DOI: 10.16788/j.hddz.32-1865/P.2024.01.017

引文格式: 王杰, 康磊, 杨选江, 张晨博, 祖倩, 詹海鹏, 李玲, 雍华华. 2025. 新疆北山南部白山地区晚石炭世火山机构的发现及其地质意义[J]. 华东地质, 46(2): 222-237. (WANG J, KANG L, YANG X J, ZHANG C B, ZU Q, ZHAN H P, LI L, YONG H H. 2025. Discovery and geological significance of the Late Carboniferous volcanic edifices in Baishan of Southern Beishan area, Xinjiang[J]. East China Geology, 46(2): 222-237.)

新疆北山南部白山地区晚石炭世火山机构的发现 及其地质意义

王杰1,康磊2,杨选江1,张晨博3,祖倩1,詹海鹏1,李玲1,雍华华1

 (1. 西北有色工程有限责任公司,陕西西安710038;2. 中国地质调查局西安地质调查中心, 陕西西安710119;3. 成都理工大学,四川成都 610059)

摘要:对北山地区晚古生代裂谷带何时开始裂解的相关研究一直较薄弱。文章通过1:5万区域地质调查, 在新疆北山造山带南部新鉴别出保存完好的晚石炭世火山机构,岩石组合类型包括安山岩、英安岩、玄武岩、 流纹岩及火山碎屑岩,锆石 U-Pb 年龄为313~300 Ma。火山岩具有相对较高的 Na₂O 含量和 Mg[#]值,相对较低 的 CaO 和 TiO₂ 含量,属于钙碱性系列岩石。稀土元素配分模式呈明显的右倾式,具有弱的负铕异常(δ Eu= 0.72~1.00),富集大离子亲石元素 Rb、Th、K 和 LREE,亏损 Nb、Ta、P 和 Ti。根据岩石的地球化学特征和 (Th/Nb)_N、(Nb/La)_N等关键指数,发现岩浆在上侵喷发过程中可能受到强烈的地壳混染作用。碎屑岩的沉积 序列显示其应形成于陆内环境,结合 Zr/Nb-Nb/Th 图解及 Zr/Y-Nb/Y 图解,认为基性火山岩源区可能形成于与 地幔柱有关的构造地质背景。根据 Zr/Y-Zr 图解和 Th/Hf-Ta/Hf 图解,结合区域地质资料,认为该套火山岩系 应形成于大陆裂谷初始裂解的环境,这是目前报道的该裂谷带最早的年龄信息,指示晚石炭世北山南部地区 已开始处于陆内初始裂谷的环境。

关键词: 锆石 U-Pb 测年; 晚石炭世; 火山岩; 地球化学; 裂谷带; 新疆白山地区 中图分类号: P588.14 文献标识码: A 文章编号: 2096-1871(2025)02-222-16

新疆北山造山带隶属于中亚造山带的南缘, 位于塔里木板块、哈萨克斯坦板块和西伯利亚板 块的交汇处(牛亚卓等,2013;杨合群等,2010;赵 志雄等,2016)。南部的二叠纪构造-岩浆作用异 常活跃(裂谷发育的鼎盛期)(陈升平和朱云海, 1992;高俊宝和陈俊,2023;王洪亮等,2005),并以 发育早二叠世坡北、坡十等重要的铜镍矿带而闻 名。近些年来,区内还发现了晚石炭世启鑫大-中 型铜镍矿,拓展了区域找矿的方向,是新疆地区重 要的铜镍矿找矿新发现。但是,关于北山造山带 晚石炭世—早二叠世的构造环境一直存在较大分 歧:一些学者认为晚石炭世—二叠纪北山南部地 区处于岛弧构造环境(Ao et al., 2010; 颜炜等, 2011; 刘艳荣等, 2012); 另一些学者认为晚古生代 北山地区进入了碰撞后的伸展构造环境(Mao et al., 2008; 姜洪颖等, 2013; 姜洪颖和贺振宇, 2022; 李华芹等, 2006); 还有学者则认为,晚石炭世—早 二叠世北山地区进入了板内构造的演化阶段(李 煜航等, 2012; 王国强等, 2018; 左国朝等, 2003)。 可见,目前对该区构造环境的认识还不统一, 这制

^{*} 收稿日期: 2024-01-17 修订日期: 2024-11-29 责任编辑: 谭桂丽

基金项目:中国地质调查局"西昆仑—阿尔金成矿带区域地质调查(编号:DD20240030)"、"天山—北山成矿带那拉提—营毛沱地 区地质矿产调查(编号:DD20160009)"和"新疆东天山卡拉塔格—带1:5万丹乔喀幅等12幅戈壁荒漠覆盖区地质填图 (编号:DD20179607)"项目联合资助。

第一作者简介: 王杰, 1989年生, 男, 工程师, 硕士, 主要从事地质矿产勘查研究工作。Email: jerryfrost@163.com。

通信作者简介:康磊,1984年生,男,教授级高级工程师,博士,主要从事区域地质、岩浆岩作用以及大地构造研究工作。Email: kang844@ 163.com。

约了对该区成矿地质背景以及成矿规律的进一步 研究。

笔者团队通过1:5万区域地质调查,在新疆 北山南部的白山地区发现了保存较完整的火山 机构。通过锆石 U-Pb 测年技术和岩石地球化 学特征分析, 厘定出具有大陆裂谷特征的晚石 炭世火山岩, 这是目前在北山造山带发现的晚 古生代最早的裂谷带产物, 为北山裂谷的起始 时限和铜镍矿的成矿地质背景研究提供了重要 信息。

1 区域地质背景

北山造山带北部毗邻库鲁克塔格微地块,南 部位于塔里木板块东北缘,并与敦煌地块相隔(肖 序常等,2004),内部以白地哇—淤泥河和骆驼峰— 矛头山断裂带为界,划分为北带、中带和南带(校 培喜等,2005)(图1(a))。白山地区位于北山造山 带南部,区域上出露古元古代结晶基底北山岩群 和敦煌岩群(康磊等,2019;校培喜等,2005),沉积 盖层为长城系古硐井岩群、杨吉布拉克岩群以及 蓟县系爱尔基干群,受后期区域变质作用的改造 (张传林等,2022),区域内大量出露晚古生代基性-超基性杂岩群和中酸性岩体。

北山地区分布着广泛的火山岩地层,包括石炭纪红柳园组(C₁h)、石板山组(C₂sb)、胜利泉组(C₂sl)、干泉组(C₂g)和二叠纪红柳河组(P₁hl)。 早石炭世裂谷西部的火山岩以基性、中酸性火山 岩为主,向东逐渐过渡为凝灰岩(陈升平和朱云 海,1992);晚石炭世裂谷西部的火山岩在笔架山 和矛头山地区均以基性-中基性火山岩为主,向东 在白山地区则以中性-中酸性火山岩为主。

本次新发现的火山机构整体呈椭圆状,沿 NEE-SWW向展布,为大型破火山口,出露面积约 为35km²。其与北侧的敦煌岩群及东南侧的闪长 岩体为断层接触关系,与东侧的闪长岩体为侵入接 触关系。火山岩相类型包括火山颈相、爆发相、 溢流相、次火山岩相和火山沉积相等,其中火 山颈相岩性为火山角砾岩,位于破火山口周围; 溢流相岩性为流纹岩、英安岩、安山岩、石英安 山岩和玄武岩;爆发相岩性为英安质含角砾熔 结凝灰岩、流纹质熔结凝灰岩和岩屑晶屑凝灰 岩;次火山岩相为辉绿玢岩;火山沉积相为流 纹-英安质沉凝灰岩、英安质含角砾沉凝灰岩和 岩屑杂砂岩,整体上围绕火山口呈弧状分布 (图1(b))。

该火山机构存在基性、酸性的双峰式火山岩 组合,指示其形成于伸展构造环境。根据火山岩 相及岩石的空间展布特征,推测存在3次大规模 喷发活动:第一次为水下爆发(陆内盆地或湖泊), 形成了大面积的火山沉积相沉凝灰岩,且不排除 其下有未出露的火山岩;第二次为溢流式喷发,形 成了大面积的安山质-英安质熔岩;第三次为爆发 式喷发,形成了最北部的英安质-流纹质熔结凝灰 岩和岩屑晶屑凝灰岩。

2 岩石学特征

研究区火山岩分布广泛,本文对其中具有代 表性的玄武岩、辉绿玢岩及流纹岩进行了岩石学 特征研究。

(1)杏仁状玄武岩(PM10-50)。主要呈灰绿 色-紫红色致密块状,杏仁状构造,斑状结构,基质 为间隐结构。斑晶为板状斜长石,自形程度较高, 含量<10%;基质由斜长石、细小辉石、氧化铁及 玻璃质组成,含量近90%。个别辉石被黝帘石交 代;部分斜长石发生碳酸盐化,杏仁体呈不规则状, 直径 0.2~2.5 mm,大多数由绿泥石组成,部分为 葡萄石和绿帘石(图 2(a))。

(2)辉绿玢岩(PM10-5)。主要呈灰绿色,块 状构造,斑状结构,基质为辉绿结构。斑晶为自形 板状斜长石,具有微弱的黝帘石化,含量约20%; 基质中自形程度较高的斜长石发生了程度不一的 绢云母化、黝帘石化,含量约50%;辉石填充于板 条状斜长石晶体之间,含量约30%,大部分已发生 了绿泥石化。杏仁体由绿泥石和石英组成,直径 为0.1~0.5 mm。

(3)流纹岩(PM10-58)。主要呈灰黄色块状, 流纹构造,脱玻霏细结构。矿物组成主要为石英 和斜长石,呈微粒,大部分直径<0.01 mm,顺着流 纹构造分布了一些近等粒状且粒径较大的重结晶 石英矿物颗粒,流纹构造主要是暗色蚀变矿物(如 帘石)的含量差异造成的,脱玻及重结晶作用继承 了流纹构造特征,形成了矿物粒径的粗细变化特 征(图 2(b))。

图1 新疆白山地区大地构造位置图(a)及火山机构地质略图(b)

3 分析方法及测试结果

3.1 分析方法

对玄武岩及流纹岩样品(编号: PM10-50-1TW, PM10-58-1TW)分别进行了 LA-ICP-MS 锆石 U-Pb 年龄测定。此外,还采集了岩石地球化学分析样品 11 件。

锆石挑选工作在西安瑞石地质科技有限公司 完成; 锆石阴极发光(CL)图像、微区元素和同位 素分析在自然资源部岩浆岩与成矿重点实验室完 成。使用英国 Gatan 公司生产的 Mono CL3+阴极 发光装置系统的扫描电子显微镜进行锆石 CL 图 像分析。在连接 Geolas2005 紫外激光剥蚀系统 (193 nm 深紫外 ArF 激光器)的 Agilient7500a 型 ICP-MS 上进行锆石微量元素分析和 U-Pb 年龄测 定, 激光剥蚀斑束直径为 30 μm, 单点剥蚀, 以 He 作为剥蚀物质的载气, 以跳峰的方式进行数据采 集。同位素比值及元素含量计算采用 Glitter(ver 4.0, Macanarie University)程序, 以标准锆石 91500 作为外标进行同位素比值分馏校正, 谐和图和加 权平均年龄计算通过 Isoplot(ver2.49)软件完成。

岩石样品的全岩主量元素、微量元素和稀土 元素测试在自然资源部岩浆岩与成矿重点实验室 完成。主量元素含量采用 X 射线荧光光谱仪 (XRF)进行测试,氧化物总量分析误差为1%~3%。 FeO 含量通过湿化学分析方法测定,分析精度和 准确度优于1%。微量元素和稀土元素含量采用 电感耦合等离子体质谱仪(ICP-MS)进行测试,分 析精度优于10%,部分元素分析精度优于5%。

3.2 锆石 U-Pb 同位素测试结果

玄武岩(编号: PM10-50-1TW)的锆石颗粒呈 短柱状-粒状,形态相对完整,无裂纹,粒径 50~100 μm,发育面状分带或呈迷雾状(图 3),且 锆石的 Th/U值(0.43~1.16)较大,具有明显的基 性岩浆成因锆石特征。样品有效测点 17 个(表 1), 且测点均位于谐和线附近(图 4),其中 11 个测点 的锆石²⁰⁶Pb/²³⁸U年龄集中在 306.8~317.1 Ma,加 权年龄平均值为(312.7±4.3)Ma(MSWD=0.37),另 外 6 个测点应为捕掳的早期锆石。

流纹岩(编号: PM10-58-1TW)的锆石颗粒呈长 柱状-粒状,长宽比为1:1~1:3,长为35~120 μm, 宽为33~90 μm。锆石的生长环带比较发育 (图 5),Th/U值(0.31~1.33)较大,具有岩浆成因 锆石的特征。样品有效测点15个(表 2),且所有 测点均位于谐和线附近(图 6),其中9个测点的锆 石²⁰⁶Pb/²³⁸U年龄集中在299.6~300.7 Ma,加权年 龄平均值为(300.3±4.0)Ma(MSWD=0.002 2),另 外6个测点也应为捕掳的早期锆石。

根据以上2件火山岩样品的锆石 U-Pb 定年 结果,认为该套火山机构形成于313~300 Ma,限 定了该套火山岩的形成时代为晚石炭世,特别是 其中广泛发育的早古生代一中元古代捕掳锆石更 具代表性。根据区域对比,将其归入干泉组(C₂g)。

3.3 主量、微量和稀土元素特征

本次共采集 11 个样品用于火山岩的岩石地 球化学分析,其中玄武岩样品 8 个(编号: PM10-11-1/2、PM10-21-1/2/3、PM10-50-1/2/3),辉绿玢岩样 品 3 个(编号: PM10-5-1/2/3),测试结果见表 3。

图3 玄武岩样品 PM10-50-1TW 代表性锆石阴极发光图像 Fig. 3 CL images of representative zircons of the basalt sample PM10-50-1TW

					表1 Table	杏仁状 1 TA-I0	玄武岩(CP-MS z	PM10-50 ircon age	-1TW)L	A-ICP-I Imond-sl	MS U-Pb haped ba	锆石年 salt (P	≡龄分析≦ M10-50-1	结果 (TW)						
미 권7 뇌 運	²⁰⁷ Pb	/ ²⁰⁶ Pb	²⁰⁶ Pb	1/ ²³⁸ U	²⁰⁷ Pb	U ²³⁵ U	²⁰⁸ Pb/	²³² Th	²⁰⁷ Pb/ ²⁰	₽Pb	²⁰⁶ Pb/ ²³¹	U"	²⁰⁷ Pb/ ²³⁵	n	²⁰⁸ Pb/ ²³² T	h ď	-01 10-6	232mi /10-6	238r 1/1 0-6	
浅点油ケ	比值	lσ	比值	lσ	比值	1σ	比值	lσ	年龄/Ma	lσ	年龄Ma	lσ	年龄Ma	lσ	年龄/Ma	lσ	-01/94	- 11/10	01/0	U.N.O
PM10-50-1-2	0.098 43	0.006 53	0.266 76	0.006 65	3.617 88	0.233 82	0.086 71	0.004 25	1 594.5	118.98	1 524.4	33.85	1 553.5	51.41	1 680.7	79.04	425.24	90.77	128.83	0.70
PM10-50-1-3	0.059 11	0.01071	0.049 05	0.001 68	0.399 52	0.071 35	0.015 94	0.001 18	571.20	351.87	308.70	10.29	341.3	51.76	319.7	23.54	95.46	104.58	191.34	0.55
PM10-50-1-4	0.052 87	0.002 25	0.050 12	0.000 72	0.365 18	0.015 39	0.018 07	0.000 46	323.40	93.90	315.30	4.40	316.1	11.45	361.9	9.13	87.52	274.23	618.20	0.44
PM10-50-1-5	0.053 20	0.003 60	0.050 11	0.000 86	0.367 31	0.024 53	0.016 63	0.000 42	337.30	145.92	315.20	5.30	317.7	18.22	333.4	8.27	82.41	304.79	282.71	1.08
PM10-50-1-6	0.057 61	0.003 29	0.069 39	0.001 18	0.550 84	0.030 91	0.024 52	0.000 72	514.70	121.07	432.50	7.10	445.5	20.24	489.6	14.15	120.49	187.15	289.20	0.65
PM10-50-1-7	0.061 55	0.002 75	0.068 39	0.001 04	0.579 95	0.025 53	0.021 82	0.000 49	658.30	93.13	426.50	6.28	464.4	16.41	436.3	69.6	105.45	360.33	397.23	0.91
PM10-50-1-8	0.057 59	0.002 42	0.050 42	0.000 74	0.400 10	0.016 54	0.017 80	0.000 44	514.00	89.89	317.10	4.51	341.7	12.00	356.5	8.65	86.21	298.39	543.05	0.55
PM10-50-1-10	0.053 55	0.015 63	0.048 81	0.002 15	0.360 13	0.104 06	0.013 81	0.001 77	352.20	551.90	307.20	13.19	312.3	69°.LT	277.2	35.38	98.52	223.04	266.21	0.84
PM10-50-1-13	0.058 81	0.003 84	0.069 52	0.001 32	0.563 25	0.035 96	0.022 41	0.000 69	559.90	136.23	433.30	7.99	453.6	23.36	447.9	13.59	111.74	378.62	426.78	0.89
PM10-50-1-14	0.052 28	0.010 89	0.049 46	0.002 26	0.356 25	0.072 65	0.013 53	0.001 40	297.80	416.10	311.20	13.85	309.4	54.39	271.7	27.87	87.76	146.35	208.92	0.70
PM10-50-1-15	0.047 79	0.006 33	0.048 75	0.001 12	0.320 97	0.042 10	0.015 20	0.000 83	88.10	287.96	306.80	6.86	282.6	32.36	304.8	16.51	83.81	83.48	143.36	0.58
PM10-50-1-16	0.062 87	0.009 49	0.069 33	0.002 20	0.600 50	0.089 08	0.022 01	0.002 42	703.90	292.10	432.10	13.23	477.6	56.52	440.1	47.79	135.93	31.24	69.19	0.45
PM10-50-1-17	0.058 14	0.004 85	0.049 55	0.001 02	0.396 85	0.032 50	0.017 49	0.000 83	534.40	173.30	311.70	6.27	339.4	23.62	350.5	16.57	91.84	110.32	227.91	0.48
PM10-50-1-18	0.055 18	0.006 08	0.048 84	0.001 29	0.371 28	0.040 08	0.012 09	0.000 71	419.30	229.10	307.40	7.91	320.6	29.68	242.9	14.13	68.24	195.74	250.14	0.78
PM10-50-1-20	0.050 17	0.003 18	0.049 27	0.000 82	0.340 55	0.021 27	0.018 76	0.000 53	203.00	140.75	310.00	5.06	297.6	16.11	375.7	10.49	92.41	315.50	499.19	0.63
PM10-50-1-21	0.069 24	0.001 73	0.157 30	0.002 01	1.500 32	0.037 31	0.053 05	0.001 52	905.80	50.53	941.70	11.17	930.5	15.15	1 044.8	29.18	249.84	96.09	355.37	0.17
PM10-50-1-23	0.052 12	0.018 79	0.049 08	0.002 43	0.352 43	0.126 01	0.012 09	0.003 89	290.80	664.13	308.90	14.95	306.5	94.6	242.8	77.64	117.14	164.89	387.10	0.43

华

Fig. 4 U-Pb concordia diagram (a) and weighted average age (b) of zircon from the basalt sample PM10-50-1TW

图5 流纹岩样品 PM10-58-1TW 代表性锆石阴极发光图像 Fig. 5 CL images of representative zircons of the sample rhyolite PM10-58-1TW

玄武岩和辉绿玢岩的 SiO₂含量(52.68%~ 64.33%,平均值为58.40%)、Na₂O含量(3.13%~ 4.85%,平均值为4.16%)较高,CaO含量(3.73%~ 7.83%,平均值为6.00%)、MgO含量(3.98%~ 7.70%,平均值为5.34%)和TiO₂含量(0.95%~ 1.40%,平均值为1.13%)较低,Mg[#]值(52.89~ 62.04,平均值为56.33)较高。在Zr/TiO₂-Nb/Y图 (图7(a))上,大多数样品投影到玄武岩区,个别 样品投影点位于玄武安山岩与玄武岩的过渡区, 与野外宏观地质特征及室内薄片鉴定结果一致, 其中个别火山岩样品的SiO₂含量较高可能与发 育硅质杏仁体有关。FeO^T-SiO₂图解(图7(b))显示,玄武岩和辉绿玢岩均属于钙碱性系列。

玄武岩和辉绿玢岩的稀土元素和微量元素特

征较一致,稀土元素含量均较低($\sum REE=(56.89~112.21)\times10^{-6}$),轻稀土元素与重稀土元素分馏明显(LREE/HREE=2.52~5.00)。球粒陨石标准化稀土元素配分曲线图(图 8(a))显示出轻微的右倾(La_N/Yb_N=2.10~7.58),呈无异常或弱的负铕异常(δ Eu=0.72~1.00)。在原始地幔标准化微量元素蛛网图(图 8(b))上,主要富集大离子亲石元素 Rb、Th、K和LREE,亏损 Nb、Ta、P和Ti,总体上与E-MORB的特征相似。

4 讨论

4.1 地壳混染作用

源自软流圈地幔的大陆玄武岩浆在通过岩石

						Table 2	LA-IC	P-MS zir	con age o	f the rhy	olite (PN	110-58	-1TW)							
日 中 日	$^{207}\mathrm{Pb}$,∕²06Pb	²⁰⁶ Pb,	U ²³⁸ U	²⁰⁷ Pb/	U ²³⁵ U	²⁰⁸ Pb/ ²	¹³² Th	²⁰⁷ Pb/ ²⁰	éPb	²⁰⁶ Pb/ ²³⁸	5	²⁰⁷ Pb/ ²³⁵	n	²⁰⁸ Pb/ ²³²	Γh	9-017-10-6	²³² rrl- /10-6	23811/10-6	, and a second se
宮江雀り	比值	lσ	比值	lσ	比值	lσ	比值	lσ	年龄Ma	lσ	年龄/Ma	lσ	年龄/Ma	lσ	年龄/Ma	lσ	F0/10	11/10	0/10	1 I /(1
PM10-58-1-1	0.057 59	0.001 76	0.079 07	0.001 08	0.625 97	0.019 13	0.02679	0.000 53	513.9	66.08	490.6	6.45	493.6	11.95	534.3	10.35	55.19	402.81	616.62	0.65
PM10-58-1-2	0.055 44	0.003 64	0.047 65	0.000 85	0.363 11	0.023 51	0.017 09	0.000 41	429.6	140.42	300.1	5.24	314.5	17.51	342.4	8.21	21.39	441.52	333.16	1.33
PM10-58-1-3	0.061 17	0.002 53	0.079 02	0.001 19	0.664 49	0.027 23	0.024 45	0.002 09	645.3	86.61	490.2	7.12	517.4	16.61	488.2	41.27	30.13	32.90	390.45	0.08
PM10-58-1-4	0.050 91	0.018 07	0.047 62	0.002 57	0.333 26	0.11711	0.015 32	0.003 98	236.6	661.51	299.9	15.84	292.1	89.19	307.3	79.18	3.17	22.83	63.58	0.36
PM10-58-1-6	0.059 03	0.003 00	0.079 05	0.001 28	0.641 65	0.032 20	0.026 99	0.000 56	568.2	107.07	490.5	7.64	503.3	19.92	538.4	10.98	29.64	391.12	270.77	1.44
PM10-58-1-9	0.058 31	0.006 82	0.047 75	0.001 38	0.383 09	0.043 83	0.018 27	0.001 25	540.9	237.92	300.7	8.47	329.3	32.18	366.0	24.78	18.69	153.36	348.42	0.44
PM10-58-1-11	0.060 82	0.002 39	0.091 80	0.001 35	0.768 22	0.029 80	0.030 89	0.000 78	632.9	82.38	566.2	7.97	578.7	17.11	614.9	15.22	39.55	192.02	380.07	0.51
PM10-58-1-14	0.055 18	0.002 84	0.047 66	0.000 76	0.362 05	0.01835	0.016 29	0.000 38	419.5	110.72	300.2	4.65	313.7	13.68	326.6	7.52	35.25	518.61	585.17	0.89
PM10-58-1-15	0.058 26	0.01177	0.047 58	0.002 02	0.381 59	0.075 65	0.010 80	0.001 57	539.1	390.29	299.6	12.43	328.2	55.6	217.1	31.47	4.72	46.85	90.32	0.52
PM10-58-1-16	0.049 24	0.007 11	0.047 72	0.001 22	0.323 44	0.046 20	0.021 50	0.001 14	159.1	306.23	300.5	7.52	284.5	35.45	429.9	22.5	6.31	57.17	110.10	0.52
PM10-58-1-17	0.052 76	0.003 62	0.047 75	0.000 81	0.346 92	0.023 52	0.018 02	0.000 56	318.6	148.26	300.7	5.01	302.4	17.73	361.0	11.21	15.58	154.90	274.35	0.56
PM10-58-1-19	0.054 36	0.004 64	0.047 71	0.001 03	0.357 25	0.029 88	0.018 23	0.000 73	385.7	181.11	300.5	6.32	310.2	22.35	365.1	14.54	19.75	200.73	339.23	0.59
PM10-58-1-22	0.059 20	0.003 23	0.065 18	0.001 05	0.531 69	0.028 56	0.022 51	0.000 90	574.6	114.50	407.0	6.37	432.9	18.93	450.0	17.74	17.47	67.92	241.51	0.28
PM10-58-1-23	0.069 73	0.001 77	0.144 85	0.001 85	1.391 76	0.035 11	0.045 27	0.001 60	920.3	51.26	872.0	10.45	885.4	14.91	894.9	30.90	62.54	44.81	406.74	0.11
PM10-58-1-24	0.053 01	0.002 96	0.047 66	0.000 75	0.348 13	0.019 17	0.014 56	0.000 59	329.0	121.76	300.1	4.63	303.3	14.44	292.2	11.83	20.43	120.91	386.68	0.31

华

东

地

表2 流纹岩(PM10-58-1TW)LA-ICP-MS U-Pb 锆石年龄分析结果

质

图6 流纹岩样品 PM10-58-1TW 的锆石 U-Pb 年龄谐和图(a)及加权平均年龄图(b)

Fig. 6 U-Pb concordia diagram (a) and weighted average age (b) of zircon from the sample rhyolite PM10-58-1TW

表3 白山地区火山岩主量元素、稀土元素及微量元素分析结果 Table 3 Major elements, rare earth elements and trace elements of volcanic rocks distributed in Baishan area

	样品编号及岩性										
项目	PM10-5-1	PM10-5-2	PM10-5-3	PM10-11-1	PM10-11-2	PM10-21-1	PM10-21-2	PM10-21-3	PM10-50-1	PM10-50-2	PM10-50-3
		辉绿玢岩					玄正	武岩			
SiO ₂	55.25	55.45	56.47	58.51	62.25	56.49	59.42	61.77	52.33	51.95	50.81
${\rm TiO}_2$	1.09	1.11	1.10	1.03	0.99	0.94	0.95	0.92	1.25	1.28	1.35
Al_2O_3	14.77	15.18	14.81	14.37	13.15	16.56	15.37	15.22	15.69	15.85	16.22
Fe_2O_3	2.54	2.21	2.25	5.08	3.33	2.74	2.31	1.96	5.22	7.83	4.36
FeO	5.14	5.33	5.26	2.16	3.30	3.58	4.09	3.92	3.55	0.96	4.18
MnO	0.13	0.12	0.12	0.096	0.10	0.11	0.11	0.12	0.14	0.13	0.14
MgO	5.47	5.21	5.23	4.24	4.13	3.82	4.49	4.04	6.90	5.89	7.43
CaO	7.05	6.54	5.63	5.00	4.45	7.04	3.74	3.61	6.20	7.63	6.78
Na ₂ O	3.90	3.99	4.28	3.64	3.37	3.97	4.07	3.03	4.68	4.58	4.67
K_2O	0.90	1.11	1.18	2.38	1.41	0.56	1.70	2.02	0.43	1.21	0.31
P_2O_5	0.12	0.12	0.13	0.32	0.29	0.27	0.28	0.27	0.19	0.18	0.19
LOI	3.51	3.46	3.37	3.02	3.08	3.76	3.33	2.97	3.26	2.35	3.40
Total	99.87	99.83	99.83	99.85	99.85	99.84	99.86	99.85	99.84	99.84	99.84
$Mg^{\#}$	56.77	55.93	56.14	52.89	53.90	52.97	56.47	55.89	59.86	56.74	62.04
Cr	178	171	168	161	152	104	103	103	239	255	264
Ni	73.4	58.8	60.9	57.5	53.6	50.2	50.8	50.9	73.5	74.7	76.0
Co	30.8	29.9	30.2	24.7	24.1	20.0	21.5	20.0	35.9	36.3	35.9
Rb	37.8	41.5	54.0	76.0	51.8	24.3	47.8	49.8	16.8	45.9	16.8
Sr	152	164	202	189	208	196	230	363	340	251	356
Ba	108	138	159	255	201	43.6	217	221	97.7	289	55.2
V	196	198	196	157	142	162	129	132	228	170	297
Nb	7.03	7.33	7.65	8.87	8.46	7.65	7.70	7.80	4.40	4.09	4.49
Та	0.51	0.52	0.55	0.65	0.60	0.56	0.54	0.58	0.32	0.31	0.33
Zr	137	146	149	200	192	191	188	188	113	110	116
Hf	3.96	4.05	4.21	4.56	4.33	4.52	4.48	4.49	2.89	2.84	2.96
Ga	18.5	17.9	17.8	13.8	12.4	15.7	14.3	15.9	15.4	14.2	14.0

					样	品编号及者	岩性				
项目	PM10-5-1	PM10-5-2	PM10-5-3	PM10-11-1	PM10-11-2	PM10-21-1	PM10-21-2	PM10-21-3	PM10-50-1	PM10-50-2	PM10-50-3
		辉绿玢岩					玄正	式岩			
U	0.82	0.77	0.82	0.91	0.81	0.89	0.75	0.80	0.50	0.32	0.84
Th	7.25	6.51	7.55	4.89	4.52	4.30	4.23	4.50	1.88	1.53	1.89
La	16.0	14.7	19.5	17.8	17.8	16.1	16.5	16.0	8.03	6.82	8.1
Ce	35.0	32.7	40.2	39.6	38.9	37.1	37.7	36.3	19.1	16.4	19.0
Pr	4.54	4.10	5.03	5.25	5.06	5.02	4.90	4.74	2.68	2.43	2.72
Nd	19.9	17.5	21.6	22.6	21.9	22.3	21.0	20.0	12.6	11.6	13.0
Sm	4.94	4.36	5.16	5.26	5.00	5.12	4.94	4.79	3.63	3.48	3.79
Eu	1.23	1.24	1.35	1.35	1.31	1.32	1.25	1.30	1.19	1.23	1.23
Gd	5.44	4.89	5.49	5.28	4.90	5.10	4.97	4.91	4.23	4.08	4.36
Tb	0.91	0.80	0.86	0.84	0.77	0.82	0.81	0.78	0.69	0.65	0.73
Dy	5.56	4.87	5.21	4.79	4.46	4.74	4.67	4.53	4.29	4.22	4.48
Но	1.13	1.00	1.05	0.94	0.87	0.92	0.94	0.91	0.85	0.84	0.92
Er	3.08	2.77	2.95	2.63	2.38	2.49	2.59	2.55	2.32	2.29	2.56
Tm	0.46	0.41	0.45	0.39	0.36	0.38	0.39	0.38	0.34	0.34	0.37
Yb	2.96	2.69	2.93	2.50	2.33	2.48	2.48	2.52	2.24	2.19	2.38
Lu	0.45	0.41	0.43	0.38	0.34	0.38	0.37	0.37	0.33	0.32	0.35
Y	35.2	28.1	30.8	27.2	25.4	27.2	26.5	25.5	24.2	23.4	25.2
(La/Yb) _N	3.65	3.69	4.50	4.81	5.16	4.39	4.50	4.29	2.42	2.10	2.30
(Th/Nb) _N	8.65	7.45	8.28	4.62	4.48	4.71	4.61	4.84	3.58	3.14	3.53
(Nb/La) _N	0.42	0.48	0.38	0.48	0.46	0.46	0.45	0.47	0.53	0.58	0.53
δEu	0.72	0.82	0.77	0.78	0.80	0.78	0.76	0.81	0.93	1.00	0.92

续表 3

注: 主量元素含量单位为%, 微量元素和稀土元素含量单位为10⁻⁶, $\delta Eu = \frac{Eu_N}{0.5 (Sm_N + Gd_N)}$

图7 白山地区火山岩 Nb/Y-Zr/TiO₂×0.000 1 图解(a)(据 Pearce, 1996)及 FeO^T/MgO-SiO₂ 图解(b)(据 Miyashiro, 1975) Fig. 7 Diagrams of Nb/Y-Zr/TiO₂×0.000 1 (a)(after Pearce, 1996) and FeO^T/MgO-SiO₂ (b) (after Miyashiro, 1975) in volcanic rocks from Baishan area

圈上侵至地表的过程中,会受到地壳或岩石圈不 同程度的混染,这种混染作用往往使火山岩表现 出岛弧火山岩的地球化学特征(夏林圻等,2007), 而异常高的原始地幔标准化 Th/Nb 值(≥1)和低

图8 白山地区火山岩球粒陨石标准化稀土元素配分曲线图(a)和原始地幔标准化微量元素蛛网图(b)(球粒陨石和原始 地幔标准化值据 Sun and McDonough, 1989)

Fig. 8 Diagram of chondrite-normalized REE pattern(a) and spidergram of primitive mantle normalized trace elements (b) in volcanic rocks from Baishan area (Chondrite-normalized and primitive mantle-normalized values sourced from Sun and Mc-Donough, 1989)

Nb/La 值(<1)是指示地壳混染作用发生的 2 个可 靠指标(Kieffer et al., 2004; Saunders et al., 1992)。 如前所述,所有样品的分析结果显示,原始地幔标 准化(Th/Nb)_N为 3.14~8.65,均>1; (Nb/La)_N为 0.38~0.58,平均值为 0.48,远<1。同时,La/Ba 值 (0.02~0.37,平均值 0.12)较低,均表明岩浆演化 过程中受到一定程度的地壳混染。

地壳岩石及其部分熔融体通常具有很低的 TiO₂含量(Wilson, 1989)和较低的Nb、Ta含量 (Thompson et al., 1984; 陆凡等, 2023; 王志强等, 2024),因此地壳混染作用会使源自软流圈的大陆 板内玄武岩的原始Ti、Nb和Ta含量下降。本次 研究所有样品在原始地幔标准化微量元素蛛网图 (图 8(b))中,均具有明显的Nb、Ta、Ti负异常,进 一步指示了地幔岩浆上侵过程中受到了强烈的地 壳物质混染。

4.2 分离结晶作用

火山岩样品 Haker 图解(图 9)显示, Cr、Ni、 Co、TiO₂、FeO^T与 MgO 之间存在明显的正相关关 系,表明含镁铁矿物(橄榄石、辉石、角闪石等)是 岩浆演化的主要分异结晶相。弱的负铕异常,同 时 MgO 与 Al₂O₃ 的相关性较差,表明岩浆演化过 程中存在弱的斜长石分离结晶作用。P₂O₅与 MgO 之间存在负相关关系,说明岩浆演化过程中 存在一定程度的磷灰石分离结晶作用(霍海东等, 2024)。综上可知,岩浆演化过程中可能存在角闪 石、辉石以及一定程度的斜长石、磷灰石的分离 结晶作用。

4.3 构造环境及地质意义

通过1:5万地质填图,发现该套火山岩保存 在较完整的火山机构之中,基本未发生变质、变 形。火山口附近围绕火山角砾岩,四周以中酸性-中性喷出岩为主,外围以紫红色含角砾凝灰熔岩 和含角砾沉火山岩为主,中间发育少量的长石岩 屑杂砂岩,碎屑分选差,发育含砾粗砂岩-粗砂岩-细砂岩-粉砂质泥岩小型旋回性层序,推断其沉积 环境应为陆内盆地或湖泊(康磊等,2019)(图1(b))。 溢流相深灰绿色-紫红色玄武岩的 Mg[#]值较低 (52.89~62.04), 铕具有弱的负异常(δ Eu 平均值 为0.85)。Zr含量为(110~200)×10⁻⁶, Zr/Y>3.89, 具有大陆玄武岩的地球化学特征(Zr含量>70× 10⁻⁶, Zr/Y>3)(夏林圻等, 2007)。Hf/Th 值为 0.93~ 1.85, 平均值为1.24, 具有大陆玄武岩的地球化学 特征,形成于板内构造环境(Hf/Th<8)(Condie, 1989)。如前文所述,火山岩中普遍发育早古生代一 中元古代捕掳锆石,指示该火山机构的形成过程 中深部存在大量的古老地壳物质,进一步印证了 上述结论(李中会等, 2021; 余明刚等, 2022)。

该火山机构整体保存完整,呈椭圆状,且未发 生明显的变质、变形作用,指示其可能形成于张 性伸展的构造背景。在 Zr/Y-Zr 图解(图 10(a)) 中,样品均落于 WPB 区内;在 Th/Hf-Ta/Hf 图解 (图 10(b))中,样品均落在大陆拉张带或初始裂 谷玄武岩区内。这说明晚古生代,北山裂谷带南 部在晚石炭世处于开始裂解的构造环境。

本文新厘定出的形成于初始裂谷环境的晚石

 1
 100
 600
 0.001
 0.001
 100
 100

 2r/10⁻⁶
 0.002
 0.1
 1
 2

 810
 白山地区火山岩 Zr/Y-Zr 图解(a)(据 Pearce and Norry, 1979)及 Th/Hf-Ta/Hf 图解(b)(据汪云亮等, 2001)

Fig. 10 Zr/Y-Zr diagram (a) (after Pearce and Norry, 1979) and Th/Hf-Ta/Hf diagram (b) (after Wang et al., 2001) of volcanic rocks in Baishan area

炭世火山岩,与其东侧相邻地区发育的与启鑫铜 镍矿有关的白山基性-超基性岩体(298~305 Ma) (康磊等,2019;谢燮等,2018)的形成时代基本相 同,其形成环境亦为板内拉张的初始裂解环境(康 磊等,2019),进一步证明了在晚石炭世,白山地区 已处于大陆裂解的构造环境。该火山机构形成于 313~300 Ma,是目前发现的北山晚古生代裂解初 期最早的年龄信息,以中酸性火山岩为主的火山活动可能代表了裂解的初始产物。随着裂解程度越来越强烈,后期产出了大量的基性-超基性杂岩体。

白山地区位于北山晚古生代裂谷带的南缘, 该裂谷带西部地区广泛发育着早二叠世坡北、红 石山、漩涡岭等基性-超基性岩体,形成于260.7~ 286 Ma(姜常义等,2006;李华芹等,2006;刘艳荣 等,2012;苏本勋等,2010),时代较为集中。这些 杂岩体的形成时间与塔里木火成岩省形成的第三 阶段时间(280 Ma)相近,空间上又相邻,普遍认为 其形成于与塔里木大火成岩省有关的地幔柱裂解 的构造环境(凌锦兰等,2011;秦克章等,2014;夏 昭德等,2013;徐文博等,2022)。王国强等(2018) 系统分析了北山地区石炭纪—二叠纪玄武岩,认 为其可能主要来源于地幔柱。本次研究的玄武岩 样品在 Zr/Nb-Nb/Th 图解(图 11(a))及 Zr/Y-Nb/Y 图解(图 11(b))中,与前者样品的投影落点区域 基本一致。对于塔里木大火成岩省的形成,部分 学者认为其形成时代的跨度超过 20 Ma,可分为 3 个阶段:约 300 Ma、约 290 Ma 和 280 Ma,是孕育 地幔柱活动的产物(Xu et al., 2014;徐义刚等, 2017;余星等,2017),且其活动影响范围不局限于 塔里木盆地(Zhang et al., 2010)。晚石炭世火山机 构对应了塔里木大火成岩省形成的第一阶段,且 在空间位置上,位于北山裂谷带的东段,推测白山 地区晚石炭世火山机构的形成可能与塔里木大火 成岩省地幔柱裂解的构造环境有关,处于地幔柱 孕育的早期阶段,这为塔里木大火成岩省的形成 时代及范围提供了新的信息。

UC.上部陆壳; PM.原始地幔; DM.浅部亏损地幔; HIMU.高 μ(U/Pb)源; EM I. 富集地幔源 I; EM II. 富集地幔源 II; OIB.洋岛玄武岩; DEP.深部亏损地幔; EN.富集组分; REC.再循环组分

图11 白山地区火山岩与北山晚石炭世火山岩 Zr/Nb-Nb/Th 图解(a)及 Zr/Y-Nb/Y 图解(b)(Condie, 2005)

Fig. 11 Zr/Nb-Nb/Th (a) and Zr/Y-Nb/Y (b) diagram of the Late Carboniferous volcanic rocks in Baishan area and Beishan area (Condie, 2005)

5 结论

(1)北山南部白山地区新发现的保存完整的 火山机构,形成于313~300 Ma,属于晚石炭世。

(2)岩石地球化学特征表明,该火山机构在岩 浆演化过程中可能受到强烈的地壳或岩石圈混染, 并发生了富镁铁矿物(橄榄石、辉石、角闪石等) 以及少量斜长石、磷灰石的分离结晶作用。

(3)结合区域地质资料综合分析,认为该套火 山机构应形成于陆内裂解的构造环境,是目前发 现的北山晚古生代裂谷带中最早的地质记录,可 能代表着相关裂解活动的起始时间。

References

AO S J, XIAO W J, HAN C M, MAO Q G, ZHANG J E. 2010.

Geochronology and geochemistry of Early Permian maficultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 18(2-3): 466-478.

- CHEN S P, ZHU Y H. 1992. Rock chemistry and analysis of its structural environment for Carboniferous-Permian volcanics in Beishan, Xinjiang[J]. Earth Science-Journal of China University of Geosciences, 17(6): 647-656 (in Chinese with English abstract).
- CONDIE K C. 1989. Geochemical changes in basalts and andesites across the Archean Proterozoic boundary: identification and significance[J]. Lithos,23 (1):1-18.
- CONDIE K C.2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? [J]. Lithos,79(3-4):491-504.

JIANG C Y, CHENG S L, YE S F, XIA M Z, JIANG H B, DAI

Y C. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang[J]. Acta Petrologica Sinica, 22(1): 115-126 (in Chinese with English abstract).

- JIANG H Y, HE Z Y. 2022. Petrogenesis and tectonic implications of Late Paleozoic granite-diorite from the southern Beishan orogen[J]. Earth Science, 47(9): 3270-3284 (in Chinese with English abstract).
- JIANG H Y, HE Z Y, ZONG K Q, ZHANG Z M, ZHAO Z D. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt[J]. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract).
- HUO H D, YANG Z L, HONG W T. 2024. Inverse reaction rim of biotite in early Cretaceous nosean phonolite of Niangniangshan, Ningwu Basin: mineralogical evidence of magma mixing triggered volcanic eruption[J]. East China Geology, 45(1): 115-133(in Chinese with English abstract).
- GAO J B, CHEN J.2023. The genesis and prospecting indicators of the Shidong gold deposit in East Tianshan, Xinjiang[J].Geology and Exploration,59(3):521-532(in Chinese with English abstract).
- KIEFFER B, ARNDT N, LAPIERRE H, BASTIEN L, BOSCH D, PECHER A, YIRGU G, AYALEW D, WEIS D, JER-RAM D A, KELLER F, MEUGNIOT C. 2004. Flood and shield basalts from Ethiopia: magmas from the African superswell[J]. Journal of Petrology, 45(4): 793-834.
- LI H Q, CHEN F W, MEI Y P, WU H, CHENG S L, YANG J Q, DAI Y C. 2006. Isotopic ages of No. 1 intrusive body in Pobei mafic-ultramafic belt of Xinjiang and their geological significance[J]. Mineral Deposits, 25(4): 463-469 (in Chinese with English abstract).
- LI Y H, YANG X K, WANG Q L, CUI D X, JI L Y, HAO M. 2012. Redetermination of the volcanic eruption time and analysis of geochemical characteristics of volcanic rocks in eastern Maotoushan of Beishan area, Xinjiang[J]. Geology in China, 39(3): 683-694 (in Chinese with English abstract).
- LI Z H, LI Y , LI R J, SU H, LI K. 2021.Determination and geological significance of Middle Jurassic intermediate-acidic volcanic rocks in central-north region of the Great Khingan Mountains volcanic belt[J]. East China Geology, 42(3): 269-278(in Chinese with English abstract).
- LU F, ZHANG Y, ZHANG X H, MO Z F, LÜ J S, WU B. 2023. Zircon U-Pb geochronology, geochemical characteristics and geological significance of the Chakeng granite porphyry, northeast Jiangxi Province [J]. East China Geolo-

gy, 44(1): 39-50(in Chinese with English abstract).

- LING J L, XIA M Z, GUO N X, WANG B Y, XIA Z D, JIANG C Y. 2011. Petrogenesis of Luodong mafic-ultramafic layered intrusion, Beishan region, Xinjiang[J]. Geochimica, 40(6): 499-515 (in Chinese with English abstract).
- LIU Y R, LU X B, MEI W, DAI Y C. 2012. Mineralogy of clinopyroxene from Pobei mafic-ultramafic complex in Beishan area, Xinjiang, and its geological significance[J]. Acta Petrologica et Mineralogica, 31(2): 212-224 (in Chinese with English abstract).
- MAO J W, PIRAJNO F, ZHANG Z H, CHAI F M, WU H, CHEN S P, CHENG L S, YANG J M, ZHANG C Q. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 32(2-4): 184-203.
- MIYASHIRO A. 1975. Classification, characteristics and origin of ophiolites[J]. Journal of Geology, 83: 249-281.
- NIU Y Z, WEI J S, SHI J Z, CHEN G C. 2013. LA-ICP-MS zircon U-Pb dating of the Upper Carboniferous volcanic rocks from northern Beishan region in Gansu Province and its tectonic significance[J]. Geological Bulletin of China, 32(11): 1720-1727 (in Chinese with English abstract).
- PEARCE J A. 1996. A user's guide to basalt discrimination diagrams[C]//WYMAN D A. Trace element geochemistry of volcanic rocks: application for massive sulphide exploration. Geological Association of Canada Short Course Notes, 12: 79-113.
- PEAREC J A and NORRY M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks [J]. Contributions to Mineralogy and Petrology, 69(1): 33-47.
- QIN K Z, TIAN Y, YAO Z S, WANG Y, MAO Y J, WANG B, XUE S C, TANG D M, KANG Z. 2014. Metallogenetic conditions, magma conduit and exploration potential of the Kalatongk Cu-Ni orefield in Northern Xinjiang[J]. Geology in China, 41(3): 912-935 (in Chinese with English abstract).
- SAUNDERS A D, STOREY M, KENT R W, NORRY M J. 1992. Consequences of plume-lithosphere interactions [M]// STOREY B C, ALABASTER T, PANKHURST R J. Proceedings of the magmatism and the causes of continental break-up. London: Geological Society, Special Publication, 68(1): 41-60.
- SU B X, QIN K Z, SUN H, WANG H. 2010. Geochronological, petrological, mineralogical and geochemical studies of

the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang[J]. Acta Petrologica Sinica, 26(11): 3283-3294 (in Chinese with English abstract).

- SUN S S, MCDONOUGH W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-345.
- THOMPSON R N, MORRISON M A, DICKIN A P, HENDRY G L. 1984. An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach [J]. Phil. Trans. R. Soc. Lond, A310: 549-590.
- WANG H L, HE S P, ZHANG E P, XU X Y, CHEN J L. 2005. Revision of the late Paleozoic lithostratigraphocal system of the Tianshan and Beishan are and depositional environments[J]. Journal of Stratigraphy, 29(S1): 541-547 (in Chinese with English abstract).
- WANG G Q, LI X M, XU X Y, YU J Y, JI B, ZHU T. 2018. Petrogenesis and tectonic setting of the Carboniferous and Permian volcanic rocks in the Beishan orogenic belt[J]. Acta Petrologica et Mineralogica, 37(6): 884-900 (in Chinese with English abstract).
- WANG Y L, ZHANG C J, XIU S Z. 2001.Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 17(3): 413-421(in Chinese with English abstract).
- WANG Z Q, ZHOU M J, LI X F, DA H X. 2024.Identification and significance of fluid exsolution in high silica granite[J]. East China Geology, 45(1): 26-48(in Chinese with English abstract).
- WILSON M. 1989. Igneous petrogenesis[M]. London: Unwin Hyman, 1-464.
- XIA Z D, WANG Y, JIANG C Y, LING J L, XIA M Z, GUO N X. 2013. Petrography and mineralogy of the xuanwoling mafic-ultramafic layered intrusion in the Beishan Region, Xinjiang[J]. Acta Geologica Sinica, 87(4): 486-497 (in Chinese with English abstract).
- XIA L Q, XIA Z C, XU X Y, LI X M, MA Z P. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et mineralogical, 26(1): 77-89 (in Chinese with English abstract).
- XIAO X C, HE G Q, CHENG S D, XU X, LI J Y, HAO J. 2004. An introduction to the explanatory text of the map of tectonics of Xinjiang and its neighbouting area[M]. Beijing: Geological Publishing House, 1-61 (in Chinese with English abstract).
- XIE X, LI W M, SUN J M, LI J, HUANG M. 2018. Geochemistry and zircon U-Pb dating of the Baishan mafic-ultramaf-

ic rock complex in the Beishan area of Xinjiang and its prospecting significance [J]. Geological Science and Technology Information, 37(6): 11-21 (in Chinese with English abstract).

- XIE W, SONG X Y, NIE X Y, CHENG S L. 2011. Features of the mantle source and tectonic setting of the Poshi Ni-Cu sulfide-bearing intrusion, Xinjiang, China[J]. Earth Science Frontiers, 18(3): 189-200 (in Chinese with English abstract)
- XU Y G, WEI X, LUO Z Y, LIU H Q, CAO J. 2014. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model[J]. Lithos, 204: 20-35.
- XU W B, ZHANG M J, BAO Y W, MAN Y, LI S A, WANG P. 2022. Comparison of metallogenic conditions of Permian mafic oxide and sulfide deposits in the northeastern margin of Tarim craton, China[J]. Acta Geologica Sinica, 96(12): 4257-4274 (in Chinese with English abstract).
- XU Y G, ZHONG Y T, WEI X, CHEN J, LIU H Q, XIE W, LUO Z Y, LI H Y, HE B, HUANG X L, WANG Y, CHEN Y. 2017. Permian mantle plumes and Earth's surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3): 358-373 (in Chinese with English abstract).
- YANG H Q, LI Y, ZHAO G B, LI W Y, WANG X H, JIANG H B, TAN W J, SUN N Y. 2010. Character and structural attribute of the Beishan ophiolite [J]. Northwestern Geology, 43(1): 26-36 (in Chinese with English abstract).
- YU M G, HONG W T, LIU K, DUAN Z, CHU P L, CHEN R.2022. Geochronology, petrogenesis and tectonic setting of Middle Jurassic volcanic rocks from Yinshan deposit in Dexing, Jiangxi Province[J]. East China Geology, 43(4): 428-447(in Chinese with English abstract).
- YU X, YANG S F, CHEN H L, LI Z L, LI Y Q.2017. Petrogenetic model of the Permian Tarim Large Igneous Province. Science China Earth Sciences, 47:1179-1190(in Chinese with English abstract).
- ZHANG C L, LI Z X, LI X H, XU Y G, ZHOU G, YE H M. 2010. A Permian large igneous province in Tarim and central Asian Orogenic blet, NW China: results of a ca. 275 Ma mantle plume?[J]. GSA Bulletin, 122(11-12): 2020-2040.
- ZHANG C L, MA H D, LI H K, ZHU B Y, QIU L, WANG W. 2022. Paleoproterozoic in Quruqtagh terrane in northern Tarim[J]. East China Geology, 43(2): 133-140 (in Chinese with English abstract).
- ZHAO Z X, XU H, JIA Y Q, GAO Y, CHEN H D, GAO J. 2016. Geochemistry and LA-ICP-MS zircon U-Pb age of porphyritic granodiorite in the Beishan orogenic belt in In-

质

ner Mongolia and their geological significance[J]. East China Geology, 37(4): 252-258 (in Chinese with English abstract).

ZUO G C, LIU Y K, LIU C Y. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract).

附中文参考文献

- 陈升平,朱云海.1992.新疆北山石炭纪、二叠纪火山岩岩石 化学及其构造环境分析[J].地球科学——中国地质大学 学报,17(6):647-656.
- 姜常义,程松林,叶书锋,夏明哲,姜寒冰,代玉财.2006.新疆 北山地区中坡山北镁铁质岩体岩石地球化学与岩石成 因[J].岩石学报,22(1):115-126.
- 姜洪颖, 贺振宇. 2022. 北山造山带南部晚古生代花岗岩-闪 长岩的成因与构造意义[J]. 地球科学, 47(9): 3270-3284.
- 姜洪颖, 贺振宇, 宗克清, 张泽明, 赵志丹. 2013. 北山造山带 南缘北山杂岩的锆石 U-Pb 定年和 Hf 同位素研究[J]. 岩 石学报, 29(11): 3949-3967.
- 霍海东,杨祝良,洪文涛.2024.宁芜盆地娘娘山早白垩世黝 方石响岩中黑云母逆反应边结构:岩浆混合触发火山喷 发的矿物学证据[J].华东地质,45(1):115-133.
- 高俊宝,陈俊.2023.新疆东天山石东金矿床成因及找矿标 志[J].地质与勘探, 59(3):521-532.
- 康磊, 计文化, 张超, 王杰, 司国辉, 董浩强, 李文明, 孙吉明,
 郭刚, 陈艳文, 张玉, 苏会平, 张鑫, 胡朝斌, 杨再朝, 康文
 彬, 刘学钧, 吴天圣. 2019. K46E020014、K46E020015 幅
 1:5万区域地质调查报告[R]. 西安: 中国地质调查局西
 安地质调查中心, 69-228.
- 李华芹,陈富文,梅玉萍,吴华,程松林,杨甲全,代玉财. 2006. 新疆坡北基性-超基性岩带 I 号岩体 Sm-Nd 和 SHRIMP U- Pb 同位素年龄及其地质意义[J]. 矿床地质, 25(4):463-469.
- 李煜航,杨兴科,王庆良,崔笃信,季灵运,郝明.2012.新疆北 山矛头山东早二叠世火山岩喷发活动时代厘定及地球化 学特征分析[J].中国地质,39(3):683-694.
- 李中会,李阳,李睿杰,苏航,李凯.2021.大兴安岭火山岩带 中北部中侏罗世中酸性火山岩的厘定及其地质意义[J]. 华东地质,42(3):269-278.
- 陆凡,张勇,张雪辉,莫子奋,吕劲松,武彬.2023.赣东北茶坑 花岗斑岩锆石 U-Pb 年代学、地球化学特征及地质意 义[J].华东地质,44(1):39-50.
- 凌锦兰, 夏明哲, 郭娜欣, 汪帮耀, 夏昭德, 姜常义. 2011. 新疆

北山地区罗东镁铁质-超镁铁质层状岩体岩石成因[J]. 地球化学,40(6):499-515.

- 刘艳荣, 吕新彪, 梅微, 代玉才. 2012. 新疆北山地区坡北镁铁-超镁铁岩体单斜辉石的矿物学特征及其地质意义[J]. 岩 石矿物学杂志, 31(2): 212-224.
- 牛亚卓,魏建设,史冀忠,陈高潮. 2013. 甘肃北山地区北部上 石炭统火山岩 LA-ICP-MS 锆石 U-Pb 年龄及其构造意 义[J]. 地质通报, 32(11): 1720-1727.
- 秦克章,田野,姚卓森,王勇,毛亚晶,王斌,薛胜超,唐冬梅, 康珍.2014.新疆喀拉通克铜镍矿田成矿条件、岩浆通道 与成矿潜力分析[J].中国地质,41(3):912-935.
- 苏本勋,秦克章,孙赫,王恒.2010.新疆北山地区旋窝岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究[J]. 岩石学报,26(11):3283-3294.
- 王洪亮,何世平,张二朋,徐学义,陈隽璐.2005.中国天山一 北山地区晚古生代岩石地层系统厘定及沉积环境分 析[J].地层学杂志,29(S1):541-547.
- 王国强,李向民,徐学义,余吉远,计波,朱涛.2018.北山石炭 纪-二叠纪火山岩成因及构造背景[J].岩石矿物学杂志, 37(6):884-900.
- 王志强,周美娟,黎训飞, 笪昊翔.2024. 高硅花岗岩流体出溶 作用的识别和意义[J]. 华东地质, 45(1): 26-48.
- 汪云亮,张成江,修淑芝.2001.玄武岩类形成的大地构造环 境的 Th/Hf-Ta/Hf 图解判别[J].岩石学报,17(3):413-421.
- 夏林圻,夏祖春,徐学义,李向民,马中平.2007.利用地球化 学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,26(1):77-89.
- 夏昭德,王垚,姜常义,凌锦兰,夏明哲,郭娜欣.2013.新疆北山地区漩涡岭镁铁质-超镁铁质层状岩体岩石学与矿物学研究[J].地质学报,87(4):486-497.
- 肖序常,何国琦,成守德,徐新,李锦轶,郝杰.2004.中国新 疆及邻区大地构造图及说明书[M].北京:地质出版 社,1-61.
- 校培喜, 王兴安, 王育习, 黄玉华, 王升勤, 张汉文, 李育敬, 王 香萍, 陈莉群, 王静平. 2005. 笔架山幅 1: 25 万区域地 质调查报告[R]. 西安: 西安地质矿产研究所, 126-128.
- 谢燮,李文明,孙吉明,李军,黄敏. 2018. 新疆北山地区白山 镁铁-超镁铁岩体 LA-ICP-MS 锆石 U-Pb 年龄、地球化学 特征及其找矿意义[J]. 地质科技通报, 37(6): 11-21.
- 颉炜,宋谢炎,聂晓勇,程松林.2011.新疆坡十铜镍硫化物含 矿岩体岩浆源区特征及构造背景探讨[J].地学前缘, 18(3):189-200.
- 徐文博,张铭杰,包亚文,满毅,李思奥,王鹏.2022. 塔里木克 拉通东北缘二叠纪镁铁质岩浆氧化物与硫化物成矿条件 对比[J]. 地质学报,96(12):4257-4274.
- 徐义刚, 钟玉婷, 位荀, 陈军, 刘海泉, 颉炜, 罗震宇, 李洪颜, 何斌, 黄小龙, 王焰, 陈赟. 2017. 二叠纪地幔柱与地表系

统演变[J]. 矿物岩石地球化学通报, 36(3): 358-373.

- 杨合群,李英,赵国斌,李文渊,王小红,姜寒冰,谭文娟,孙南一. 2010. 北山蛇绿岩特征及构造属性[J]. 西北地质, 43(1):26-36.
- 余明刚, 洪文涛, 刘凯, 段政, 褚平利, 陈荣. 2022.江西德兴银 山中侏罗世火山岩年代学、岩石成因及构造背景[J]. 华 东地质, 43(4): 428-447.
- 余星,杨树锋,陈汉林,历子龙,励音骐.2017.塔里木早二叠 世大火成岩省的成因模式[J].中国科学:地球科

学,47:1179-1190.

- 张传林,马华东,李怀坤,朱炳玉,邱林,王威. 2022. 塔里木北 缘库鲁克塔格地区古元古界——祝贺芮行健先生 90 华 诞[J]. 华东地质, 43(2): 133-140.
- 赵志雄, 许海, 贾元琴, 高勇, 陈海东, 高鉴. 2016. 内蒙古北山 地区斑状花岗闪长岩地球化学、LA-ICP-MS 锆石 U-Pb 年龄及地质意义[J]. 华东地质, 37(4): 252-258.
- 左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及 演化[J]. 甘肃地质学报, 12(1): 1-15.

Discovery and geological significance of the Late Carboniferous volcanic edifices in Baishan of Southern Beishan area, Xinjiang

WANG Jie¹, KANG Lei², YANG Xuanjiang¹, ZHANG Chenbo³, ZU Qian¹, ZHAN Haipeng¹, LI Ling¹, YONG Huahua¹

(1. Northwest Nonferrous Engineering Co., Lth, Xi'an 710038, Shaanxi, China;

2. Xi'an Center, China Geological Survey, Xi'an 710119, Shaanxi, China;

3. Chengdu University of Technology, Chengdu 610059, Sichuan, China)

Abstract: There are lesser research on when the Late Paleozoic rift belt of the Beishan area began to rift. A complete volcanic edifice is identified in the southern Beishan rift belt through $1 : 50\ 000\ regional\ geological\ survey$. The rock association is composed of andesite, dacite, basalt, rhyolite and pyroclastic rocks with the zircon U-Pb age ranging between $313 \sim 300\ Ma$. The volcanic rocks are characterized with high NaO₂ and Mg[#], low CaO and TiO₂, belonging to calc-alkaline series. The REE pattern is distributed in obvious right-tendency with little depletion of Eu (δ Eu=0.72 \sim 1.00), enriched in large ion lithophile elements Rb, Th, K and LREE, and depleted in Nb, Ta, P and Ti. Based on the geochemical characteristics of rocks and key indices such as (Th/Nb)_N and (Nb/La)_N, it indicates that the volcanic rocks were intensely mixed with crust materials during the magma eruption. The sedimentary sequence in clastic rocks infers that it should be formed in an intra-continental environment. Diagrams of Zr/Nb-Nb/Th and Zr/Y-Nb/Y show that the basic volcanic rocks may derived from the tectonic environment associated with mantle plumes. Based on the diagram of Zr/Y-Zr and Th/Hf-Ta/Hf, in combination with the regional geological characteristics, the authors consider that the volcanic rocks might occur in the initial cracking environment of continental rift. This is the earliest age-information of the rift zone reported so far, which indicates that the southern Beishan area has initially entered in the intracontinental initial rift environment in the Late Carboniferous.

Key words: zircon U-Pb age; Late Carboniferous; volcanic rocks; geochemistry; rift zone; Baishan area in Xinjiang