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Abstract: Grain-size distribution data, as a substitute for measuring hydraulic conductivity (K), 
has often been used to get K value indirectly. With grain-size distribution data of 150 sets of 
samples being input data, this study combined the Artificial Neural Network technology (ANN) 
and Markov Chain Monte Carlo method (MCMC), which replaced the Monte Carlo method 
(MC) of Generalized Likelihood Uncertainty Estimation (GLUE), to establish the GLUE-ANN 
model for hydraulic conductivity prediction and uncertainty analysis. By means of applying 
the GLUE-ANN model to a typical piedmont region and central region of North China Plain, 
and being compared with actually measured values of hydraulic conductivity, the relative 
error ranges are between 1.55% and 23.53% and between 14.08% and 27.22% respectively, 
the accuracy of which can meet the requirements of groundwater resources assessment. The 
global best parameter gained through posterior distribution test indicates that the GLUE-
ANN model, which has satisfying sampling efficiency and optimization capability, is able to 
reasonably reflect the uncertainty of hydrogeological parameters. Furthermore, the influence 
of stochastic observation error (SOE) in grain-size analysis upon prediction of hydraulic 
conductivity was discussed, and it is believed that the influence can not be neglected.
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Introduction

The southwest part of the North China Plain 
(NCP) has been widely covered by Cenozoic un-
consolidated sediments. For each local area of the 
plain, Quantization of hydraulic conductivity (K) 
at different scales can provide scientific support for 
groundwater exploitation and pollutant transport 
model-based groundwater resources assessment 
& pollution remediation. At present, in addition to 
laboratory tests, there are more numerical simula-
tion inversions to be used to obtain hydraulic con-
ductivity (Smiles and Youngs, 1963; Namunu et al. 
1989; JI Rui-li et al. 2016). Despite some merits, 

those methods have such demerits as high costs 
and limited applications due to regional scales 
(Koekkoek and Booltink, 1999; DONG Pei, 2010; 
Alfaro Soto et al. 2017).

Since the grain-size distribution is the most 
basic property of sediments and is easily available, 
researchers both at home and abroad attach much 
importance to the relationship between the grain-
size distribution and hydraulic conductivity to 
predict the numerical value of hydraulic con-
ductivity (Mahmoud et al. 1993; Salarashayeri and 
Siosemarde, 2012; FAN Gui-sheng et al. 2012). As 
a matter of fact, much attention has been paid to 
developing empirical or semi-empirical formulas 
on the basis of grain-size distribution data to 
provide reliable predication of the K value since 
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the end of 19th century. The Hazen formula (David 
and Asce, 2003) is the earliest model to predict 
K value that connects the grain size distribution 
with hydraulic conductivity through empirical 
coefficient. From then on, researchers have deve-
loped more empirical prediction formulas by 
selecting a certain effective grain size as their 
parameters, which can be applied to different 
kinds of samples (Russell, 1989; Justine, 2007). 
Compared with other methods of determining the 
K value, grain-size data has often been used to 
indirectly obtain the K value for it has been one of 
the most economical approaches to get K value, 
and moreover, it does not have any dependence 
on hydrogeological conditions of study areas 
during the computing process (Awad and Bassam, 
2001). However, there are certain risks to use 
these empirical formulas to predict K value. For 
instance, for the well-konwn KC equation, the 
constant CK-C has been proved not to be a constant 
but a function between porosity and fractal di-
mension, which changes positively with porosity 
increase (XU Peng et al. 2011), thus enlarging the 
uncertainty of K value prediction of the equation. 
Furthermore, the most important limitation of these 
empirical and semi-empirical formulas is that all of 
them use only one or several parameters of grain-
size distribution data, which may omit or neglect 
information that is included in complete grain-
size distribution data system and correlated with 
hydraulic conductivity prediction.

In recent years, researchers have taken high 
interest in developing models that can be con-
trasted with grain-size distribution relationship to 
calibrate the K value. Artificial neural net (ANN), 
which serves as a widely used computational tool 
in a wide range of research areas, has played a 
satisfying role in the inversion calculation of the 
K value. Some researchers have employed ANN 
technology to establish hydraulic property models 
of the rock mass or soil, including the K value as a 
function of grain-size distribution. LI Shou-ju et al. 
(2002) constructed a numerical method of K value 
recognition based on ANN technology and water-
head observation data of rock seepage field as well 
as a priori information of pumping tests, which 
has empirically been proved to be able to enhance 
the accuracy of water-head prediction. Nakhaei 
(2005) used 8 cumulative grain-size fractions for 
predicting log-transformed hydraulic conductivity 

for loamy sand with ANN technology, indicating 
that individual modeling of different soil types 
is superior to joint modeling. Hasan et al. (2006) 
used grain-size distribution, bulk density, and three 
different kinds of porosity as input parameters 
to build ANN model and multi-linear regression 
model for calculating K value of vadose zone 
soil, indicating that compared with multiple-linear 
regression model, ANN model produced more 
accurate results. TANG Xiao-song et al. (2007) 
used coarse-grained soil of Three Gorges Reservoir 
area as samples and got K values of different 
graduation soil through seepage experiments. 
Then, they employed the powerful nonlinear and 
dynamic processing capacity of ANN to predict 
K values. Trough a comparison between the 
predicted K values and the ones from the seepage 
experiments, the result indicated that it was feasible 
to use ANN to predict K of coarse-grained soil. Isik 
et al. (2012) used an ANN models which had three 
input parameters and one output parameter to 
predict the KL value of coarse-grained soils with 
different calculation methods of ANN, suggesting 
that those different calculation methods of ANN 
had almost the same prediction capability.

Nowadays most of applications of ANN for 
predicting K values are confined within the soil 
research area; there are few ANN applications, 
which take contents of clay, silt and sand as input 
variables of grain-size distribution, used for 
regional water resources assessment. Furthermore, 
in the framework of stochastic modeling and 
risk assessment, the quantification of uncertainty 
variables related to these predictions is of equal 
importance, which seems to be rarely mentioned 
and noticed. Therefore, this study combines the 
general likelihood uncertainty estimation (GLUE) 
with ANN technology to establish a holistic model 
for the aquifer hydraulic conductivity inversion 
and related uncertainty analysis, which takes 
complete grain-size distribution data of samples 
as input parameters of ANN model to predict 
hydraulic conductivity. As a long-term used non-
linear modeling approach, it is not uncommon to 
apply the ANN model to deduce hydrogeological 
parameters; however, it is not so common to couple 
ANN with GLUE as an overall model for the K 
value prediction and its uncertainty analysis. This 
paper tries to make an empirical study in an area of 
North-China Plain by coupling ANN model with 
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GLUE. In addition, besides common uncertainty 
analysis of parameter, in recent years researchers 
has paid close attention to the influence of stoch-
astic observation error on simulation results (WANG 
Dong et al. 2009; LU Le and WU Ji-chun, 2010), the 
study also adequately discussed the influence.

1 Model construction

The model is established through the coupling 
between ANN and GLUE. The details are illustra-
ted as follows.

1.1 ANN technology

As a deeply-applied computing tool in a wide 
range of research areas, the ANN can be regarded 
as a form of nonlinear regression, and multi-layer 
feedforward network has been proved to possess 
the property of universal approximation (Haykin, 
2004). Some particular ANN models (one type of 
their structures is shown in Fig. 1) are capable of 
better predicting hydraulic conductivity (Erzin et 
al. 2009; Park, 2011; Das et al. 2012). 

 
Fig. 1 Neural network architecture

1.2 Bayesian inference

The phenomenon of equifinality for different 
parameters (Keith, 2006) leads to very large un-
certainty for optimal selection of parameters of 
hydrogeological models. When the degree of un-
certainty needs to be expressed, probability and 
probability distribution is the best language (MAO 
Shi-song, 1999). As a method of probability an-
alysis, Bayesian method currently is less applied in 
hydrogeological parameter identification process (LU 
Le et al. 2008). The Bayesian method performs its 

statistic inference based on the general information, 
sample information and a priori information, and its 
density function is shown in Equation (1).
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π(θ) is a prior probability that is the K value 

probability distribution obtained from rock and soil 
sample test with definite particle size component;

π(θ|x) is a posterior probability that is the 
proba-bility that a rock and soil sample with an 
uncertain particle size component has a certain K value.

1.3 MCMC-ANN coupling model

Markov chain Monte Carlo method (MCMC) 
was introduced into parameter uncertainty research 
to estimate the Bayesian distribution sampling of 
parameters in the 1990s (Smith and Robert, 1993). 
Compared with Monte Carlo method, MCMC’s 
sampling efficiency is enhanced dramatically and the 
calculation work is remarkably reduced (GONG 
Guang-lu and QIAN Min-ping, 2003). The sing-
le component adaptive metropolis algorithm 
(SCAM) (Haario et al. 2005) is adopted here to 
replace Monte Carlo method of traditional GLUE 
in the paper. SCAM counts the parameter set as a 
multidimensional vector in which each component 
represents a parameter. The predicting model of 
hydraulic conductivity constructed in the study 
is a coupling model between three-layered ANN 
and improved GLUE. An ANN model sample set 
is generated by considering the following ran-
dom variations of the model parameters: (i) the 
variation range of each grain-size composition in 
the given study area; (ii) the quantity variation of 
the model hidden nods; (iii) initial values of the 
network weight and bias. The specific steps of 
model construction is as follows: (1) according 
to borehole data of the study area and related 
literature review, the range of parameter values of 
the model is determined; (2) a likelihood function 
needs to be selected, and the model efficiency 
coefficient R2 is adopted here: 
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the mean value of actually measured hydraulic 
conductivity series; N represents the length of the 
measured series; (3) according to a priori distri-
bution of parameters, the initial sample X0 of ANN 
model is randomly generated; (4) for the i th 

component of the tth sample, new sample com-
ponent zi is generated by using one-dimensional 
normal distribution N(Xi

t-1’V i
t) , and the meaning 

and calculation method of parameters can be seen 
in the above-mentioned 24th literature review; (5) 
new candidate sample component zi is accepted by 
a given probability α:

  

   (3)

(6) steps 4 and 5 are repeated until all com-
ponents of the tth sample is regenerated; (7) steps 
4 to 6 are repeated until sufficient samples are 
obtained, and those samples need to be adjusted 
to reach the prediction accuracy set in advance; 
(8) selected likelihood function values are taken 
as measuring standard, and the samples that are 
not up to the standard are abandoned, and then 
the contrastive scatter plot between prediction 
values and measured values needs to be drawn; (9) 
it is required to define upper and lower bound of 
predicted K value and renew likelihood function 
value. Based on the defined valve value and the 
ranking order of likelihood function values, the 
ANN model uncertainty of given confidence level 
should be estimated. 

2 Application example

The constructed GLUE-ANN coupling model 
has been applied to predict the K value of a study 
area in the NCP. Details are illustrated as follows:

 
2.1 Introduction to the study area 

The study area is located in the southeast of 
Shijiazhuang city, southwest of Hebei province. 
It is situated in the northern latitude of 37°45′-
37°51′ and the eastern longitude 114°34′-114°40′ 
with an area of 126.78 km2, which is part of the 
inclined piedmont plain region where east Taihang 
Mount meets the NCP. The area belongs to the 
alluvial-proluvial-fan groundwater system of 
Hutuo River and Huaisha River of Ziya River 

basin, in which the groundwater mainly lies in the 
pore of quaternary unconsolidated rock layers. The 
aquifers below the area transit from single-layer, 
bi-layer to multi-layer structures. In the horizontal 
direction, single-layer thickness of the aquifers 
gradually thickens from west to east, its grain 
size becomes coarser, and the number of layers 
increases with the water yield property getting 
stronger. In the vertical direction, the grain size in 
the upper and lower layers is finer with relatively 
thinner aquifers, compared with coarser grain size 
and thicker aquifers in the middle layers.  

Fig. 2 Study area and borehole distribution

2.2 Data measurement

Six boreholes (zk05, zk06, zk07, zk11, zk14 
and zk23) were selected in this study, and their 
distribution is shown in Fig. 2. High-recovery and 
low-disturbance boosting core sampler was used 
to take 0.4 m undisturbed soil samples every 2 m, 
and then DZS70 constant head permeameter and 
TST55 variable head permeameter were applied to 
test the K value of sandy soil samples and clay soil 
ones. During tests, deionized water was injected 
to the bottom of the samples under a constant 
pressure and K value was determined by flow 
measurements in accordance with the Darcy’s law. 
For high clay contents, the measurement could last 
for 2 to 3 weeks until steady flow was achieved. 
In the case of more silty or sandy samples, a 1 m 
high water column was employed with the testing 
time not less than one day and the accuracy could 
reach about 10%. Meanwhile, samples used for grain 
size analysis were taken from each undisturbed soil 
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sample. There were altogether 351 soil samples for 
grain size analysis, including 170 sets used for obtain 
contrastive data between grain size composition and 
actually measured values of hydraulic conductivity.

2.3 Generation of ANN model samples

By taking the model efficiency coefficient R2 

as the likelihood function, the SCAM method 
was adopted here to replace the Monte Carlo to 
take samples. 12 000 ANN model samples were 
taken which contained actually measured values 
of grain size data. The a priori distribution of each 
parameter was tested by the Bayesian assumption, 
assuming that parameters within their value range 
subject to uniform distribution, as shown in Table 1.

Table 1 Parameters in the ANN model

Parameter Physical meaning Value range
D2000+ Gravel content, diameter more than 2 mm 0~0.02
D500 Coarse sand content, diameter between 0.5~2 mm 0.01~0.46
D250 Medium sand content, diameter between 0.25~0.5 mm 0.01~0.82
D75 Fine sand content, diameter between 0.075~0.25 mm 0.02~0.51
D5 Silt content, diameter between 0.005~0.075 mm 0.01~0.68
D5- Clay content, diameter less than 0.005 mm 0.01~0.65
N2 The number of hidden layer nodes 7~21

Wp
i,j Network weight initial value -1~1

bp
i Bias -1~1

2.4 Model training and uncertainty analysis 

150 sets of data sets from borehole zk05, 
zk06, zk07, zk11, zk14 and zk23 were applied 
to train the models. For each K value of the 150 
samples, it was assumed that the ensemble of 
model samples consisted of 1 000 ANN models. 
The number of models was set to 1 000 so that the 
estimated distribution can keep balance to achieve 
reasonable convergence and balanced calculation 
load. All of the analyses and calculations were 
processed by using relevant functions of neural 
network BP toolkit in the Matlab environment. 
Whole grain size fractions, initial weights, bias 
data, and the number of node in hidden layers 
were used as input parameters of the network and 
output data was taken as the samples’ hydraulic 
conductivity. Standardization of input is capable of 
speeding up neural network training and reducing 
the probability of being blocked in the local 
optimization process, so the input data of network 
was normalized actually-measured values of grain 
size fractions. In order to ensure that output data 
could range from 0 to 1, all the transfer functions 
used in hidden layers and output layers were the 
logsig functions.

Levenberg-Marquart rule was adopted to train 
the network and the maximal training step was set 

to 2 500. Error values were obtained according to 
Equation (4):

                             (4)

Where: E value is 10-14 m/s. In the formula: E 
is the total error between actually measured and 
output values; pl are the grain size components; 
tk are actually measured values; yk are output 
values. Based on related literature review and 
the testing results, the minimum of hydraulic 
conductivity can be 1.12*10-9 m/s, and it was used 
as minimum target value, and after squaring it, 
the error accuracy reached 10-18 m/s. Therefore it 
is reasonable to value the total error E as 10~14 
m/s. For minimizing the error, initial weight and 
bias needed to be reasonably selected. Even-
distributed decimals between -1 and 1 are generally 
chosen. The number of node in hidden layers has 
larger random, and its optimal number depends 
on complexity of problem, which is usually 
determined by trial and error. Generally speaking, 
the number does not exceed twice as much as the 
number of input nodes.

After training the accuracy of the model 
reached the requirement. The value of likelihood 
function R2 was 0.7. After those ANN model 
samples below the value were abandoned, 5 520 
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ANN model samples were finally obtained. When 
likelihood function value was 0.82, the scatter 
diagram of output values vs. measured values is 
shown in the Fig. 3.

Fig. 3 The output versus measured value scatter 
plots (R2=0.82)

The critical value of model efficiency coeffi-
cient took 0.91 when uncertainty of model para-
meter was analyzed, and zero was assigned to 
the likelihood values of parameter sets below the 
critical value. The likelihood values of parameter 
sets above the critical value were normalized, 
and sorted by size of the likelihood values, the 
uncertainty range of models that are below the 
90% confidence level needs to be calculated. 

2.5 Application

It’s required to use the before-mentioned model 
to predict the hydraulic conductivities of 20 
samples from the borehole zk11 of the same study 
area and the comparison results of predicted and 
measured values are shown in Table 2.

Table 2 Comparison between the ANN model’s output and measured values 

Sample 
number

Gravel Coarse sand Medium sand Fine sand Silt Clay Predicted 
K 10-6

 (cm/s)

Measured 
K 10-6 
(cm/s)

Relative 
error %

>2 2~0.5 0.5~0.25 0.25~0.075 0.075~0.005 <0.005

content %

zk11-01 1.15 4.05 12.33 5.10 64.06 13.31 18.01 18.33 1.75

zk11-02 0.00 4.10 14.59 8.18 57.12 16.01 13.34 13.59 1.84

zk11-03 0.00 3.35 8.09 10.17 33.12 45.27 2.42 2.98 18.79

zk11-04 0.53 7.26 20.20 4.11 49.07 18.83 9.29 9.10 2.08

zk11-05 0.00 10.32 13.52 24.97 42.15 9.04 28.91 28.47 1.55

zk11-06 0.00 15.16 46.94 28.05 8.14 1.71 602.56 665.30 9.43

zk11-07 0.00 8.20 1.08 3.34 62.30 25.08 2.65 2.51 5.58

zk11-08 1.00 1.13 1.19 5.17 65.40 26.11 3.80 3.92 3.06

zk11-09 0.00 31.22 39.14 1.35 26.54 1.75 536.11 589.78 9.10

zk11-10 0.00 1.26 5.79 1.62 54.45 36.88 1.87 1.97 5.08

zk11-11 0.00 32.49 27.55 6.88 30.87 2.21 410.41 456.98 10.19

zk11-12 0.00 28.01 38.40 10.02 21.91 1.66 445.09 415.70 7.07

zk11-13 0.00 20.34 42.15 4.37 31.51 1.63 404.02 448.31 9.88

zk11-14 0.00 2.30 2.27 13.25 35.90 46.28 2.21 2.89 23.53

zk11-15 0.00 3.36 1.33 1.03 54.73 39.55 1.23 1.36 9.56

zk11-16 0.00 39.22 20.68 7.21 30.70 2.19 394.80 439.18 10.11

zk11-17 0.00 24.98 55.17 11.15 6.97 1.73 589.85 644.71 8.51

zk11-18 0.00 2.24 1.12 2.33 56.66 37.65 1.18 1.05 12.38

zk11-19 0.00 1.27 2.97 2.10 60.15 33.51 0.88 0.92 4.35

zk11-20 2.06 5.10 4.55 8.51 53.28 26.50 5.03 5.24 4.01

In Table 2, K values were measured by DZS70 
constant head permeameter; grain-size composition 

contents were calculated based on the grain-size 
testing report made by the monitoring center of 
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groundwater & mineral water & environment, 
Ministry of Land and Resources, China. 

The test data in the Table 2 was obtained from 
20 sedimentary samples of aquifer and aquitard 
at various depths in the borehole zk11, which 
includes various lithologies from coarse sand, fine 
sand to silt clay. The predicted results showed that 
for silt and fine sand samples (in zk11-01, zk11-02, 
zk11-05, zk11-07 and zk11-19, etc.), ANN model 
has higher calculation accuracy with relative 
error from 1.55% to 5.58%. Most of the order of 
magnitude of predicted hydraulic conductivity 
values of these samples are 10-9 m/s. With the 
content of clay in samples rising, the predicted 
orders of magnitude drop a little, which indicates 
the model has higher sensitivity to clay content. 
For coarse sand and medium coarse sand samples 
(in zk11-06, zk11-09, zk11-12 and zk11-13, etc.), 
the relative errors of predicted values are between 
7.07% and 10.19%, and the prediction accuracy is 

a little lower than that of silt samples. Among all 
the samples, the predicted and measured values of 
zk11-06 and zk11-17 are the highest, which shows 
that the BP neural network can better reflect the 
rule that the higher sorting capability of the grain 
is, the larger their hydraulic conductivity is. For 
silt clay and some silt samples that have higher 
clay content (zk11-03, zk11-10, zk11-14 and zk11-
15, etc.), the relative errors of predicted values of 
ANN model are between 9.56% and 23.53%. The 
relative errors and variation range are relatively 
larger, which indicates that the model needs to be 
further improved.

In order to validate the model’s applicability to 
variant sedimentary environment, the established 
model above was used to predict K values of 7 
sedimentary samples in a scientific borehole of 
central region of NCP, and the comparison results 
of predicted and measured values are shown in 
Table 3. 

Table 3 The comparison between the ANN model’s output and measured values of samples from 
middle region of NCP

Sample 
number

Gravel
Coarse 
sand

Medium 
sand

Fine sand Silt Clay Predicted K 
10-6

(cm/s)

Measured 
K 10-6

(cm/s)

Relative 
error

%
>2 2~0.5 0.5~0.25 0.25~0.075 0.075~0.005 <0.005

content %

S18-01 0.00 23.52 20.58 33.54 12.25 10.11 17.33 20.17 14.08

S18-02 0.00 25.08 17.41 45.88 9.38 2.25 398.75 475.32 16.11

S18-03 0.00 25.49 22.72 28.10 10.89 12.80 42.36 36.74 15.30

S18-04 0.00 29.37 25.26 21.65 14.17 9.55 31.91 40.47 21.15

S18-05 0.00 28.90 19.21 41.20 8.92 1.77 332.97 412.55 19.29

S18-06 0.00 28.83 19.88 37.21 11.12 2.96 274.10 376.61 27.22

S18-07 0.00 41.28 22.43 17.57 4.22 14.50 13.73 18.39 25.34

In Table 3, K values were measured by DZS70 
constant head permeameter; grain-size composition 
contents were calculated based on the grain-size 
testing report made by the monitoring center of 
groundwater & mineral water & environment, 
Ministry of Land and Resources, China.

In Table 3, seven sedimentary samples of borehole 
S18 that were obtained from aquifer and aquitard 
in different depth are contained, these samples 
consist of coarse sand, medium sand and fine sand 
et al. The data in the table shows that the relative 
errors of prediction results of GLUE-ANN model 
are between 14.08% and 27.22%, the prediction 

accuracy also conform to basic requirements of 
groundwater resources evaluation.

Posterior distributions of some models’ para-
meters that were obtained by using improved 
GLUE are shown in Fig. 4, which reflect value 
range probability of parameters in the whole 
domain of definition. As the figure shows, the 
high probability areas of parameters’ posterior 
distribution are discontinuous, and the areas of 
global optimum are easily determined from the 
diagram. For instance, the posterior distribution 
of hidden node number appears to reach relatively 
high probability value when the number is around 
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14, which corresponds to the number of hidden 
node of hidden layers used in this study when the 
model efficiency coefficient is at higher levels. For 
most of the models, posterior distributions of their 
parameters have higher searching performance 

because of the application of SCAM method. The 
posterior distribution of D5, however, appears 
to be flat, indicating that the model still needs to 
be improved to enhance its sensitivity to some 
parameters. 

Fig. 4 Posterior probability distribution of GLUE-ANN model’s parameters

When R2 is values as 0.91, uncertainty range 
of ANN model coefficient at the 90% confidence 
level is shown in Fig. 5, which includes the 
actually-measured values of hydraulic conductivity 
and GLUE-ANN model’s prediction values. As 
shown in the figure, all of the prediction values are 
within two orders of magnitude of corresponding 
actually-measured values, and furthermore, most of 
the differences are within one order of magnitude. 
When K values are between 10-7 m/s and 10-8 m/s, 
the model prediction values have less deviation, 
demonstrating that the prediction and uncertainty 
analysis made by the constructed model are 
satisfying. 

3 Stochastic observation error and 
uncertainty

In grain-size test of sedimentary sample, 
instrument’s measuring error and inexpert com-
mand of measuring skill can all cause observation 
error. Because the observation error is stochastic, 
using the data with stochastic observation error 
(SOE) to simulate aquifer parameter can lead to 
uncertainty of simulation results.

In order to be compared with uncertainty of 
simulation results with SOE, the uncertainty of 

a sedimentary sample for reference is analyzed 
firstly. The contents of medium sand and fine sand 
of the assumed reference sample are respectively 
22.5% and 35.10%. After using MCMC to sam-
ple the reference sample, GLUE-ANN model 
is applied to predict and evaluate parameter 
uncertainty. When the number of samples was 
beyond 45 000, the series of reference sample 
converge to posterior distribution. As shown in 
Fig. 6.

Fig. 5 Actually-measured K values versus the 
            GLUE-ANN model prediction and uncer-

tainty estimation
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For inspecting the influence of SOE in grain-
size analysis upon uncertainty of model output, 
the relative error that mean is 0 and variance 
is 0.001 is artificially added to the observation 
data of medium sand and fine sand of reference 
samples. Simulation and uncertainty analysis is 

performed using the observation data with SOE 
thereby to explore the effect of SOE on uncertainty 
of simulation results. When the number of sam-
ples exceeds 30 000, the samples converge to para-
meter’s posterior distribution as shown in Fig. 7.

Fig. 6 The posterior distribution of refence sample

Fig. 7 The posterior distribution of reference samples with SOE

As shown in Fig. 7, compared to reference 
sample’s posterior distribution (Fig. 6), the pos-
terior distributions of the two parameters after 
adding SOE to them appear more scattered. It 
is evident that SOE has significantly increased the 
uncertainty of posterior parameters and consequently 
increased uncertainty of simulation results.

4 Conclusions

An improved GLUE-ANN model has been 
established in this study by coupling ANN 
technology and MCMC method, which replaces 
the Monte Carlo algorithm in traditional GLUE 
method. Compared with the Monte Carlo method, 
SCAM possesses superior searching performance 
for posterior distribution of model parameters, 
ensuring that the MCMC method can both search 
the global scale of posterior distribution and 
locate the extent of optimum values of parameters. 
Results of this study show that the improved 
GLUE-ANN model is capable of effectively pre-
dicting the K value and analyzing uncertainty of 
the parameters.

The advantages of the GLUE-ANN model 
created in the paper lies in taking fully into account 
the influence of different grain sizes and their 
content on permeability and the availability and 
universality of grain-size data in hydrogeological 
borehole data. The input parameters of the model 
adopted a complete grain size component con-
sisting of clay, silt and gravel that can reflect the 
real soil structure in the study area. Therefore, 
the K values predicted by the model are closer to 
the value in natural state. If larger quantities of 
typical samples are available, predictions from 
the established model may become more rational. 
The study has not taken organic matter, carbonate 
content, soil porosity and its density as input 
parameters, and if these factors were considered, 
the prediction accuracy could be further enhanced. 
This reflects that there are many influencing factors 
on the hydraulic conductivity calculation leading 
to the uncertainty of predictions, which needs to be 
further studied.

Overall, the prediction results made by the 
GLUE-ANN model are relatively closer to actually-
measured values with satisfying uncertainty esti-
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mation, which can serve as a precise way of pre-
dicting the hydraulic conductivity. It has been 
proved that it is capable of accurately predicting 
the hydraulic conductivity in the study area and 
other similar alluvial-proluvial plain regions and 
providing fundamental data for the improvement 
of solute transport model. 

By way of adding SOE to observation data, the 
influence of SOE on simulation results is markedly 
reflected, which indicates that the uncertainty 
of simulation results caused by SOE can not be 
neglected.
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