特征, RC 板下表面混凝土发生崩 落。对应输入能量约 190 kJ, RC 板吸收的能量约 31 kJ。(IV)试验末期。在 C2 落石锤冲击缓冲层厚度 为 0.4m 试验工况下中, Crack 1 宽度无明显增加, 产生 明显斜剪切裂纹(图 13d),周围羽状随机裂纹加密变 宽,弯曲裂纹与剪切裂纹连通。整体上 RC 板沿 v向 在跨中"折断"。RC板既具有弯曲破坏的转动特征, 又兼具剪切破坏的错动特征。该过程对应累积冲击 能量约 60 kJ, 混凝土板吸收能量约 18 kJ。图 13(e)、 图 13(f)为 RC 板上下表面最终形态,其中板上表面由 于压应力而压溃,压溃范围对称分布于跨中轴线40 cm范围内,可观察到大量的混凝土剥落碎屑。压溃 范围以外,表面形态完整,但存在明显的残余变形,离 中轴线越远残余变形越小。RC板下表面产生纵向贯 通的宽大拉裂缝。混凝土崩落形成震塌坑。板下表 面分布多条与纵向裂缝垂直的横向裂缝,但裂缝宽度 与延伸程度远不及跨中纵向裂缝。

3 结论

(1)缓冲层厚度对冲击力有显著的影响,增大缓冲层厚度可以有效减小冲击力。峰值冲击力随缓冲层厚度变化符合指数函数关系。因此不考虑缓冲层厚度的经验半经验计算公式可能造成计算结果失效,这可能是现有已建棚洞等防护结构时有被破坏的原因之一。

(2)通常采用弹坑深度确定最小缓冲层厚度,与 规范提出的计算公式相比,本文建议的计算最大冲击 深度方法可以避开复杂的参数选取,且与试验实测数 据吻合度较好。

(3)落石冲击组合结构时,随缓冲层厚度增大,透射冲击力的衰减极为明显,提出用无量纲峰值冲击力 η定量描述缓冲层消能效果,并拟合得到η随缓冲层厚 度变化的关系式。

(4)随累积冲击能量的增大, RC 板经历了弯曲起 裂及扩展、剪裂纹产生及跨中弯曲裂纹贯通,试验结 束时 RC 板兼有弯曲与剪切变形特征,整体上板表现 出典型的弯曲破坏特征,根据透射力-位移曲线计算出 对应各典型阶段 RC 板吸收的能量。

参考文献(References):

- SHRODER J F Jr, BISHOP M P. Mass movement in the Himalaya: new insights and research directions[J].
 Geomorphology, 1998, 26(1/2/3): 13 - 35.
- [2] 郭江,王全才,张群利,等. 落石冲击荷载下框架门式 棚洞结构优化探讨[J]. 水文地质工程地质, 2014, 41(6):92-97. [GUO Jiang, WANG Quancai, ZHANG Qunli, et al. Exploration of structural optimization for the frame-type shed-tunnel under the impact of load of rockfall[J]. Hydrogeology & Engineering Geology, 2014, 41(6):92-97. (in Chinese with English abstract)]
- [3] 胡卸文,梅雪峰,杨瀛,等. 落石冲击荷载作用下的桩板拦石墙结构动力响应[J]. 工程地质学报, 2019, 27(1): 123 133. [HU Xiewen, MEI Xuefeng, YANG Ying, et al. Dynamic response of pile-plate rock retaining wall under impact of rockfall[J]. Journal of Engineering Geology, 2019, 27(1): 123 133. (in Chinese with English abstract)]
- LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates[J]. International Journal of Impact Engineering, 2014, 65: 40 - 55.
- [5] LI J C, MA G W. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471-478.
- [6] CALVETTI F, PRISCO C D, VECCHIOTTI M. Experimental and numerical study of rock-fall impacts on granular soils[J]. Rivista Italiana Di Geotecnica, 2005, 4(4).
- [7] PRISCO C D, VECCHIOTTI M. Design charts for evaluating impact forces on dissipative granular soil cushions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1529 – 1541.
- [8] 马炜. 散体介质冲击载荷作用下力学行为理论分析
 与算法实现[D]. 北京:北京大学, 2008. [MA Wei.
 Dynamical behavior of granular Materials under impact[D]. Beijing: Peking University, 2008. (in Chinese

with English abstract)

- [9] SEAMAN L. One-dimensional stress wave propagation in soils[R]. Defense Technical Information Center, 1966.
- [10] 于潇,陈力,方秦.珊瑚砂中应力波衰减规律的实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1520 1529. [YU Xiao, CHEN Li, FANG Qin. Experimental study on the attenuation of stress wave in coral sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1520 1529. (in Chinese with English abstract)]
- [11] 袁进科,黄润秋,裴向军.滚石冲击力测试研究[J].岩 土力学,2014,35(1):48-54. [YUAN Jinke, HUANG Runqiu, PEI Xiangjun. Test research on rockfall impact force[J]. Rock and Soil Mechanics, 2014, 35(1):48-54. (in Chinese with English abstract)]
- [12] 王星,周天跃,师江涛,等. 基于自由落体的落石冲击 土层的理论及LS-DYNA模拟研究[J]. 北京交通大学 学报, 2019, 43(4): 9 - 17. [WANG Xing, ZHOU Tianyue, SHI Jiangtao, et al. Theoretical and LS-DYNA simulation study of based on the theory of free-fall rockfall's impact on soil layer[J]. Journal of Beijing Jiaotong University, 2019, 43(4): 9 - 17. (in Chinese with English abstract)]
- [13] RONCO C, OGGERI C, PEILA D. Design of reinforced ground embankments used for rockfall protection[J]. Natural Hazards and Earth System Sciences, 2009, 9(4): 1189-1199.
- [14] 杨其新,关宝树.落石冲击力计算方法的试验研究[J]. 铁道学报, 1996, 18(1):101-106. [YANG Qixin, GUAN Baoshu. Test and research on calculating method of falling stone impulsive force[J]. Journal of the China Railway Society, 1996, 18(1): 101 - 106. (in Chinese with English abstract)]
- [15] 叶四桥,陈洪凯,唐红梅.落石冲击力计算方法的比较研究[J].水文地质工程地质,2010,37(2):59-64.
 [YE Siqiao, CHEN Hongkai, TANG Hongmei. Comparative research on impact force calculation methods for rockfalls[J]. Hydrogeology & Engineering Geology, 2010,37(2):59-64. (in Chinese with English abstract)]
- [16] WANG B L, CAVERS D S. A simplified approach for rockfall ground penetration and impact stress calculations[J]. Landslides, 2008, 5(3): 305 - 310.
- [17] 中华人民共和国交通运输部.公路路基设计规范: JTG D30—2015[S].北京:人民交通出版社,2015.
 [Ministry of Transport of the People's Republic of China. Specifications for Design of Highway Subgrades: JTG D30—2015[S]. Beijing: China Communications

Press, 2015. (in Chinese)]

- [18] MOUGIN J, PERROTIN P, MOMMESSIN M, et al. Rock fall impact on reinforced concrete slab: an experimental approach[J]. International Journal of Impact Engineering, 2005, 31(2): 169 – 183.
- [19] DELHOMME F, MOMMESSIN M, MOUGIN J, et al. Simulation of a block impacting a reinforced concrete slab with a finite element model and a mass-spring system[J]. Engineering Structures, 2007, 29(11): 2844 – 2852.
- [20] ZHAO P, XIE L Z, LI L P, et al. Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and EPE[J]. Engineering Structures, 2018, 175: 386 – 398.
- [21] 袁博,祝介旺.滚石冲击下棚洞破坏动力响应分析及 改进对策——以川藏公路(安久拉山南麓)门式棚洞 为例[J].水文地质工程地质,2019,46(6):57-66.
 [YUAN Bo, ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 57-66. (in Chinese with English abstract)]
- [22] KAWAHARA S, MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics, 2006, 43(3): 329-340.
- [23] LABIOUSE V, DESCOEUDRES F, MONTANI S.

Experimental study of rock sheds impacted by rock blocks[J]. Structural Engineering International, 1996, 6(3): 171 - 176.

- [24] 中国人民共和国铁道部.铁路隧道设计规范:TB
 10003—2005[S].北京:中国铁道出版社,2005.
 [Ministry of Railways of the People's Republic of China.
 Code for design on tunnel of railway: TB 10003—2005[S].
 Beijing: China Railway Publishing House, 2005. (in Chinese)]
- [25] 叶四桥,陈洪凯,唐红梅. 落石冲击力计算方法[J]. 中国铁道科学, 2010, 31(6): 56-62. [YE Siqiao, CHEN Hongkai, TANG Hongmei. The calculation method for the impact force of the rockfall[J]. China Railway Science, 2010, 31(6): 56-62. (in Chinese with English abstract)]
- [26] 何思明, 沈均, 吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学, 2011, 32(3): 781-788. [HE Seming M, SHEN Jun, WU Yong. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011, 32(3): 781-788. (in Chinese with English abstract)]
- [27] 裴向军,刘洋,王东坡.滚石冲击棚洞砂土垫层耗能缓冲机理研究[J].四川大学学报(工程科学版),2016,48(1):15-22. [PEI Xiangjun, LIU Yang, WANG Dongpo. Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1):15-22. (in Chinese with English abstract)]

编辑:张明霞