2016 年 6 月

EAST CHINA GEOLOGY

DOI: 10.16788/j.hddz.32-1865/P.2016.02.004

扎河坝蛇绿岩锆石 U-Pb 年龄、Hf-O 同位 素组成及其地质意义*

潘成泽1,邱林1,叶现韬2,董永观2

(1.新疆维吾尔自治区人民政府国家三〇五项目办公室,乌鲁木齐 830000)(2.南京地质矿产研究所,南京 210016)

摘要:扎河坝蛇绿岩位于准噶尔北缘,是扎河坝一阿尔曼太蛇绿混杂岩带的一部分。通过对蛇绿混杂岩中堆 晶辉长岩和凝灰岩夹层的锆石 U-Pb 年龄及 Hf-O 同位素进行研究,获得堆晶辉长岩的结晶年龄为 485±4Ma,凝 灰岩的喷发年龄为 401±2.5Ma。辉长岩极度亏损 Hf 同位素,ε_{Hf}(t)为 13~20,δ¹⁸Ο 峰值为+5.37‰,显示其具有 地幔特征。凝灰岩锆石的 Hf 同位素亏损程度低于堆晶辉长岩,ε_{Hf}(t)为 1.4~9.2。扎河坝蛇绿岩具有典型的 SSZ 型蛇绿岩特征,是通过俯冲增生到洋内弧弧前的蛇绿岩。

关键词:扎河坝;蛇绿岩;年龄;同位素;地质意义

中图分类号:P597 文献标识码:A

文章编号:2096-1871(2016)02-106-07

蛇绿岩是由地幔橄榄岩、辉长岩、席状岩墙、枕 状熔岩及深海硅质岩组成的洋壳岩石圈残片,野外 露头上有时只保留部分单元。由于蛇绿岩在研究大 洋岩石圈部分熔融、洋陆转换及造山带构造演化中 具有特殊意义,因此一直受地质学家们的广泛关注。 在这些研究中,蛇绿岩的分类是重要的问题之 一^[1-5]。Dilek和Furne^[6]将蛇绿岩分五大类,分别 是大陆边缘型、洋中脊型、俯冲带型(SSZ形)、火山 弧型和增生型。采用不相容元素地球化学法, Pearce^[4]将蛇绿岩分洋中脊型和俯冲带型(SSZ 型),其中洋中脊型又细分为 N 型、E 型和 P 型,而 SSZ 型分为初始俯冲型、弧后盆地型和洋脊俯冲型 等三个亚类。

中亚造山带广泛分布着多期、复杂的蛇绿岩。 从时代上看,从文德纪到中生代都有发育,表明了中 亚造山带长期的演化历史^[7-11]。在准噶尔北缘和 阿勒泰南缘,发育包括克拉麦里、扎河坝一阿尔曼 太、乔夏哈拉、库尔提^{[11-}等多条蛇绿岩带,记录了 阿勒泰南缘构造演化及准噶尔增生的历史,对探索 阿勒泰南缘构造演化具有重要意义。

1 蛇绿岩岩石学特征

扎河坝蛇绿岩位于准噶尔北缘,沿额尔齐斯构造带南缘呈北西向分布,是扎河坝一阿尔曼太蛇绿 混杂岩带的一部分,由蛇纹岩、辉长岩、玄武岩一安 山岩和少量凝灰岩及大理岩(图1)组成。蛇纹岩以 残块间杂于下泥盆统玄武岩一安山岩中,蛇纹石含 量>95%,磁铁矿和尖晶石少量,未见残留的橄榄石 和斜方辉石。磁铁矿沿裂隙分布,是蛇纹石化过程 中析出的矿物。辉长岩具明显堆晶结构,块状构造, 由单斜辉石(30%~50%)和斜长石(40%~70%)及 少量斜方辉石(5%~10%)组成,几乎无蚀变,与蛇 纹岩接触边界清晰,未发现冷凝边,向接触边界岩石 粒度明显变细,表明两者之间具有侵入接触关系。

玄武岩一安山岩分属下中泥盆统托让库都克 组、蕴都喀拉组和上泥盆统江尕那萨依组。下中泥 盆统托让库都克组分为三个岩性段,其中下岩性段 有碳酸盐岩团块,可能代表海山环境。早期资料 中^[12],下中泥盆统托让库都克组玄武岩被认为是蛇 绿岩的组成部分。

^{*} 收稿日期:2015-12-28 改回日期:2016-01-26 责任编辑:谭桂丽

基金项目:十二五国家三〇五项目"成矿动力学背景和成矿过程研究"(项目编号:2011BAB06B03-01)。 第一作者简介:潘成泽,1964年生,男,地质矿产高级工程师,从事地质矿产调查研究和科技管理工作。

图 1 扎河坝蛇绿岩地质图(据文献[14]修改) Fig. 1 Geologic map of the Zhaheba ophiolite

大理岩以岩块覆于玄武岩之上,代表当时的海 山环境。

2 蛇绿岩形成时代

对蛇绿岩中的堆晶辉长岩和下中泥盆统托让库 都克组凝灰岩进行 U-Pb 年龄测定和 Hf 同位素分 析,分析测试在天津地质矿产研究所完成。岩石破 碎至-80 目,分阶段淘洗,双目境下手工挑选锆石。 辉长岩中的锆石无色透明,晶体一般在 100 ~ 150μm 之间,长/宽为1~2。在 CL 图象(图 2)中, 绝大部分锆石具有明显的环带或条带状结构。30 粒锆石 U 含量为(22~133)×10⁻⁶, Th 含量为(8~ 57)×10⁻⁶, Th/U 为 0.4~0.8。30 个测点的 U-Pb 表面年龄在误差范围内一致,获得的算术平均年龄 为 485.8±2.5 Ma (图 2a), 代表辉长岩的结晶 年龄。

凝灰岩中的锆石有花岗岩结晶和基性岩浆结晶 两类,其中基性岩浆结晶锆石获得的年龄在误差范 围内一致,年龄平均值为401.4±1.6Ma(图2b),代 表凝灰岩的喷发年龄。

表 1	扎河坝蛇绿混杂岩带堆晶辉长岩及凝灰岩锆石的 U-Pb 年龄测试结果

测点	$^{\rm Th}_{ imes 10^{-6}}$	$U \ imes 10^{-6}$	²⁰⁶ Pb/ ²³⁸ U 比值	1σ	²⁰⁷ Pb/ ²³⁵ U 比值	1σ	²⁰⁶ Pb/ ²³⁸ U 年龄	1σ	²⁰⁷ Pb/ ²³⁵ U 年龄	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb 年龄	1σ
2013A	LT01											
1	14	43	0.0781	0.0006	0.6771	0.0308	485	4	525	24	705	97
2	33	78	0.0768	0.0005	0.6643	0.0218	477	3	517	17	699	69
3	20	51	0.0779	0.0006	0.7149	0.0276	484	4	548	21	824	79
4	16	49	0.0774	0.0005	0.7054	0.0261	480	3	542	20	811	78
5	13	31	0.0777	0.0006	0.6745	0.0356	483	4	523	28	706	113
6	20	57	0.0764	0.0005	0.6331	0.0226	475	3	498	18	607	78
7	17	43	0.0771	0.0005	0.8026	0.0303	479	3	598	23	1081	74
8	14	43	0.0782	0.0006	0.6300	0.0321	486	4	496	25	545	112
9	23	60	0.0786	0.0005	0.6543	0.0207	488	3	511	16	617	67
10	29	70	0.0782	0.0005	0.6792	0.0173	486	3	526	13	707	55
11	19	56	0.0798	0.0005	0.6704	0.0259	495	3	521	20	638	83
12	32	57	0.0794	0.0005	0.6086	0.0206	493	3	483	16	435	75
13	17	47	0.0809	0.0006	0.7398	0.0290	502	3	562	22	816	82

质

											(绥え	反)
——————————————————————————————————————	$_{ imes 10^{-6}}^{ imes}$	$U \times 10^{-6}$	²⁰⁶ Pb/ ²³⁸ U 比值	1σ	²⁰⁷ Pb/ ²³⁵ U 比值	lσ	²⁰⁶ Pb/ ²³⁸ U 年龄	lσ	²⁰⁷ Pb/ ²³⁵ U 年龄	lσ	²⁰⁷ Pb/ ²⁰⁶ Pb 年龄	1σ
14	18	47	0.0805	0.0006	0.6435	0.0558	499	4	504	44	529	188
15	11	27	0.0800	0.0007	0.5993	0.0585	496	4	477	47	386	220
16	14	35	0.0802	0.0007	0.7056	0.0500	497	5	542	38	735	147
17	23	47	0.0788	0.0006	0.6016	0.0488	489	4	478	39	426	180
18	33	55	0.0789	0.0005	0.6269	0.0228	489	3	494	18	517	79
19	14	35	0.0779	0.0006	0.5725	0.0342	484	4	460	27	342	137
20	10	27	0.0775	0.0007	0.6423	0.0438	481	4	504	34	608	148
21	8	22	0.0804	0.0008	0.8636	0.0570	499	5	632	42	1143	131
22	16	38	0.0783	0.0006	0.6373	0.0339	486	4	501	27	570	117
23	21	50	0.0786	0.0006	0.6471	0.0349	488	4	507	27	594	116
24	20	34	0.0760	0.0006	0.5431	0.0378	472	4	440	31	277	158
25	16	47	0.0781	0.0005	0.7119	0.0290	485	3	546	22	811	85
26	21	60	0.0778	0.0005	0.6961	0.0215	483	3	536	17	770	65
27	13	26	0.0784	0.0006	0.6286	0.0419	487	4	495	33	535	147
28	15	36	0.0801	0.0006	0.9627	0.0359	497	4	685	26	1364	71
29	57	123	0.0774	0.0005	0.5701	0.0113	481	3	458	9	347	45
30	17	31	0.0778	0.0008	0.5816	0.0620	483	5	465	50	380	241
2013A	LT02											
1	294	516	0.0721	0.0004	0.5453	0.0045	449	3	442	4	406	19
2	283	655	0.0745	0.0004	0.5591	0.0044	463	3	451	4	390	18
3	73	268	0.0646	0.0004	0.4847	0.0063	404	3	401	5	388	30
4	225	374	0.0645	0.0004	0.4976	0.0055	403	2	410	5	450	24
5	73	134	0.0639	0.0004	0.5034	0.0172	399	3	414	14	498	74
6	80	271	0.0746	0.0005	0.5769	0.0065	464	3	462	5	457	25
7	457	441	0.0646	0.0004	0.5232	0.0059	403	2	427	5	559	25
9	128	168	0.0651	0.0004	0.5577	0.0178	406	3	450	14	679	68
10	136	298	0.0641	0.0005	0.4692	0.0068	400	3	391	6	333	31
11	120	186	0.0806	0.0005	0,6385	0.0076	500	3	501	6	509	27
12	238	252	0.0803	0.0005	0.6122	0.0073	498	3	485	6	424	27
13	94	324	0.0644	0.0004	0.4953	0.0055	402	2	409	5	443	26
14	387	390	0.0802	0.0005	0.6341	0.0055	497	3	499	4	506	19
15	235	339	0.0637	0.0004	0.4849	0.0086	398	2	401	7	422	40
16	192	277	0.0638	0.0004	0.4993	0.0056	399	2	411	5	482	25
17	177	580	0.0641	0.0004	0.4761	0.0040	400	2	395	3	367	19
18	82	175	0.0658	0.0004	0.4938	0.0183	411	3	407	15	387	80
19	46	198	0.0644	0.0007	0.6906	0.0447	403	4	533	35	1140	111
20	122	208	0.0641	0.0004	0.4471	0.0113	401	2	375	9	222	58
21	47	64	0,0643	0.0005	0.8291	0.0301	401	3	613	22	1500	65
22	80	837	0.0640	0.0004	0.5432	0.0042	400	2	441	3	658	16
24	53	85	0.0640	0.0004	0.5009	0.0185	400	3	412	15	484	81
25	210	313	0.0639	0.0004	0.4791	0.0057	399	2	397	5	386	26
26	404	498	0.0646	0.0004	0.4835	0.0043	403	2	400	4	384	19
27	114	328	0.0726	0.0004	0.5691	0.0061	452	3	457	5	485	22
28	277	397	0.0805	0.0005	0.6321	0.0058	499	3	497	5	489	18
29	547	556	0.0637	0.0004	0.4663	0.0063	398	2	389	5	333	28

0.10

Fig. 2 Zircon U-Pb Concordia diagrams of gabbros (a) and tuffs (b) in the Zhaheba ophiolite belt

锆石 Hf-O 同位素特征 3

堆晶岩辉长岩及凝灰岩中的锆石具有一致的 Hf 同位素组成, EHH (t=485 Ma)为 13~20,个别点有异常 高的 εни值(t=485 Ma),获得的模式年龄低于结晶年 龄,无现实意义。其他测试点获得的模式年龄与结晶年

龄几乎一致,所有测试点的 ε_{нf}(t=485 Ma)在直方图上 具有显著的高斯分布特征,获得峰值为 15.7。400Ma 的凝灰岩中的锆石 ε_{Hf}(t)值为 1.4~9.2,模式年龄为 680~920Ma。辉长岩锆石的 O 同位素均一,为 4.91‰ ~5.73‰,形成高斯分布,峰值为 5.37±0.23‰,与地幔 值一致。

表 2 扎河坝蛇绿混杂岩带堆晶辉长岩及凝灰岩锆石的 Hf 同位素组成

Table 2	Hf isotope	compositions of	zircons from	n the gabbros and	tuffs	in the	Zhaheba	ophiolite	belt
---------	------------	-----------------	--------------	-------------------	-------	--------	---------	-----------	------

样品	年龄 (Ma)	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	e _{Hf} (0)	e _{Hf} (t)	T _{DM} (Ma)	$T^{c}_{DM}(Ma)$	f _{Lu/Hf}
2013ALT01									
2013ALT01.1	486	0.0013	0.282918	0.282906	5.2	15.5	478	467	-0.96
2013ALT01.2	486	0.0012	0.282974	0.282963	7.1	17.5	396	284	-0.96
2013ALT01.3	486	0.0022	0.282932	0.282912	5.6	15.7	469	449	-0.93
2013ALT01.4	486	0.0015	0.282886	0.282872	4.0	14.3	526	576	-0.95
2013ALT01.5	486	0.0018	0.282914	0.282898	5.0	15.2	489	494	-0.95
2013ALT01.6	486	0.0021	0.282925	0.282905	5.4	15.4	479	470	-0.94
2013ALT01.7	486	0.0019	0.282847	0.282830	2.7	12.8	588	711	-0.94
2013ALT01.8	486	0.0015	0.282941	0.282927	6.0	16.2	447	399	-0.95
2013ALT01.9	486	0.0015	0.282918	0.282904	5.2	15.4	481	474	-0.96
2013ALT01.10	486	0.0019	0.282905	0.282888	4.7	14.8	504	526	-0.94
2013ALT01.11	486	0.0017	0.282905	0.282890	4.7	14.9	501	520	-0.95
2013ALT01.12	486	0.0014	0.282981	0.282968	7.4	17.6	389	269	-0.96
2013ALT01.13	486	0.0014	0.282868	0.282855	3.4	13.6	551	631	-0.96
2013ALT01.14	486	0.0016	0.282951	0.282937	6.3	16.5	433	368	-0.95
2013ALT01.15	486	0.0015	0.282986	0.282972	7.6	17.8	382	255	-0.95
2013ALT01.16	486	0.0021	0.282889	0.282870	4.1	14.2	530	583	-0.94
2013ALT01.17	486	0.0025	0.282914	0.282892	5.0	14.9	499	514	-0.92
2013ALT01.18	486	0.0010	0.282951	0.282942	6.3	16.7	427	353	-0.97
2013ALT01.19	486	0.0015	0.282924	0.282910	5.4	15.6	472	455	-0.95
2013ALT01.20	486	0.0011	0.282912	0.282901	4.9	15.3	484	483	-0.97
2013ALT01.21	486	0.0016	0.282905	0.282890	4.7	14.9	500	518	-0.95
2013ALT01.22	486	0.0011	0.282914	0.282904	5.0	15.4	481	474	-0.97
2013ALT01.23	486	0.0023	0.283000	0.282979	8.1	18.0	370	234	-0.93
2013ALT01.24	486	0.0017	0.282995	0.282980	7.9	18.1	371	231	-0.95
2013ALT01.25	486	0.0013	0.282930	0.282918	5.6	15.9	461	429	-0.96

110	
-----	--

2016 年

								(封	卖表)
样品	年龄 (Ma)	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	e _{Hf} (0)	e _{Hf} (t)	T _{DM} (Ma)	T ^c _{DM} (Ma)	f _{Lu/Hf}
2013ALT01.26	486	0.0016	0.282996	0.282982	7.9	18.1	368	224	-0.95
2013ALT01.27	486	0.0016	0.283054	0.283040	10.0	20.2	285	38	0.95
2013ALT01.28	486	0.0017	0.282931	0.282916	5.6	15.8	464	437	0.95
2013ALT01.29	486	0.0013	0.282958	0.282947	6.6	16.9	419	336	-0.96
2013ALT01.30	486	0.0022	0.282978	0.282957	7.3	17.3	402	303	-0.93
2013ALT02									
2013ALT02.1	449	0.0020	0.282635	0.282617	-4.9	4.4	900	1440	-0.94
2013ALT02.2	463	0.0018	0.282668	0.282653	-3.7	6.0	845	1308	-0.95
2013ALT02.3	404	0.0030	0.282719	0.282696	-1.9	6.2	798	1248	-0.91
2013ALT02.4	403	0.0026	0.282767	0.282748	-0.2	8.0	719	1085	-0.92
2013ALT02.5	399	0.0027	0.282701	0.282680	-2.5	5.5	820	1305	0.92
2013ALT02.7	403	0.0012	0.282649	0.282640	-4.3	4.2	858	1427	0.96
2013ALT02.9	406	0.0036	0.282806	0.282778	1.2	9.2	680	982	-0.89
2013ALT02.10	400	0.0011	0.282571	0.282563	-7.1	1.4	967	1678	-0.97
2013ALT02.11	500	0.0021	0.282450	0.282431	-11	-1.1	1168	1966	-0.94
2013ALT02.12	498	0.0005	0.282640	0.282635	-4.7	6.1	857	1319	-0.98
2013ALT02.13	402	0.0021	0.282702	0,282686	-2.5	5.8	804	1282	-0.94
2013ALT02.14	497	0.0015	0.282575	0.282561	-7.0	3.5	971	1555	0.95
2013ALT02.15	398	0.0017	0.282637	0,282624	-4.8	3.5	889	1487	0. 95
2013ALT02.16	399	0.0031	0.282675	0.282652	-3.4	4.5	866	1396	0.91
2013ALT02.17	400	0.0018	0,282578	0.282565	-6.8	1.5	975	1671	-0.95
2013ALT02.18	411	0.0015	0,282594	0.282582	-6.3	2.3	945	1602	-0.95
2013ALT02.19	403	0.0021	0.282655	0.282639	-4.2	4.1	873	1434	0.94
2013ALT02.20	401	0.0017	0.282649	0.282637	-4.3	4.0	871	1443	-0.95
2013ALT02.21	401	0.0018	0.282598	0.282585	-6.1	2.2	946	1607	-0.95
2013ALT02.22	400	0.0040	0.282687	0.282657	-3.0	4.7	869	1377	-0.88
2013ALT02.24	400	0.0020	0.282747	0.282732	-0.9	7.4	736	1139	-0.94
2013ALT02.25	399	0.0017	0.282654	0.282641	-4.2	4.2	864	1429	-0.95
2013ALT02.26	403	0.0023	0.282736	0.282719	-1.3	7.0	757	1175	-0.93
2013ALT02.27	452	0.0039	0.282635	0.282602	-4.8	3.9	946	1484	-0.88
2013ALT02.28	499	0.0011	0.282381	0.282371	-14	— 3, 2	1235	2157	-0.97
2013ALT02.29	398	0.0031	0.282708	0.282684	-2.3	5.6	819	1294	-0.91

表 3 扎河坝蛇绿混杂岩带辉长岩中锆石的氧同位素组成

Table 3 Oxygen isotope compositions of zircons from the gabbros in the Zhaheba ophiolite b	Table 3	n isotope compositions of zircons from the gabbros in the Zhaheba ophiolite bel
--	---------	---

点号	δO ¹⁸ (‰)	SD		$\delta O^{18}(\%_0)$	SD
2013ALT01@1	5.18	0.21	2013ALT01@14	5.19	0.21
2013ALT01@2	5.38	0.21	2013ALT01@15	5.09	0.21
2013ALT01@3	5.38	0.21	2013ALT01@16	5.39	0.21
2013ALT01@4	5.66	0.21	2013ALT01@17	5.73	0.21
2013ALT01@5	5.41	0.21	2013ALT01@18	5.73	0.21
2013ALT01@6	5.79	0.21	2013ALT01@19	5.38	0.21
2013ALT01@7	5.45	0.21	2013ALT01@20	5.36	0.21
2013ALT01@8	5.54	0.21	2013ALT01@21	5.10	0.21
2013ALT01@9	5.40	0.21	2013ALT01@22	5.25	0.21
2013ALT01@10	5.22	0.21	2013ALT01@23	5.47	0.21
2013ALT01@11	5.16	0.21	2013ALT01@24	5.54	0.21
2013ALT01@12	5.25	0.21	2013ALT01@25	4.91	0.21
2013ALT01@13	5.19	0.21			

4 讨论

扎河坝蛇绿岩中堆晶岩和凝灰岩的年龄分别为 485Ma和401Ma,两者不属于同一单元,但堆晶岩 与阿尔曼太蛇绿岩中堆晶辉长岩年龄503Ma^[13]在 误差范围内一致,表明扎河坝和阿尔曼太蛇绿岩形 成于洋中脊环境,其中火山岩组合形成于洋内弧前 增生环境。

辉长岩的锆石 Hf 同位素表明,原始岩浆来自 DM 单元,具有 Hf 同位素亏损和与地幔岩相似的 O 同位素特征,与 MORB 蛇绿岩类似。

准噶尔北缘克拉麦里、扎河坝—阿尔曼太和富 蕴三条不同时代(503Ma、503~485Ma、400Ma)的 蛇绿岩带,表明在寒武纪—早奧陶世,准噶尔地区至 少存在两条扩张脊,即克拉麦里蛇绿岩和扎河坝— 阿尔曼太蛇绿岩。在这一时期,洋内俯冲形成了弧 前增生楔以及洋内弧系统,准噶尔洋大致在此时沿 额尔齐斯构造带向北俯冲。由于洋内的持续俯冲, 在准噶尔形成一系列的增生杂岩,随着沿额尔齐斯 带的洋壳消减作用,增生杂岩逐渐拼贴增生到阿勒 泰南缘。在这一过程中,俯冲带逐渐消减后撤,准噶 尔洋也逐渐衰亡。准噶尔洋的最终关闭可能发生在 中晚石炭世,因为从晚石炭—早二叠世,准噶尔开始 出现陆相沉积,岩浆作用也表现出造山后特征 (图 4)。

图 4 准噶尔地体增生过程模式图

Fig. 4 Tectonic model showing the accretion process of the Junggar terrane

在阿勒泰南缘,最近识别出阿拉斯加型镁铁质 侵入岩带,形成时代为 400~380Ma^[15-16]。在阿勒 泰南缘还分布了大量 400Ma 左右具有 I 型花岗岩 地球化学特征的花岗岩^[17-21],同时 Nd-Hf 同位素 显示这些花岗岩在形成过程中有新生地壳成分参 与。空间相叠、时代相同的花岗岩和阿拉斯加型镁 铁质岩带,构成了阿勒泰南缘晚古生代早期的岩浆 弧系统。

参考文献

- [1] Coleman R G. Ophiolites [M]. New York: Springer Berlin Heidelberg, 1977: 220.
- [2] Dewey J F, Bird J M. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland [J]. Journal of Geophysical Research Atmospheres, 1971, 76(14): 3179-3206.
- [3] Dilek Y, Flower M F J. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman[J]. Geological Society London Special Publications, 2003,218(1):43-68.
- [4] Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2):101-108.
- [5] Cawood P A, Kröner A, Collins W J, etal, Accretionary orogens through Earth history[J]. Geological Society of London Special Publication, 2009, 318(1), 1-36.
- [6] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oeanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123 (2/3): 387-411.
- [7] Jahn B M, WU F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic [J]. Earth and Environmental Sciences Transactions of the Royal Society of Edinburgh, 2000, 91(91): 181-193.
- [8] Jahn B M. The central Asian orogenic belt and growth of the continental crust in the phanerozoic[J]. Geological Society London Special Publications, 2004, 226 (1): 73-100.
- [9] Şengör A M C , Natalin B A , Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307.
- [10] Windley B F, Kroner A, Guo J, et al. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution[J]. Journal of Geology, 2002, 110(6): 719-739.
- [11] Yuan C, Sun M, Han C M, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids
 [J]. American Journal of Sciences, 2009, 30(3)9: 221-270.
- [12] 新疆地质矿产局. 新疆维吾尔自治区地质志[M]. 北

112

京:地质出版社,1993:210-335.

- [13] 简平,刘敦一,张旗,等. 蛇绿岩及蛇绿岩中淡色岩的 SHRIMP U-Pb 测年[J]. 地学前缘,2003,10(4):439-456.
- [14] NIU Hecai, SHAN Qiang, ZHANG Haixiang, etal. 40
 Ar/³⁹ Ar geochronology of the ultrahigh-pressure metamorphic quartz-magnesitite in Zaheba, eastern Junggar, Xinjiang [J]. Acta Petrologica Sinica, 2007, 23 (7):1627-1634.
- [15] YE Xiantao, ZHANG Chuanlin, ZOU Haibo, et al. Devonian Alaskan-type ultramafic-mafic intrusions and silicic igneous rocks along the southern Altai Orogen: Implications on the Phanerozoic continental growth of the Altai orogen of the Central Asian Orogenic Belt
 [J]. Journal of Asian Earth Sciences, 2014, 113:75-89.
- [16] CAI Keda, Sun Min, Yuan Chao, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294(3): 26-41.
- [17] SUN Min, YUAN Chao, XIAO Wenjiao, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in

the early to middle Palaeozoic[J]. Chemical Geology, 2008, 247(3): 352-383.

- [18] SUN Min, LONG Xiaoping, CAI Keda, et al. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D-Earth Sciences, 2009, 52(9): 1345-1358.
- [19] WANG Tao, HONG Dawei, Jahn B M, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: Implications for the Tectonic evolution of an accretionary orogen[J]. Journal of Geology, 2006, 114(6): 735-751.
- [20] WANG Tao, Jahn B M, Kovach V P, et al. Nd Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1): 359-372.
- [21] ZHANG Chuanlin, Santosh M, ZOU Haibo, et al. Revisiting the "Irtish tectonic belt": Implications for the Paleozoic tectonic evolution of the Altai orogen[J]. Journal of Asian Earth Sciences, 2012, 52(1): 117-133.

Zircon U-Pb ages and Hf-O isotope compositions of the Zhaheba ophiolite in the northern margin of the Junggar terrane and their tectonic implications

PAN Cheng-ze¹, QIU Lin¹, YE Xian-tao², DONGYong-guan²
(1. National 305 Project Office, Urumqi 830000, China)
(2. Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China)

Abstract: The Zhaheba ophiolite, located in the northern margin of Junggar terrane, is part of the Zhaheba-Aerman ophiolitic melange belt. Through U-Pb zircon age and Hf-O composition analysis for two samples from the ophiolitic melange belt, this study obtained a crystallization age of $485\pm4Ma$ for cumulate gabbros and an eruptive age of 401 ± 2 . 5Ma for tuffs. The gabbros are characterized by extreme depletion of Hf isotopic composition with $\varepsilon_{Hf}(t)$ of $13\sim20$ and δ^{18} O peak value of $\pm5.37\%$, indicating a mantle-sourced feature. Hf isotope depletion degree of zircons from the tuffs is lower than that from cumulate gabbros, with $\varepsilon_{Hf}(t)$ of $1.4\sim9.2$. All this features suggest that the Zhaheba ophiolite is of typical characteristic of the SSZ type ophiolite, which results from subduction accretion to the front of intra-oceanic arc.

Key words: Zhaheba ophiolite, MORB-type, accretion process, Central Asia Orogenic Belt (CAOB), Junggar terrane.