

莱州湾晚第四纪以来沉积物元素地球化学特征及来源

刘荣波、袁晓东、林哲远、仇建东、胡日军、高军锋、刘龙龙、张胜江

Geochemical characteristics and their geological implication in sediments from Laizhou Bay since late Quaternary

LIU Rongbo, YUAN Xiaodong, LIN Zheyuan, QIU Jiandong, HU Rijun, GAO Junfeng, LIU Longlong, and ZHANG Shengjiang

在线阅读 View online: https://doi.org/10.16562/j.cnki.0256-1492.2022012301

您可能感兴趣的其他文章

Articles you may be interested in

江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义

Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances

海洋地质与第四纪地质. 2021, 41(5): 210

莱州湾表层沉积物重金属分布特征、污染评价与来源分析

Spatial distribution of heavy metals in the surface sediments of Laizhou Bay and their sources and pollution assessment 海洋地质与第四纪地质. 2021, 41(6): 67

珠江口内伶仃洋晚第四纪黏土矿物组成特征及对源区气候变化的指示

Late Quaternary clay minerals in the inner Lingdingyang of the Pearl River Estuary, southern China: Implications for paleoclimate changes at the provenance

海洋地质与第四纪地质. 2021, 41(5): 202

南黄海中部隆起晚新近纪一第四纪沉积序列的地层划分与沉积演化

Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea

海洋地质与第四纪地质. 2021, 41(5): 25

海洋地质与第四纪地质的结合

Marine geology and Quaternary geology: A combination 海洋地质与第四纪地质. 2021, 41(5): 1

渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价

Environmental evolution and carbon burial assessment of the west coast of Bohai Bay since Late Pleistocene 海洋地质与第四纪地质. 2021, 41(6): 194

关注微信公众号,获得更多资讯信息

刘荣波, 袁晓东, 林哲远, 等. 莱州湾晚第四纪以来沉积物元素地球化学特征及来源 [J]. 海洋地质与第四纪地质, 2022, 42(3): 100-110. LIU Rongbo, YUAN Xiaodong, LIN Zheyuan, et al. Geochemical characteristics and their geological implication in sediments from Laizhou Bay since late Quaternary[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 100-110.

莱州湾晚第四纪以来沉积物元素地球化学特征及来源

刘荣波1,袁晓东2,林哲远3,仇建东4,胡日军2,高军锋5,刘龙龙5,张胜江5

1. 山东省第四地质矿产勘查院, 潍坊 261021

2. 中国海洋大学海洋地球科学学院,青岛 266100

3. 浙江省水文地质工程地质大队, 宁波 315012

4. 中国地质调查局青岛海洋地质研究所, 青岛 266237

5. 中国地质调查局烟台海岸带地质调查中心, 烟台 264000

摘要:元素地球化学信息对于地层划分和物源分析具有重要的指示意义。通过分析莱州湾 BH1302 孔岩芯沉积物常微量元素 特征发现,元素含量在地层分界处发生明显变化,可以作为晚第四纪地层划分的重要指标。结合钻孔岩性相、粒度特征和测 年数据,将研究区晚第四纪以来的沉积划分为4段,分别对应于晚中更新世、MIS5期、MIS4—3期和 MIS1期。钻孔岩芯沉 积物常微量元素在垂向上变化存在着共生的关系,除 Na₂O、Ba和 Sr外,大部分常微量元素变化与粒径强相关。R型因子分析 揭示陆源细颗粒碎屑沉积、陆源粗颗粒碎屑沉积和海洋自生元素供应对 BH1302 孔沉积物的地球化学组成具有重要作用,但 不同时期影响作用有所差异,陆源细颗粒碎屑沉积占主导地位,但短时期内陆源粗颗粒碎屑沉积或海洋自生元素供应也可能 成为主导因素。

关键词:地球化学;R型因子分析;晚第四纪;莱州湾

中图分类号: P736.4 文献标识码: A DOI: 10.16562/j.cnki.0256-1492.2022012301

Geochemical characteristics and their geological implication in sediments from Laizhou Bay since late Quaternary

LIU Rongbo¹, YUAN Xiaodong², LIN Zheyuan³, QIU Jiandong⁴, HU Rijun², GAO Junfeng⁵, LIU Longlong⁵, ZHANG Shengjiang⁵

- 1. Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
- 2. College of Marine Geoscience, Ocean University of China, Qingdao 266100, China

3. Zhejiang Institute of Hydrogeology and Engineering Geology, Ningbo 315012, China

4. Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China

5. Yantai Coastal Zones Geological Survey, China Geological Survey, Yantai 264000, China

Abstract: Element geochemical information is important for stratigraphic division and provenance analysis. The characteristics of major and trace elements in the sediments of core BH1302 in Laizhou Bay are analyzed, whose concentrations change obviously at the stratigraphic boundary and can be used as an important index for the classification of late Quaternary strata. Combined with the lithologic facies, grain size and dates of core BH1302, the sediments in the study area since the late Quaternary can be divided into four phases, which corresponding to late Middle Pleistocene, MIS 5, MIS 4—3 and MIS 1, respectively. In vertical, the changes of major and trace elements of the core are characterized by a symbiotic relationship. Except for Na_2O_{γ} Ba and Sr, most of the major and trace elements are strongly correlated with the mean particle size in the vertical distribution. R-type factor analysis revealed that the supply of terrigenous fine and coarse particulate and marine authigenic elements had important effects on the geochemical composition, but the effects are different in different periods. Terrigenous fine particulate supply is the dominant factor, but terrigenous coarse particulate supply or marine authigenic elements supply may also be the dominant factor in a short period.

Key words: geochemical; R-type factor analysis; late Quaternary; Laizhou Bay

渤海是中国东部陆架最浅的陆架海,平均水深

只有18m,最大水深位于老铁山水道,最大可达86m^[1]。

资助项目:中国地质调查局项目(DD20221724, DD20211586, GZH201200505)

作者简介:刘荣波(1986一), 男, 硕士, 高级工程师, 从事水工环地质调查工作, E-mail: 330725965@qq.com

通讯作者: 仇建东(1983一), 男, 博士, 高级工程师, 从事海洋地质与第四纪地质调查与研究, E-mail: jiandongqiu@163.com

收稿日期:2022-01-23; 改回日期:2022-04-07. 张现荣编辑

渤海发生海侵的年代比较早, Yao等^[2-3]在渤海盆地 212.4 m的 BH08 孔中发现了 15 个海相层, 对应深 海氧同位素 MIS 25 期。莱州湾位于渤海的南部, 平 均水深 < 10 m, 在第四纪冰期-间冰期旋回导致的海 平面变化过程中, 极易受到海平面变化的影响, 沉 积环境受多种因素影响而变化^[4-5]。前人对莱州湾 晚第四纪沉积环境演化、海侵事件和古气候反演已 有较深的研究^[6]。研究发现, 莱州湾近岸晚第四纪 以来普遍存在 3 次海侵事件, Yi等^[7] 对 Lz908 岩芯 分析得到岩芯上部存在着 3 期海相地层, 分别形成 于 MIS1、MIS5 和 MIS7 期, 下部全部为陆相。

沉积物地球化学元素含有丰富的地质信息,利 用元素指标可以指示沉积环境演化,揭示沉积物物 质来源^[8]。前人对渤海沉积物的地球化学特征已有 较充分的认识^[9-13],但莱州湾地区沉积物地球化学特 征研究相对较少^[14-15],Guo等^[16]利用07岩芯的稀土 元素探讨了晚更新世以来莱州湾沉积物的主要来 源,并指出黄河沉积物在晚第四纪时期并没有像现 代一样控制着莱州湾的沉积,Gong等^[17]根据 KD4和ZK3孔沉积物的地球化学特征分析认为, MIS5以来莱州湾沉积物物源发生多次变动,在黄 河沉积物和短源中小河流沉积物之间变换,总之, 对历史时期莱州湾地区的物质来源仍没有统一的 认识^[18-19]。因此,本文以在莱州湾顶部采集的 BH1302孔岩芯样品为分析材料,揭示沉积物地球 化学元素特征,结合钻孔沉积相、粒度特征和测年 数据,分析莱州湾晚第四纪以来沉积物的地球化学 组成及其对沉积物物源的指示。

1 材料与方法

BH1302 孔(37°34′19.6986′N、119°23′15.2730′E, 图 1)位于渤海南部莱州湾,于 2013 年 9月由"勘 407"采集的全取芯地质钻孔,水深 12.33 m,进尺 70.2 m,岩芯采取率 81.6%。在室内,将岩芯对半剖 开,一半照相、封存保留,一半描述和取样,以 10~ 15 cm 和 20~40 cm 间隔进行粒度和元素地球化学 取样,共采集粒度样品 550 个,元素地球化学样品 197 个。同时,从岩芯中挑选完整的螺用于 AMS¹⁴C 测年,选取粉砂-细砂层用于光释光(OSL)测年,共 获得 4 个 AMS¹⁴C 测年数据和 9 个 OSL 测年数据 (表 1 和表 2)。

海洋地质与第四纪地质

Table 1 AMS ¹⁴ C dating results of core BH1302									
深度/m	材料	δ ¹³ C/‰	¹⁴ C年龄/a ——	日历年龄(cal.aBP)					
				中值	范围 (2σ)				
4.38	螺	-3.2	6 530 ± 40	7 233	7 166~7 299				
14.38	螺	-8.3	>43 500	_	_				
18.23	螺	-6.1	>43 500	_	_				
47.46	螺	+1.1	>43 500	_	_				

表1 BH-1302 孔 AMS¹⁴C 测年结果

表 2 BH1302 孔沉积物样品光释光测年结果

Table 2 Optically stimulated luminescence dating results for sediment samples of core BH1302

样品编号	深度/m	含水率ω/%	U/10 ⁻⁶	Th/10 ⁻⁶	K/%	等效剂量/Gy	年龄/ka
OSL-1	9.22	10.22	2.25	9.14	1.98	91.46	33.1±2.3
OSL-2	11.15	17.22	2.55	10.43	2.02	126.05	43.0±1.9
OSL-3	13.45	12.52	2.15	7.36	1.56	133.43	59.0±3.9
OSL-4	19.90	14.76	2.21	6.05	1.75	138.29	66.7±3.2
OSL-5	22.46	11.19	1.85	6.11	2.20	185.70	68.5±5.5
OSL-6	25.22	12.26	1.99	6.22	2.19	190.48	71.3±3.4
OSL-7	30.25	14.47	1.84	7.35	2.10	201.66	76.4±3.5
OSL-8	33.05	25.65	2.22	8.85	2.28	222.76	80.1±7.3
OSL-9	36.00	10.51	1.98	7.31	1.99	259.86	102.3±5.0

1.1 粒度

粒度分析在青岛海洋地质研究所实验检测中 心完成,取适量的沉积物样品,先烘干称重,用 2.0 mm 孔径的标准筛进行湿筛,>2.0 mm 的粗颗粒 部分烘干称重;<2.0 mm 的部分取适量依次加入约 15 mL 浓度为 3% 的双氧水和 5 mL 浓度为 3M 的稀 盐酸分别静置不少于 24 h,以去除沉积物中的有机 质和生物碳酸盐。然后加入去离子水并进行离心 清洗 3 次至中性,将离心后的样品烘干,搅匀,取适 量烘干后的沉积物加入 5.1% 的六偏磷酸钠溶液经 超声波分散后,上机完成分析测试(马尔文 2000 型 激光粒度仪)。所有样品均进行了重复测试,测试 误差<3%。

1.2 元素地球化学

元素分析测试由青岛海洋地质研究所实验检 测中心完成。将样品在恒温(<60℃)下烘干后,研 磨至250目以下进行元素分析。分析项目包括常量 元素、微量元素和稀土元素。常量组分SiO₂、Al₂O₃、 Fe₂O₃、CaO、MgO、Na₂O、K₂O、TiO₂、P₂O₅、MnO 和微量元素 V、Cr、Co、Ni、Cu、Zn、Ga、Rb、Sr、 Ba、Sc、Th和 Pb采用 X 荧光光谱分析方法(XRF) 测定, As采用原子荧光光谱分析方法(AFS)测定。 测量数据的相对标准偏差<5%。

1.3 测年

AMS¹⁴C测年由美国 BETA 实验室完成。在钻 孔的岩心中选用完整螺作为测年材料,由美国 Beta 分析有限公司开展 AMS¹⁴C测年,得到有效年 代数据。直接测定年龄是以5568年为半衰期,同 时测量样品的¹³C值,并根据分馏效应进行校正,即 获得惯用年龄。日历年龄是惯用年龄经过 CALIB 810校正所得(标准偏差为 2σ)^[20]。本文所用的¹⁴C 日历年龄都是从公元 1950 向前起算的,以 cal.aBP 表示。

光释光测年在青岛海洋地质研究所实验测试 中心完成。在前处理的过程中,所有实验步骤均在 暗室红光条件下进行。在暗室中将样品从样品管 中取出,并适量去除两侧可能曝光的部分,将剩下 未曝光部分置于烧杯中。用浓度为10%的稀盐酸 和30%的双氧水分别浸泡以去除样品中的碳酸盐 和有机质。烘干后,干筛分选出 38~63 µm 的颗粒, 直接用氟硅酸浸泡约 14 d 去除剩余的长石,再用 10%的稀盐酸洗去残留的氟化物。由于长石的污 染会导致年龄低估,所以经过上述前处理后,用红 外(830 nm)检测释光信号,对未发现有明显的长石 信号的样品直接上机测试。

2 结果

2.1 常量元素地球化学

常量元素构成了沉积物的主要化学成分,反映物质来源和沉积作用。根据钻孔岩性相、沉积物颜色、粒度特征,结合AMS¹⁴C和光释光(OSL)测年数据(图 2)以及地球化学元素的垂向分布特征(图 3 和图 4),将BH1302孔分成4段:0~6.7 m段、6.7~23.0 m段、23.0~39.8 m段和 39.8~70.2 m段,分别对应氧同位素1期(MIS 1)、晚更新世的MIS 3~4、MIS 5 期和晚中更新世^[21]。从常量元素垂向分布图上可以看出(图 3),元素含量在地层分界处都有明显变化,可以作为晚第四纪地层划分的重要指标。

BH1302孔岩芯主量元素主要有 SiO₂、Al₂O₃、 CaO、MgO、K₂O、Na₂O、TiO₂、P₂O₅、MnO 和 TFe₂O₃ 10 种元素组成, 沉积物常量元素统计见表 3。常量 元素中含量最高的是 SiO₂, 其变化范围为 40.76%~ 77.26%, 平均值为 57.65%, 标准偏差为 7.91, 变异系 数为 0.14; 垂向的变化与 Mz(Φ)的趋势相反, 在晚 中更新世含量相对较高。其次是 Al₂O₃, 其值变化 范围为 8.06~16.03%, 平均值为 10.6%, 标准偏差和 变异系数分别为 1.82 和 0.17; 其垂向上的变化趋势 与 SiO,相反,在晚更新世含量比较高。再次是 CaO和TFe2O3,平均值分别为4.27%和3.28%,变化 范围分别为0.62%~11.37%和0.94~6.58%、标准偏 差分别为 2.07 和 1.32, 变异系数分别为 0.48 和 0.36; CaO在MIS 2-4期存在着最高值, TFe₂O₃在 晚中更新世含量比较高。MgO、K2O和 Na2O 的平 均含量>1%,分别为1.79%、2.44%和2.41%,变化 范围分别为0.28%~1.79%, 1.94%~3.64%和1.82%~ 7.78%,标准偏差分别为0.56、0.29和0.61,变异系数 分别为 0.31、0.12 和 0.25; Na₂O 垂向上变化不是很 明显,只有在 MIS 5 期时出现几个高值,与沉积物 粒度变化趋势无关; MgO和K₂O垂向上的变化趋 势与 Al₂O₃ 较为一致。TiO₂ 平均值为 0.56 %, 标准 偏差为 0.14, 变异系数为 0.24; TiO₂ 垂向上的变化趋 势与Al₂O₃一致。常量元素中MnO含量最小,为 表 3 BH1302 孔沉积物常微量元素统计表 Table 3 Statistics of major and trace elements in the sediments of

core BH1302

		平均值	最大值	最小值	标准偏差	变异系数
	SiO_2	57.65	77.26	40.76	7.91	0.14
	Al_2O_3	10.96	16.03	8.06	1.82	0.17
	CaO	4.27	11.37	0.62	2.07	0.48
	MgO	1.79	2.66	0.28	0.56	0.31
<u> 入目ご支</u> の(K ₂ O	2.44	3.64	1.94	0.29	0.12
土重兀系/%	Na ₂ O	2.41	7.78	1.82	0.61	0.25
	TiO ₂	0.56	0.79	0.09	0.14	0.24
	P_2O_5	0.12	0.17	0.05	0.03	0.23
	MnO	0.06	0.19	0.02	0.02	0.43
	TFe ₂ O ₃	3.68	6.58	0.94	1.32	0.36
	Ba	549.11	1 499.00	396.00	155.54	0.28
	Sr	232.24	452.00	160.00	47.69	0.21
	Rb	93.40	136.00	68.50	15.07	0.16
	V	64.66	119.00	11.90	23.20	0.36
	Cr	57.52	95.20	8.90	17.32	0.30
	Zn	57.32	102.00	14.80	20.36	0.36
御目二末(二)	Ni	24.43	46.20	3.70	10.07	0.41
似重兀系/(μg/g)	Pb	20.38	35.50	13.00	4.78	0.23
	Cu	19.48	62.50	1.00	10.62	0.55
	Ga	14.40	23.10	9.50	3.15	0.22
	Со	10.24	25.00	1.83	4.00	0.39
	Th	10.01	16.60	2.23	3.01	0.30
	Sc	9.51	16.90	1.14	3.37	0.35
	As	8.78	23.00	2.49	3.81	0.43

0.02%~0.19%, 平均值为 0.06%, 标准偏差为 1.32, 变异系数为 0.36; MnO 垂向上在晚更新世含量比较高, 在晚中更新世含量最低。

2.2 微量元素地球化学

微量元素含量由大到小依次为:Ba、Sr、Rb、V、 Cr、Zn、Ni、Pb、Cu、Ga、Co、Th、Sc和As共14种。 微量元素具体含量统计如表3,垂向变化特征见图4。

Ba、Sr的含量在微量元素中最高,两者属于碱 土金属元素,分别为549.11和232.24μg/g,标准偏差 分别为155.54和47.69,变异系数分别为0.28和 0.21;垂向上,在晚中更新世期间存在明显高值。

图 2 BH1302 孔岩芯柱状图 Fig.2 Lithologic logs of core BH1302

图 3 BH1302 孔沉积物常量元素垂向分布图

图 4 BH1302 孔微量元素垂向分布 Fig.4 Vertical distribution of trace elements in the sediments of core BH302 V、Cr、Ni和Co为亲铁元素,平均值分别为64.66、 57.52、24.43和10.24μg/g,标准偏差为23.20、 17.32、10.07和4.00,变异系数为0.36、0.30、0.41和 0.39。Zn、Pb和Cu元素为亲硫元素,平均含量分 别为57.32、20.38和19.48μg/g,标准偏差为20.36、 4.78和10.62,变异系数为0.36、0.23和0.55。亲铁 元素和亲硫元素易吸附在黏土矿物中,随黏土矿物 输运,因此,垂向上的变化具有一致性,与常量元素 Al₂O₃的垂向变化一致,在晚更新世存在高值,低值 出现在晚中更新世。

3 讨论

3.1 相关性分析

常微量元素在垂向上变化存在着共生的关系。根据相关性分析(图 5), SiO₂ 与 Sr、Ba、Na₂O、

K₂O 呈弱正相关,相关性<0.5; 与平均粒径 Mz(Φ) 呈现明显的负相关,相关性为-0.8。微量元素除 Sr、Ba之外,均与平均粒径 Mz(Φ)呈现明显的正相 关,与 Al₂O₃和 TiO₂呈现出明显的正相关,而且相 关性>0.5,表明了大多数微量元素均通过黏土粒级 的细颗粒物质进行输运。

3.2 常微量元素组合特征

利用 SPSS 19.0 软件对 BH1302 孔中的主微量 元素 SiO₂、Al₂O₃、CaO、MgO、K₂O、TiO₂、MnO、 P₂O₅和 TFe₂O₃9种常量元素和 Ba、Sr、Rb、V、Cr、 Zn、Ni、Pb、Cu、Ga、Co、Th、Sc和 As 14 种微量元 素进行 R 型因子分析,并得到 3 个特征值大于 1 的 因子,累计方差贡献率可达 84.283%,图 6 可以看 出,因子 3 之后的因子特征值变化比较小,因此, 3 个因子可以解释地化信息中的绝大部分信息 。经 Kaiser 标准化的正交旋转法旋转后的各因子

Fig.5 Correlation coefficient of major and trace elements in sediments of core BH1302

载荷见表4。

因子 1(F1)的方差贡献率达到 67.017%,为 BH1302 孔沉积物元素组成的主控因子,主要组成 元素有 Al₂O₃、MgO、TiO₂、Fe₂O₃、Rb、V、Cu、Pb、 Zn、Cr、Ni、Co、Sc、Ga、Th、As、Sr 和 SiO₂,其中, Al₂O₃、MgO、TiO₂、Fe₂O₃、Rb、V、Cu、Pb、Zn、Cr、 Ni、Co、Sc、Ga、Th 和 As 为正载荷,Mz(Φ)、粉砂 含量和黏土含量在因子 1上也呈现较高的正载荷, SiO₂和 Sr 元素以及砂组分含量在因子 1上呈现负 载荷。呈现正载荷的元素存在明显的正相关(图 5), 与负载荷的 SiO₂存在明显的负相关。Al₂O₃ 多为黏 土矿物的组成成分,和 Cr 多来源于陆源碎屑物质^[22]。

因此,因子1代表了陆源细颗粒碎屑沉积对沉积物 的影响。莱州湾位于渤海南部,三面环山,只有通 过东侧的渤海海峡与外海相连,而且流入莱州湾的 河流众多,黄河和山东半岛小型河流如小清河、白 浪河等每年向莱州湾输入大量的陆源沉积物^[23-24]。 黄河沉积物粒度相对偏细,而近源的山东半岛小型 河流沉积物粒度相对较粗,因此,因子1有可能代 表黄河沉积物的影响。

因子 2(F2)的方差贡献率达到 10.602%, 主要组 成元素包括 TiO₂、Sr、Ba、粉砂, 其中 TiO₂ 为明显 的正载荷, Ba 为负载荷。Ti 在表生地球化学环境 中比较稳定^[25-29], 经风化不容易形成可溶性化合物, 因此, 可以作为陆源碎屑组分的标志物, 同时, 粉砂 含量在因子 2 中呈现较高的正载荷。因此, 因子 2 代表了陆源粗颗粒碎屑沉积物对沉积物的影响, 有可能代表近源的山东半岛小型河流。

因子 3(F3)的方差贡献率为 6.665%, 主要组成 元素 CaO、MnO、P₂O₅和 SiO₂, CaO、MnO和 P₂O₅呈现出正载荷, 而 SiO₂呈现负载荷, P₂O₅与海 洋营养盐有关, CaO 与 MnO 为海洋自生矿物的重 要组成元素, SiO₂呈现负载荷, 表明因子 3 为海洋 自生元素对沉积物的影响。渤海虽然只通过东侧 的渤海海峡与外海相连, 但是渤海受黄海暖流的影 响比较大^[30], 而且地质历史时期, 前人研究暖流的 影响比现在还要大, MIS 5 期在渤海海域发现大量

	表 4 BH1302 孔沉枳物王微量元素万差极大旋转因子载荷表
Table 4	Load table of maximum variance rotation factor of major and trace elements in the sediments of core BH130

				5			
元素	因子1	因子2	因子3	元素	因子1	因子2	因子3
砂	-0.736	-0.479	-0.349	Со	0.882	0.23	0.248
粉砂	0.645	0.574	0.31	Sc	0.887	0.356	0.267
黏土	0.812	0.148	0.374	Ga	0.977	0.092	0.125
Al_2O_3	0.975	0.105	0.005	Th	0.852	0.403	0.209
MgO	0.728	0.415	0.486	Mz	0.807	0.37	0.359
TiO ₂	0.741	0.612	0.126	As	0.551	0.042	0.366
Fe ₂ O ₃	0.915	0.247	0.24	K ₂ O	0.299	-0.847	-0.208
Rb	0.945	-0.156	0.108	Sr	-0.565	-0.692	0.203
V	0.903	0.305	0.259	Ba	-0.191	-0.818	-0.203
Cu	0.866	0.03	0.327	CaO	-0.076	0.229	0.934
Pb	0.825	-0.164	0.103	MnO	0.317	0.02	0.713
Zn	0.89	0.248	0.344	P_2O_5	0.356	0.495	0.546
Cr	0.87	0.43	0.168	SiO ₂	-0.531	-0.265	-0.746
Ni	0.907	0.262	0.267	方差贡献率/%	67.017	10.602	6.665

暖水种亚三刺星轮虫,表明当时有一股强劲的暖流 流入渤海,对渤海的沉积产生影响^[31-32]。

但由于地球化学元素分析的多解性,3个因子 代表的地质意义仍需要结合更多的地质证据进一 步证实。

3.3 BH1302 孔沉积物地球化学组成的影响因素

BH1302 孔沉积物的化学组成主要受 3 个影响 因子的共同作用影响,但是各个影响因子在不同地 质历史时期的影响大小不同,陆源细颗粒碎屑沉积 在 BH1302 孔全岩芯内占主导地位,但是短暂的时 期内陆源粗颗粒碎屑沉积或海洋自生元素供应也 可能成为主控因子,影响该时期的沉积物化学组 成。各因子的得分曲线见图 7。

晚中更新世对应 70.2~39.8 m,陆源细颗粒碎 屑沉积影响变化较大,早期和晚期贡献突出,中期 贡献较小,有可能是黄河改道的原因。中期陆源粗 颗粒碎屑沉积作用缺失,主要为海洋自生元素供应,可能反映当时的海平面较高,钻孔位置被海水 淹没,陆源碎屑物质供应较少。

晚更新世(MIS 5—MIS 3),海平面波动起伏, 沉积环境介于海相和陆相之间,主控因素比较复 杂,3个主要因子均对 BH1302 孔沉积物化学组成 有重要的影响。陆源粗颗粒碎屑沉积影响较为稳 定,并在 MIS 5 早期占主导地位。随后,陆源细颗 粒碎屑沉积影响明显高于其他,直至 MIS 3 晚期, 海洋自生元素供应占据主导。

全新世可分为2个阶段,0~3.7 m 对应6 ka 以 来的高海平面时期^[33-35], 沉积环境比较稳定,3个因 子的贡献相差不大,但陆源细颗粒碎屑沉积和海洋 自生元素供应的影响高于陆源粗颗粒碎屑沉积。 3.7~6.7 m 为全新世海侵初期,海平面较低,细颗粒 物质无法输运到研究区,以近源的粗颗粒物质供应 为主,因此,因子2的得分最高。

Fig.7 The score curve of sediment elements influencing factors in core BH1302

4 结论

(1)根据 BH1302 孔岩性相、沉积物颜色、粒度特征、AMS¹⁴C 和光释光(OSL)测年数据以及常微量元素垂直分布特征,将 BH1302 孔晚第四纪以来的沉积划分为 4 段,分别对应于晚中更新世、MIS 5 期、MIS 4-3 期和 MIS 1 期。

(2)常微量元素含量在地层分界处都有明显变 化,可以作为晚第四纪地层划分的重要指标,并且 在垂向上变化存在着共生的关系,除 Na₂O、Ba 和 Sr外,大部分常微量元素变化与粒径强相关。

(3)R型因子分析表明,影响 BH1302 孔沉积物 地球化学组成的主要因子有 3 个,分别为陆源细颗 粒物碎屑沉积、陆源粗颗粒物碎屑沉积和海洋自生 元素供应。各个因子在不同地质历史时期的影响 大小不同,陆源细颗粒碎屑沉积占主导地位,但短 暂的时期内陆源粗颗粒碎屑沉积或海洋自生元素 供应也可能成为主控因素。3 个因子是否代表黄河 物质、山东半岛近源小型河流物质和海洋自生物质 仍需进一步更多的证据。

参考文献 (References)

- [1] 中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京: 科学 出版社, 1985 [Institute of Oceanology, Chinese Academy of Sciences.
 Bohai Sea Geology[M]. Beijing: Science Press, 1985].]
- [2] Yao Z Q, Shi X F, Liu Q S, et al. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial-interglacial sedimentation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 90-101.
- [3] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229 (4): 287-302.
- [4] Yi L, Yu H J, Ortiz J D, et al. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 101-117.
- [5] Yi L, Deng C L, Tian L Z, et al. Plio-Pleistocene evolution of Bohai Basin (East Asia): demise of Bohai Paleolake and transition to marine environment [J]. Scientific Reports, 2016, 6: 29403.
- [6] 高茂生, 郭飞, 侯国华, 等. 渤海南部莱州湾晚更新世以来沉积演化 特征[J]. 中国地质, 2018, 45(1): 59-68. [GAO Maosheng, GUO Fei, HOU Guohua, et al. The evolution of sedimentary environment since late Pleistocene in Laizhou Bay, Bohai Sea [J]. Geology in China, 2018, 45(1): 59-68.]
- [7] Yi L, Lai Z P, Yu H J, et al. Chronologies of sedimentary changes in the south Bohai Sea, China: constraints from luminescence and radiocarbon dating [J]. Boreas, 2013, 42 (2): 267-284.
- [8] 雷雁翔. 渤海湾晚更新世以来的地层序列及沉积地球化学特征[D]. 山东科技大学硕士论文, 2020 [LEI Yanxiang. Stratigraphic sequences and characteristics of sedimentary geochemistry since the late Pleistocene in the Bohai Bay[D]. Master Dissertation of Shandong University of Science and Technology, 2020.]
- [9] 蓝先洪,秦亚超,王中波,等. 渤海东部晚更新世以来的沉积物地球 化学特征[J]. 沉积学报, 2016, 34(5): 892-901. [LAN Xianhong, QIN Yachao, WANG Zhongbo, et al. Geochemical characteristics of sediments in the eastern Bohai Sea since late Pleistocene [J]. Acta Sedimentologica Sinica, 2016, 34(5): 892-901.]
- [10] 张现荣, 李军, 窦衍光, 等. 辽东湾东南部海域柱状沉积物稀土元素 地球化学特征及物源识别[J]. 沉积学报, 2014, 32(4): 684-691.
 [ZHANG Xianrong, LI Jun, DOU Yanguang, et al. REE geochemical characteristics and provenance discrimination of core LDC30 in the southeastern part of Liaodong Bay [J]. Acta Oceanological Sinica, 2014, 32(4): 684-691.]
- [11] 刘建国, 李安春, 陈木宏, 等. 全新世渤海泥质沉积物地球化学特征
 [J]. 地球化学, 2007, 36(6): 559-568. [LIU Jianguo, LI Anchun, CHEN Muhong, et al. Geochemical characteristics of sediments in the Bohai Sea mud area during Holocene [J]. Geochimica, 2007, 36(6): 559-568.]
- [12] 李淑媛, 苗丰民, 赵全民, 等. 辽东半岛西南及渤海中部海域表层沉

积物的地球化学[J]. 海洋地质与第四纪地质, 2010, 30(4): 123-130. [LI Shuyuan, MIAO Fengmin, ZHAO Quanmin, et al. Geodchemistry of surface sediments off southwest Liaodong Peninsula and in Mid-Bohai Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 123-130.]

- [13] 蓝先洪,李日辉,陈晓辉,等. 渤海西部晚更新世以来沉积地球化学研究[J]. 海洋科学进展, 2018, 36(1): 67-78. [LAN Xianhong, LI Rihui, CHEN Xiaohui, et al. Study of sedimentary geochemistry in the western Bohai Sea since late Pleistocene [J]. Advances in Marine Science, 2018, 36(1): 67-78.]
- [14] 韩德亮.莱州湾E孔中更新世末期以来的地球化学特征[J].海洋学报, 2001, 23 (2): 79-85. [HAN Deliang. Geochemistry of core E in the Laizhou Bay since late stage of Middle Pleistocene [J]. Acta Oceanologica Sinica, 2001, 23 (2): 79-85.]
- [15] 郭飞,高茂生,侯国华,等. 莱州湾07钻孔沉积物晚更新世以来的元 素地球化学特征[J].海洋学报,2016,38(3): 145-155. [GUO Fei, GAO Maosheng, HOU Guohua, et al. Geochemical characteristics of sediment in core 07 since the late Pleistocene in Laizhou Bay [J]. Acta Oceanologica Sinica, 2016, 38(3): 145-155.]
- [16] Guo F, Gao M S, Hou G H, et al. Source tracing of rare earth elements: A case study of core 07 on the southern coast of Laizhou Bay [J]. Continental Shelf Research, 2017, 136: 29-38.
- [17] Gong C Z, Li G X, Liu Y, et al. Source evolution and its relationship to climate change since the Middle-late Pleistocene in Laizhou Bay, China [J]. Journal of Ocean University of China, 2020, 19(1): 113-123.
- [18] 庄振业,李建华,仇士华,等. 莱州湾东岸的全新世海侵和地层[J]. 海洋湖沼通报,1987(2): 31-39. [ZHUANG Zhenye, LI Jianhua, QIU Shihua, et al. Holocene transgression and its layers in the east coast of Laizhou Gulf, Bohai [J]. Transactions of Oceanology & Limnology, 1987(2): 31-39.]
- [19] 宫少军,秦志亮,叶思源,等.黄河三角洲ZK5钻孔沉积物地球化学 特征及其沉积环境[J]. 沉积学报, 2014, 32(5): 855-862. [GONG Shaojun, QIN Zhiliang, YE Siyuan, et al. Geochemical characteristics and sedimentary environment of ZK5 core sediments in Yellow River Delta [J]. Acta Sedimentologica Sinica, 2014, 32(5): 855-862.]
- [20] Stuiver M, Reimer P. 1986-2014. Calib Radiocarbon Calibration Program.
- [21] Yuan X, Feng X, Hu R, et al. Late Quaternary sedimentary records and implications for sea level changes and the East Asian monsoon inferred from BH1302 in the Bohai Sea, China [J]. Marine Geology (under review), 2022.
- [22] Taylor S R, McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33 (2): 241-265.
- [23] Martin J M, Zhang J, Shi M C, et al. Actual flux of the Huanghe (Yellow River) sediment to the Western Pacific Ocean [J]. Netherlands Journal of Sea Research, 1993, 31 (3): 243-254.
- [24] Chappell J, Omura A, Esat T, et al. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records [J]. Earth and Planetary Science Letters, 1996, 141 (1-4): 227-236.
- [25] Shi X F, Yao Z Q, Liu Q S, et al. Sedimentary architecture of the Bo-

hai Sea China over the last 1 Ma and implications for sea-level changes [J]. Earth and Planetary Science Letters, 2016, 451: 10-21.

- [26] 易亮,姜兴钰,田立柱,等. 渤海盆地演化的年代学研究[J]. 第四纪研究, 2016, 36(5): 1075-1087. [YI Liang, JIANG Xingyu, TIAN Lizhu, et al. Geochronological study on Plio-Pleistocene evolution of Bohai Basin [J]. Quaternary Sciences, 2016, 36(5): 1075-1087.]
- [27] 岳保静, 刘金庆, 刘健, 等. 渤海西缘YRD-1101孔晚更新世以来沉积物粒度特征及其环境变迁[J]. 中国地质, 2020, 47(3): 853-867.
 [YUE Baojing, LIU Jinqing, LIU Jian, et al. Grain size distribution of sediment of core YRD-1101 in the western margin of the modern Bohai Sea since the latest Pleistocene and its environmental change [J].
 Geology in China, 2020, 47(3): 853-867.]
- [28] Bi N S, Yang Z S, Wang H J, et al. Seasonal variation of suspendedsediment transport through the southern Bohai Strait [J]. Estuarine, Coastal and Shelf Science, 2011, 93 (3): 239-247.
- [29] Zhou L Y, Liu J, Saito Y, et al. Fluvial system development and subsequent marine transgression in Yellow River (Huanghe) delta and its adjacent sea regions during last glacial maximum to early Holocene [J]. Continental Shelf Research, 2014, 90: 117-132.
- [30] 阎玉忠, 王宏, 李凤林, 等. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动[J]. 地质通报, 2006, 25(3): 357-382. [YAN Yuzhong, WANG Hong, LI Fenglin, et al. Sedimentary environment and sealevel fluctuations revealed by Borehole BQ1 on the west coast of the Bohai Bay, China [J]. Geological Bulletin of China, 2006, 25(3):

357-382.]

- [31] 汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究
 [J]. 地质学报, 1981, 55(1): 1-13. [WANG Pinxian, MIN Qiubao, BIAN Yunhua, et al. Strata of quaternary transgressions in east China: a preliminary study [J]. Acta Geologica Sinica, 1981, 55(1): 1-13.]
- [32] Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~1.9 Ma near the western margin of the modern Bohai Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 84-96.
- [33] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews, 2014, 139: 390-405.
- [34] 庄振业, 许卫东, 刘东生, 等. 渤海南部S₃孔及晚第四纪海相地层的 划分及环境演变[J]. 海洋地质与第四纪地质, 1999, 19(2): 27-35.
 [ZHUANG Zhenye, XU Weidong, LIU Dongsheng, et al. Division and environmental evolution of late Quaternary marine beds of S₃ hole in the Bohai Sea [J]. Marine Geology & Quaternary Geology, 1999, 19(2): 27-35.]
- [35] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪-第四纪沉积序列 的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41 (5): 25-43. [LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41 (5): 25-43.]