DOI:10.16788/j.hddz.32-1865/P.2017.03.007

浅覆盖区第四系三维地质结构模型不确定性分析 ——以运漕幅离散钻孔为例

陈忠良1,马 雷2

(1. 安徽省地质调查院,合肥 230001;2. 合肥工业大学资源与环境工程学院,合肥 230009)

摘要:针对以离散钻孔为主要数据源建立的第四系三维地质结构模型,采用地统计学方法以置信度指数定量 评估三维地质结构模型的不确定性。通过分析目标地层顶面趋势,获取其地质复杂度信息;利用半方差函数模型 分析目标地层顶面的空间自相关性,获取其数据精度信息;结合专家经验,以置信度综合评估模型的不确定性。以 运漕幅第四系三维地质结构模型为例,分别绘制早一中更新世青弋江组(Qp¹⁻²qy)与中一晚更新世大桥镇组 (Qp²⁻³d)顶面高程与置信度指数图。结果表明,钻孔位置和运漕幅右下角钻孔密集处的置信度指数较高,图幅边 缘及地层缺失处的置信度指数偏低。置信度指数与钻孔数据精度呈正相关,与地质复杂度呈负相关。置信度指数 可为以离散钻孔为主要数据源建立的第四系三维地质结构模型的不确定性分析提供量化工具。

关键词: 三维地质模型; 第四系; 不确定性; 地统计学; 置信度指数

中图分类号:P628⁺.3 文献标识码:A 文章编号:2096-1871(2017)03-210-08

一直以来,地质工作者主要基于人脑对地质体 的三维空间抽象,通过投影将其表达在二维平面地 质图上。近年来,随着三维可视化技术的进步,地 质工作者开始采用三维地质结构模型(三维地质 图)表达地质体的空间展布^[1-6]。

在野外地质调查中,一般根据周边某个地质点 或通过观察地质路线直接推测地质信息。由于推 测过程存在偏差,地质信息受不确定性影响,展示 某一区域地下地质体空间展布的三维地质结构模 型也存在不确定性。例如,隧道路径等工程建设选 址或特定结构的地下空间适宜性评价需建模人员 提供模型的预测误差概率信息。如果模型被用于 资源评估或水文地质建模,使用人员应了解模型的 不确定性及空间变化情况^[7-8]。在解决模型构建中 各地质信息一致性基础上^[9],如何定量评估所构建 模型的不确定性是学者们关注的重要问题。

国外一些学者采用 DSI、随机模拟、地质统计学 等插值方法实现连续、定性的数据不确定性计 算^[10-11],提出基于 cokriging 的 3D 插值技术,对用 势场法定义的地质界面进行不确定性评估[12]。目 前,三维地质体结构模型不确定性定量评估主要有 2种方法:一是理论分析。通过地统计学等方法探 求地质体复杂变化的定量度量,通过内插、外推数 学模型等通用表达方式,使评定方法、评定所得的 精度和规律性结论具有普遍理论意义。Tacher L 等「?」使用简单的克里金变量作为地质面模型不确定 性的度量值。Bistacchi A 等^[8]在三维空间通过角 度观测值和观测点投影距离的不确定性得出二维 平面位置的不确定性。二是实验检测。通过大量 实验验证理论模型的可信度。Lark R.M 等^[13-14]通 过实验设计并预留检验数据,分析检验模型构建过 程中的误差来源。朱良峰等[15]提出基于建模初始 数据和建模中间结果的模型误差修正法,引入数 据一模型的可视化交互技术。徐华等[16]建立了基 于不确定性的三维地质模拟流程,提出误差检测与 分析校正方法,提高模型的精度。

以运漕幅作为研究区域,利用钻孔资料和人工 解译的地质图构建第四系三维地质结构模型^[17]。

^{*} 收稿日期:2016-07-06 修订日期:2016-09-23 责任编辑:谭桂丽

基金项目:中国地质调查局"1:5万和县等五幅区调(立体地质填图示范)(编号:1212011120847)"资助。

第一作者简介:陈忠良,1984年生,男,工程师,主要从事地质调查与地学信息技术研究。

针对以离散钻孔为基础利用软件构建而成的运漕 幅第四系三维地质结构模型,采用地统计学方法以 置信度指数评估模型的不确定性。该方法借鉴了 目前大量实验对误差来源的结论,在综合分析目标 地层顶面趋势和空间相关性的基础上,获取模型地 质复杂度和数据精度信息,结合专家经验,以置信 度综合评估模型的不确定性。

1 模型置信度评估

1.1 不确定性来源

模型置信度评估,首先检测并确定建模过程中 的误差来源。采用因果分析法^[18](又称鱼骨分析 法)对建模过程中影响建模质量的要素按互相之间 的关联性整理而成的反映结构构成关系的鱼骨图, 将不一定在最终置信度评估中考虑的主观或定性 来源绘制在图中。建模过程中不确定性来源的各 因素分为数据质量、地质复杂度、数据精度和建模 软件差异(图1)。

列出可能的不确定性因素后,需判别在最终的 置信度评估中的因素。针对钻孔数据进行交叉剖 面交互式建模中的不确定性来源的实验量化评定, 确认测量高程与解译高程吻合度好,认为地质人员 间的解译误差非常小,可以忽略建模人员经验的差 异因素^[13]。对不同建模软件的算法差异,本文暂不 考虑。

1.2 置信度评定

模型置信度评定主要考虑数据质量、地质复杂 度和数据精度。以离散钻孔为基础利用软件构建 的第四系三维地质结构模型,对于任意位置的点, 其置信度评估分以下3种情况。

图 1 模型不确定性来源示意图(据文献[18]修编) Fig. 1 Diagram showing the sources for uncertainty of modeled surfaces

(1)该点正好位于钻孔点上。由于经过地质专 业人员的岩性观察、编录和采样测试等,认为此处 的模型置信度最高,定义为 a1。但孔位的标高测 量、钻孔岩芯的取芯率变化等将影响地层顶面标高 数据测量,取值为 a2 或 a3,但均<a1 取值。

(2)该点在钻孔点附近。钻孔数据精度对该点 影响趋于 0,此时主要考虑建模单元层面的地质复 杂度。此处模型置信度被认为最低,定义为 c。不 同建模单元层面的地质复杂度将影响 c 的取值。 (3)该点在一个或多个钻孔点附近。此处的置 信度将高于受地质复杂度影响的位置,同时小于钻 孔点的取值。本文采用地统计学的自相关性分析 法^[19]确定自相关性影响的距离,并量化从钻孔点处 (a1)到只受地质复杂度影响的最低取值处(c)之间 的置信度衰减率。

1.2.1 地质复杂度

选取建模单元层面的顶面(即目的层顶面)为 区域化变量的钻孔坐标数据。使用 ArcGIS 地统计 分析模块中内嵌的多种探索性空间数据分析工具, 简单、直观地查看模型层面的空间分布。

定量探索分析数据的趋势需使用半变异/协方 差函数云。半变异函数曲线图(图 2)反映一个采样 点与其相邻采样点的空间关系。在半变异曲线图 中间隔为时的点和半变异函数趋近平稳时的拐点, 由这两个点产生块金值、变程、基台值等参数。块 金值为两空间变异点间距离为0时的半变异值,当 采样点间的距离h增大时,半变异函数从初始的块 金值增大,达到一个稳定的常数,即基台值。在半 变异函数值超过基台值时,即函数值不随点间距离 而改变时,空间相关性不存在。当半变异函数由初 始的块金值达到基台值时,点间的间隔距离为变 程。变程表示空间相关性的作用范围,在变程范围 内,样点间的距离越小,其相似性(即空间相关性) 越大。

Fig. 2 Variogram showing the spatial relation between two adjacent sampling positions

本文采用高阶多项式模型进行曲面拟合以获 得模型曲面,使用 Matlab 曲线拟合工具箱(Curve Fitting Toolbox)实现。探索性数据分析和模型曲 面拟合均显示不存在趋势性,则置信度评估参数 c 采用最小值 c1。当显示存在趋势性时,将采用专家 经验判别趋势强弱。不同强度下置信度评估参数 c 的取值由拟合曲面方程的确定系数 R² 决定,具体 趋势强度分级和判别经验法则如表 1 所示。

1.2.2 数据精度

空间相关特性指距离越近的两事物越相似。 对于靠近一个或多个钻孔的位置处,采用半变异/ 协方差函数云图定量分析。半变异方差计算如式 (1)所示。式中 h 为滞后距;s(h)为以滞后距为自变量的方程;g。为块金值,g。+g1 为基台值。

表 1 模型全局复杂度级别及判别经验法则

 Table 1
 The level of model's overall complexity and empirical rule of determination

	级别	判断指标
c1	无空间趋势	
c2	弱空间趋势	$R^2 \leqslant 0.25$
c3	中空间趋势	0.25< $R^2 \le 0.75$
c4	强空间趋势	$R^2 > 0.75$

$$\gamma(h) = \begin{cases} g_0 + g_1 s(h) & h > 0\\ 0 & h = 0 \end{cases}$$
(1)

当滞后距为 0 时,半变异方差为 0,自相关系数 为 1;当滞后距增大至一定距离后,半变异方差达到 基台值,自相关系数降为 0。从钻孔位置向周围,在 变程范围内,随滞后距增加,模型置信度将从最大 值 a 下降到最小值 c。这时需在变程范围内,计算 置信度的递减率,其计算公式如下。

$$\rho(h) = 1 - \left\{ \frac{\gamma(h)}{g_0 + g_1} \right\} \tag{22}$$

1.2.3 置信度方程

质

获得了置信度递减率参数后,可定量计算任一 位置处模型层面的置信度指标值,置信度方程如下。

$$l(x) = c + (a - c)\rho(h)$$
 (3)

方程中,钻孔位置处将被赋予置信度最大值。 对超出半变异函数变程的位置,将被赋值为区域背 景 c 值。对任一位置 *x*,其置信度接近于距离其最 近的钻孔,并和此钻孔在变程范围内具有空间自相 关性。

2 应用实例

为验证此模型置信度评估的有效性,本次选择 1:50 000标准分幅运漕幅作为研究区域。运漕幅范 围为:31°20′~31°30′N,118°00′~118°15′E,面积约 439 km²,属江南陆块及周缘地质矿产调查工程区 范围^[20]。

2.1 地质概况

运漕幅位于扬子陆块区下扬子地块中部,属沿 江隆凹褶断带,长江深断裂带呈 NNE 穿区而过^[21], 地层区划属扬子地层区下扬子地层分区之巢湖— 安庆地层小区。除西北角有部分基岩出露外(古 新一始新世双塔寺组($E_{1-2} sh$)、始新世照明山 ($E_2 zm$)),该区大部分被第四系覆盖,厚度一般为 30~70 m,少数超过 100 m,为典型浅覆盖区 (图 3)。区内第四纪地层主要分布于长江两岸冲积 平原,构成长江河漫滩及阶地等。出露的地层主要 为中更新世戚家矶组(Qp^2q)、晚更新世下蜀组 ($Qp^3 x$)、全新世芜湖组(Qhw)。区内第四纪隐伏 地层有早一中更新世青弋江组($Qp^{1-2}qy$)、中一晚更 新世大桥镇组($Qp^{2-3}d$)。 (1)青弋江组($Qp^{1-2}qy$)

下部为青灰、灰绿色、深灰色粉砂(岩)、粉砂质 泥岩,夹青灰色、深灰色含有机质粉砂、粉细砂及泥 炭层等,半固结状,主要成分为粉砂,云母片,底部 含粗砂,细砾等;上部为青灰色含砾砂,砂以细砂为 主,风化易碎,见较多云母碎片,砾石以脉石英为 主,其次为燧石等,大小不一,大者5 cm×5 cm,小 者 0.2 cm×0.2 cm,磨圆度较好,多呈圆一次圆状, 砾石含量 10%~20%,具二元结构,厚 51.20 m。

图 3 研究区地质图及钻孔分布

Fig. 3 Geological map of the study area, showing the distribution of boreholes1-全新世芜湖组;2-晚更新世下蜀组;3-中更新世戚家矶组;4-古新一始新世双塔寺组;5-始新世照明山组;6-钻孔及编号

(2)大桥镇组(Qp²⁻³d)

底部为砾岩,砾石 0.2~4 cm 不等,磨圆度好, 呈次圆一圆状,见少量云母碎片;下部为灰白色砂 砾层,中一粗砂为主,含少量细砾,直径 0.2~1 cm, 以 0.2 cm 居多,砾含量 1%~20%;上部为青灰色 粉-细砂与灰红色粉砂质粘土互层,夹灰色含有机质 粉砂,粘土质粉砂,有机质为植物腐烂残骸,含较多 云母碎片,具二元结构,厚22.30 m。

2.2 模型数据分析

运漕幅第四纪浅钻共施工 40 孔(图 3)。利用 钻孔资料和人工解译的地质图构建运漕幅第四系 三维地质结构模型。选择隐伏的青弋江组顶面和 大桥镇组顶面作为评估目的层。隐伏青弋江组,钻 遇的钻孔数目为 32 孔;隐伏大桥镇组,钻遇的钻孔 数目为37孔。

2.2.1 趋势分析

受沉积环境影响,第四纪松散沉积物空间分 布具有明显的趋势性。采用 ArcGIS 10 软件地统 计学模块中的趋势分析工具可获得目的层顶面的 趋势效应。一般将趋势效应分为 0、常量、一阶、二 阶或多阶,分别代表无趋势效应、区域化变量沿一 定方向呈常量增加或减少、区域化变量沿一定方 向呈直线变化、区域化变量沿一定方向呈多项式 变化。

图 4 为青弋江组与大桥镇组顶面趋势分析示意 图。青弋江组与大桥镇组顶面均呈一定程度的二 阶趋势,二阶多项式是对其进行的最佳拟合。根据 趋势分析结果,选择数学软件 MATLAB 的曲面拟 合工具箱,对青弋江组与大桥镇组顶面进行多项式 拟合,并计算确定系数(表 2)。

图 4 青弋江组(a)与大桥镇组(b)顶面趋势分析示意图

Fig. 4 Trend analysis of top surfaces for the Qingyijiang (a) and Daqiaozhen (b) Formations X 轴-正东方向; Y 轴-正北方向; Z 轴-各样点测定值;绿色线表示东西向全局性趋势效应变化;蓝色线表示南北向全局性趋势效应变化

表 2 目的层确定系数(R²)、全局趋势(c)和半变异函数模型参数

Table 2
 Coefficient of determination for the trend surface for geological surfaces of interest (R²), the inferred value (C) and parameters of the fitted variogram model

日故民	\mathbb{R}^2	全局趋势性强弱(c) -	半变异函数模型参数					
日时万			步长值	g 0	g_{1}	R/m	а	с
大桥镇组顶面(Qp ²⁻³ d)	0.42	中	755.05	23.21	16.39	5452	10	4
青弋江组顶面(Qp ¹⁻² qy)	0.62	中	688 . 34	2.82	10.63	5998	10	4

2.2.2 空间自相关及方向变异

由于青弋江组和大桥镇组属河流相沉积,河流 流向显著,具明显的各向异性。考虑各向异性和二 阶趋势效应,采用 ArcGIS10 探索工具"半变异/协 方差函数云",得到青弋江组与大桥镇组顶面半方 差函数模型(表 2)。

2.3 模型置信度计算

运漕地区钻孔为第四纪浅钻,钻探施工质量较 好,孔位高程测量、岩芯取芯率、孔深、样品采集及 各项记录基本符合要求,各钻孔之间数据质量无明 显差异。由上述趋势分析和半方差模型分析,置信 度计算的关键参数 a 取值 10,c 为中等全局性趋势 效应,取值4^[19]。青弋江组与大桥镇组顶面的置信 度计算公式如下。

$$l(x) = 4 + 6\rho(h) \tag{4}$$

最终地层顶面高程预测使用 ArcGIS 10 的克里 金法插值工具,置信度指数成图使用 ArcGIS 10 栅 格计算器。青弋江组和大桥镇组顶面高程预测表 面和置信度指数成图范围均限制在各地层分布区 域内(图 5,图 6)。

图 5a 和图 6a 中,预测地层顶面整体显示西北 高、东南低。图 5b 和图 6b 显示在钻孔位置处和运 漕幅右下角钻孔密集处,其置信度指数取值明显较 高。除图幅边缘大部分取值偏低外,图幅内地层缺 失处的置信度指数取值也相应偏低。

图 5 青弋江组顶面高程(a)与置信度指数(b)图 Fig. 5 The elevation grid (a) and the Confidence Index plot (b) for the top of Qingyijiang Formation

图 6 大桥镇组顶面高程(a)与置信度指数(b)图 Fig. 6 The elevation grid (a) and the Confidence Index plot (b) for the top of Daqiaozhen Formation

3 讨 论

青弋江组和大桥镇组顶面高程与置信度指数 图(图 5,图 6)中,钻孔位置处和运漕幅右下角钻孔 密集处,置信度指数明显较高,图幅边缘置信度指 数偏低。置信度指数与钻孔数据精度呈正相关,反 映钻孔数据精度在模型置信度指数评估中具有重 要性。

地层缺失处,青弋江组和大桥镇组顶面高程置 信度指数偏低,置信度指数与地质复杂度呈负相 关。本次模型置信度评估未涉及断层,在新构造运 动发育地区,第四系三维结构模型需表达断层等构 造信息,模型的地质复杂度将增大,模型的置信度 指数需进一步修订以适应不同地质复杂度的模型 不确定性评估。 运漕幅第四系三维地质结构模型置信度指数 评估中,各钻孔之间数据质量视为无明显差异。多 数情况下,不同岩性岩芯取芯率差异明显,尤其砂 砾层取芯率不高,参数 a 取值需考虑数据质量。运 漕幅模型由 MapGIS K9 软件构建完成,但不同建 模软件的算法差异也是后续研究内容之一。目前, 针对三维地质建模中的不确定研究尚处于探索阶 段,模型的置信度指数计算仍需改进与完善,尤其 需进一步研究在建模流程中不确定因素如何产生 并影响最终模型等问题。

综合某一地区地表地质调查、钻探、物探等地 质信息,定量评估数据反映的地下地质体信息的不 确定性,有助于在该地区开展针对性的地质调查工 作。在未来地学大数据研究与应用中^[22-23],也可作 为各类地学数据源质量和可用性的定量评估指标。

4 结 论

以离散钻孔为主要数据源建立的第四系三维 地质结构模型,模型的不确定性来源于钻孔数据质 量、地质复杂度、钻孔数据精度和建模软件差异。 经运漕幅第四系三维地质结构模型实证分析,置信 度指数与钻孔数据精度呈正相关,与地质复杂度呈 负相关。置信度指数可为以离散钻孔为主要数据 源建立的第四系三维地质结构模型的不确定性分 析提供量化工具。

对于钻孔数据质量的差别、不同建模软件的差 异及新构造发育地区地质复杂度较高的第四系三 维地质结构模型,不确定性分析欠缺,须进一步改 进和完善模型置信度指数的计算方法。

参考文献

- Berg R C, Mathers S J, Kessler H, et al. Synopsis of Current Three-dimensional Geological Mapping and Modeling in Geological Survey Organizations[R/OL]. Champaign: Ilinois State Geological Survey, [2014-05-06].http://library.isgs.uiuc.edu/Pubs/pdfs/circulars/ c578.pdf.
- [2] Mathers S J, Terrington R L, Waters C N, et al.GB3Da Framework for the Bedrock Geology of Great Britain
 [J].Geoscience Data Journal, 2014, 1(1): 30-42.
- [3] 屈红刚,潘懋,明镜,等.基于交叉折剖面的高精度三维 地质模型快速构建方法研究[J].北京大学学报:自然 科学版,2008,44(6):83-88.
- [4] Kaufmann O, Martin T.3D Geological Modelling from Boreholes, Cross-sections and Geological Maps, Application over Former Natural Gas Storages in Coal Mines[J]. Computers & Geosciences, 2008, 34 (3): 278-290.
- [5] 屈红刚,潘懋,刘学清,等.城市三维地质建模及其在城 镇化建设中的应用[J].地质通报,2015,34(7): 1350-1358.
- [6] 陈忠良,童劲松,吴雪峰,等.安徽运漕地区隐伏地质体
 三维模型构建及应用[J].资源调查与环境,2015,36
 (2):123-129.
- [7] Tacher L, Pomian-Srzednicki I, Parriaux A. Geological Uncertainties Associated with 3-D Subsurface Models
 [J].Computers & Geosciences, 2006, 32(2):212-221.
- [8] Bistacchi A, Massironi M, Piaz G V D, et al. 3D Fold and Fault Reconstruction with an Uncertainty Model: An Example from an Alpine Tunnel Case Study[J].

Computers & Geosciences, 2008, 34(4): 351-372.

- [9] 陈国良,朱良峰,刘修国.三维地质结构建模中交叉剖 面一致性检校方法[J].信阳师范学院学报:自然科学 版,2009,22(3):92-95.
- [10] Royer J, Shtuka A. Stochastic Imaging of Environmental Data, Geosciences and Water Resources: Environmental Data Modeling [M]. Berlin, Germany: Springer, 1997: 101-114.
- [11] Mallet J L.Discrete Smooth Interpolation in Geometric Modelling[J]. Computer-Aided Design, 1992, 24 (4): 178-191.
- [12] Aug C, Chilès J P, Courrioux G, et al. 3D Geological Modelling and Uncertainty: The Potential-field Method
 [J]. Quantitative Geology and Geostatistics, 2005, 14(1): 145-154.
- [13] Lark R M, Thorpe S, Kessler H, et al. Interpretative Modelling of a Geological Cross Section from Boreholes: Sources of Uncertainty and their Quantification [J].Solid Earth, 2014, 5(2):1189-1203.
- [14] Lark R M, Mathers S J, Thorpe S, et al. A Statistical Assessment of the Uncertainty in a 3-D Geological Framework Model[J]. Proceedings of the Geologists Association, 2013, 124(6):946-958.
- [15] 朱良峰,吴信才,潘信.三维地质结构模型精度评估理 论与误差修正方法研究[J].地学前缘,2009,16(4): 363-371.
- [16] 徐华,武强,李坤,等.三维地质模拟中不确定性分析方法[J].系统仿真学报,2012,24(4):837-842.
- [17] 陈忠良,童劲松,包海玲.浅覆盖区第四系三维地质结构模型快速构建——以运漕幅为例[J].安徽地质, 2013,23(2):42-46.
- [18] Lelliott M R, Cave M R, Wealthall G P. A Structured Approach to the Measurement of Uncertainty in 3D Geological Models [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2009, 42(1):95-105.
- [19] Lark R M, Mathers S J, Marchant A, et al. An Index to Represent Lateral Variation of the Confidence of Experts in a 3-D Geological Model[J].Proceedings of the Geologists Association, 2014, 125(3):267-278.
- [20] 南京地质调查中心.江南陆块及周缘地质矿产调查工 程简介[J].华东地质,2016,37(1):73-75.
- [21] 杨明桂, 王光辉, 徐梅桂, 等. 江西省及邻区滨太平洋构造活动的基本特征[J]. 华东地质, 2016, 37(1):10-18.
- [22] 陈建平,李婧,崔宁,等.大数据背景下地质云的构建与 应用[J].地质通报,2015,34(7):1260-1265.
- [23] 赵鹏大.大数据时代数字找矿与定量评价[J].地质通 报,2015,34(7):1255-1259.

Uncertainty analysis of 3D Quaternary geological structural model under a shallow cover, with the discrete boreholes in Yuncao map as an example

CHEN Zhong-liang¹, MA Lei²

(1. Geological Survey of Anhui Province, Hefei 230001, China;
2. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: The Confidence Index of geostatistic method is used to quantitatively evaluate the uncertainty of Quaternary geological structural model that is established mainly based on discrete boreholes. The geological complexity information was obtained using trend analysis of the top surface of the target strata, and the data accuracy information was obtained according to the spatial autocorrelation of the top surface of the target stratum with semi-variance function analysis. Expert experience was also considered for comprehensively assessing the uncertainty in the form of confidence coefficient. The three-dimensional (3D) Quaternary geological structural model of the Yuncao area was taken as an example, and the elevation and Confidence Index maps of the top surfaces of $Qp^{1-2}qy$ and $Qp^{2-3}d$ were plotted in this study. The results show that the Confidence Index in the areas near boreholes or with dense boreholes is obviously high, and low in the areas near map edge or in stratum absence. The Confidence Index is positively correlated with borehole data accuracy, and is negatively with geological complexity. The Confidence Index provides a tool for quantitatively assessing the uncertainty of 3D Quaternary geological structural model established with discrete boreholes.

Key words: 3D geological model; Quaternary; uncertainty; geostatistics; Confidence Index