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Abstract: Rock thermal  physical  properties  play  a  crucial  role  in  understanding  deep  thermal  conditions,
modeling the thermal structure of the lithosphere, and discovering the evolutionary history of sedimentary
basins. Recent advancements in geothermal exploration, particularly the identification of high-temperature
geothermal  resources  in  Datong  Basin,  Shanxi,  China,  have  opened  new possibilities.  This  study  aims  to
characterize the thermal properties of rocks and explore factors influencing thermal conductivity in basins
hosting high-temperature geothermal resources. A total of 70 groups of rock samples were collected from
outcrops in and around Datong Basin, Shanxi Province. Thermal property tests were carried out to analyze
the rock properties, and the influencing factors of thermal conductivity were studied through experiments at
different temperature and water-filled states.  The results indicate that the thermal conductivity of rocks in
Datong,  Shanxi  Province,  typically  ranges  from 0.690  W/(m·K)  to  6.460  W/(m·K),  the  thermal  diffusion
coefficient ranges from 0.441 mm2/s to 2.023 mm2/s, and the specific heat capacity of the rocks ranges from
0.569  KJ/(kg·°C)  to  1.117  KJ/(kg·°C).  Experimental  results  reveal  the  impact  of  temperature  and  water
saturation  on  the  thermal  conductivity  of  the  rock.  The  thermal  conductivity  decreases  with  increasing
temperature and rises with high water saturation. A temperature correction formula for the thermal conduc-
tivity  of  different  lithologies  in  the  area  is  proposed  through  linear  fitting.  The  findings  from  this  study
provide essential parameters for the assessment and prediction, development, and utilization of geothermal
resources in the region and other basins with typical high-temperature geothermal resource.

Keywords: Datong  Basin; Rock  thermal  conductivity; Thermal  diffusivity; Specific  heat  capacity; Influ-
encing factors
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 Introduction

The thermophysical  parameters  of  rocks  encom-
pass crucial  characteristics  that  define  the  genera-
tion, storage,  and  transfer  of  heat  within  the  vari-

ous  circles  of  the  Earth.  These  parameters  mainly
include  thermal  conductivity,  thermal  diffusion
coefficient and specific heat capacity of rocks (Lei
et  al.  2018).  The  thermal  physical  properties  of
rocks  play  a  vital  role  in  studying  the  thermal
condition  of  the  deep  Earth,  the  thermal  structure
of  the  lithosphere,  the  distribution  characteristics
of  the  geothermal  field,  and  predicting  thermal
reservoir  resource  quantities  and  heat  energy
extraction  rates  in  geothermal  fields  (Seipold,
1998; Qiu et al. 2002; Ma et al. 2019; Wang et al.
2023; Liu et al. 2023).

In  recent  years,  many  scholars  globally  have
conducted research  on  the  thermophysical  proper-
ties of rocks, with a primary focus on regional test-
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ing and analysis of these properties,  as along with
factors  influencing  the  thermal  conductivity  of
rocks.  Notable  regions  in  China  where  regional
rock  thermophysical  property  tests  have  been
conducted include the Northwest China Basin (Qiu
et  al.  2002),  Erlian  Basin  (Yu  et  al.  2020),
Songliao Basin (Li  et  al.  2023),  Ordos Basin (Cui
et  al.  2019),  Beijing  (Lei  et  al.  2018),  Guizhou
(Song  et  al.  2019; Wei  et  al.  2022)  and  others.
Studies on factors affecting the thermal conductiv-
ity  of  rocks  encompass  both  internal  factors  (rock
components  and  structure)  and  external  factors
(temperature  and  pressure)  (Zhu  et  al.  2022).
Previous research results indicate that: 1) the ther-
mal  conductivity  of  rocks  increases  with  quartz
content  (Song  et  al.  2019; Jesse,  2023)  and
decreases  with  porosity  (Song  et  al.  2023), show-
ing a proportional relationship to mineral grain size
(Tavman,  1996);  2)  rock  thermal  conductivity
decreases  with  increasing  temperature  (Hans-
Dieter  Vosteen,  2003;  Wu  et  al.  2022)  and
increases  with  increasing  pressure  with  the  latter
exerting  a  smaller  effect  on  thermal  conductivity
(Seipold  and  Huenges,  1998);  3)  the  two  factors
offset to some extent in high-temperature and high-
pressure environments.

In  recent  years,  extensive  work  related  to  the
exploration  and  development  of  geothermal  reso-
urces has taken place in the Datong Basin, Shanxi
Province (Shi, 2019; Zhou, 2021; Pan et al. 2022).
Notably,  in  March  2020,  the  construction  of  the
DR1 geothermal well  in Tianzhen, in the northern
part  of  the  Datong  Basin,  explored  high-tempera-
ture geothermal fluids at a borehole temperature of
160.2°C (Zhou, 2021). The geothermal wells in the
northern part of the Datong Basin were constructed
in  the  same  area.  With  ongoing  exploration  pro-
gress,  there  is  a  need  to  deepen  basic  research
related to  geothermal  resources  within  the  Datong
Basin. This includes conducting rock thermophysi-
cal  property  testing  and  analysis  in  the  region  to
gain a more accurate understanding of the thermo-
physical property distribution of the thermal reser-
voir  lithology.  In  this  paper,  rock  samples  were
collected from outcrops in the Datong Basin and its
surrounding  areas,  spanning  from  the  Paleozoic
boundary to the Quaternary System. Rock thermal
property  tests,  experiments  and  analyses  were
conducted to study the changing law of rock ther-
mal conductivity concerning influencing factors in
the area. The results will provide essential parame-
ter  bases  for  the  assessment  and  prediction  of
geothermal  resources  in  the  region  and  for  the
development  and  utilization  of  the  geothermal
resources.

 1  Regional  geothermal  geological
background

The  Datong  Basin  is  situated  within  the  North
China Craton,  characterized by an eastern belt,  an
intermediate  transition  zone,  and  a  western  belt.
Specifically,  the Datong Basin is  positioned along
the western margin of the middle part of the inter-
mediate transition zone (Zhong et al. 2021), recog-
nized as a Cenozoic faulted basin (Cen et al. 2015).
During the Mesozoic, significant lithospheric thin-
ning and craton  disruption  occurred  in  the  eastern
part of the North China Craton produced (Wu et al.
2005; Zhu et al. 2018). The Datong Basin, located
at  the  northern  edge  of  the  Central  Transform
orogenic  belt,  served  as  the  transition  region  con-
necting  the  Craton  disruption  and  the  stabilized
Craton. This  region  experienced  significant  litho-
spheric  thinning  and  upwelling  of  the  soft  fluvial
zone,  acting  as  a  heat  source  and  conduit  for  the
formation of regional geothermal resources (Xu et
al. 2015; Feng et al. 2022).

While  Datong  Basin  exhibits  many  missing
strata,  the  surrounding  areas  have  more  complete,
from old to new, including the Jining Group of the
Paleozoic,  the  Great  Wall  System  and  the  Jixian
System  of  the  Upper  Proterozoic,  the  Cambrian,
Ordovician,  Carboniferous,  and  Permian  of  the
Paleozoic,  the  Jurassic  and  Cretaceous  of  the
Mesozoic, the Paleocene and Neocene of the Ceno-
zoic,  and  the  Quaternary  of  the  Paleocene  and
Neoproterozoic  (Liu  et  al.  2021).  The  Paleozoic
Jining  Group,  consisting  of  mafic  rocks  and
gneisses,  forms  the  basement  of  the  Basin,  and  is
primarily exposed in the eastern edge and northern
part of  the  basin.  Notably,  this  formation  consti-
tutes the lithology of the Tianzhen-Yanggao high-
temperature geothermal resource thermal reservoir
(Zhou,  2021).  The  Upper  and  Middle  Paleozoic
mainly comprises  dolomites,  presented  in  Guan-
gling and Yangyuan. The Paleozoic Cambrian and
Ordovician  consist  of  carbonate  rocks,  distributed
in  Hunyuan  and  Lingqiu.  The  Carboniferous  and
Permian  strata  are  mainly  composed  of  clastic
rocks,  mudstone  and  carbonate  rocks,  distributed
west of the line of goose feather mouth - Louzigou
in  Huairen  County.  The  Mesozoic  Jurassic  strata
are predominantly clastic rocks and volcanic sedi-
mentary rocks, while the Cretaceous strata are clas-
tic rocks. Neoproterozoic strata are developed with
Hannauba  basalt,  clay  and  gravel  layers,  mainly
distributed  in  Fengzhen  and  Yangyuan  Counties.
The quaternary strata mainly comprise loose accu-
mulations,  including  the  Pleistocene  Shuntian
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basalt, a significant stratum in China, and the Pleis-
tocene Zhutian Basalt (Shi, 2019; Liu et al. 2021).

The  Datong  Basin  geothermal  system  operates
as  a  high-temperature  convection-conduction  geo-
thermal  system  (Zhou,  2021). The  thermal  reser-
voirs within the geothermal field primarily consist
of Paleozoic  metamorphic  rocks,  Tertiary  sand-
stones, and  Ordovician  greywacke  thermal  reser-
voirs  (Han  et  al.  2018).  This  classification  places
the  geothermal  filed  under  the  category  of  a
medium  and  shallow  buried  type,  economically
suitable for exploitation (Wang, 2014), Covering a
total  area  of 5,028.061 km2, the  basin  boasts  rela-
tively abundant geothermal resources. The geother-
mal resources in the area are categorized based on
thermal  storage  characteristics  into  fissure-type
banded thermal storage and pore-type layered ther-
mal storage (Pan et al. 2022).

Within  this  classification,  the  Neoproterozoic
system  exhibits  four  sets  of  sandstone  thermal
reservoirs in the upper, middle, and lower sections
of  the  South  Yulin  Formation  and  the  Kouzhai
Formation, distributed across the region, except for
the  Sanggan  River  West  Bulge  (Pan  et  al.  2022).
Available  data  indicate  that  the  gneiss  thermal
reservoirs of  the  Taikooji  gneisses  are  predomi-
nantly  found  in  the  Tianzhen−Yanggao  fissure
zone geothermal  field  and  the  Maojiaosapon  frac-
ture  bulge  geothermal  field  (Zhang  et  al.  2016).
Ordovician−Cambrian  tuff  thermal  reserves  are
concentrated in Shuo County break-convex geothe-
rmal  field.  Quaternary  thermal  reservoirs,  mainly

located  in  Tianzhen  Mawenqi−Shui  Bucket  Tem-
ple  Village  and  the  area  of  Pingshan  Village  in
Yanggao County, consist of shallow thermal reser-
voirs  composed  of  Quaternary  loose  sediments
(Pan et al. 2022) (Fig. 2).

 2  Sample collection and testing

In  this  study,  a  total  of  70  sets  of  rock  samples
were  collected,  covering  a  diverse  range  of  strata
from the  Archean,  Proterozoic,  Paleozoic,  Meso-
zoic  and  Cenozoic  eras.  The  collected  lithologies
predominantly included  gneiss,  granulite,  meta-
granulite, diabase, metamonzonitic granite, granite,
basalt,  marble,  sandstone,  limestone,  dolomite,
shale, mudstone, marl, etc. The sampling locations
encompassed  Tianzhen  County,  Yanggao  County,
Yunzhou  District,  Yungang  District,  Guangling
District,  Huairen City,  Hunyuan County and Ying
County, and other areas (Fig. 1).

Rock  thermophysical  property  tests  were
conducted  using  a  Hot  Disk  thermal  constant
analyzer (Model: TPS1500, Fig. 3), employing the
transient planar  heat  source  method.  The  instru-
ment featured a thermal conductivity test  range of
0.005–500  W/(m·K),  ensuring  a  broad  test  range
and high accuracy.  Notably,  the test  required only
a flat sample surface without special sample prepa-
ration.  The  analyzer  can  simultaneously  measure
three  parameters:  Thermal  conductivity,  thermal
diffusion coefficient and specific heat capacity.
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Fig. 1 Location of the study area and distribution of sampling points
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The experimental  design  encompassed  investi-
gations into the thermal properties of rock at room
temperature and pressure, at high temperature, and
under  water-saturated  conditions.  High-tempera-
ture  experiments  utilized  the  Hot  Disk  TPS1500
tester combined with a heating module, measuring
temperatures  at  30°C,  60°C,  90°C,  120°C,  150°C
and  180°C.  For  water-saturated  experiments,  rock
samples  were  initially  immersed  in  distilled  water
for over 48 hours to allow complete water penetra-
tion into the effective pore space of the rock, simu-

lating an underground water-saturated state. Subse-
quently,  thermophysical  property  tests  were  con-
ducted on the water-saturated samples.

The density  test  of  rocks  adhered  to  the  stan-
dards  outlined  in  GB/T  23561.3−2009,  titled
"Method for  Determining  Physical  and  Mechani-
cal  Properties  of  Coal  and  Rocks  Part  3:  Method
for  Determining  the  Density  of  Coal  and  Rock
Blocks". The sealing method was employed for the
test,  utilizing  an  electronic  balance  (Model:
CPA124S/25292454).
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Fig. 2 NW-SE geologic structure profile of Datong Basin (The profile position is shown in Fig. 1C, quated from
Pan et al. 2022)
Notes: 1-Archaic Sanggan Group; 2-Cambrian; 3-Ordovician; 4-Carboniferous series; 5-Permian system; 6-Lower Jurassic cohorts; 7-Yungang Group
of Middle Jurassic; 8-Neogene lower member of Kezhai Formation; 9-Neogene middle section of Kezhai Formation; 10-Neogene Kezhai Formation
upper member; 11-Neogene Nanyulin Formation; 12-Quaternary system; 13-Reverse fault; 14-Normal fault; 15-Thermal reservoir
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Fig. 3 Hot Disk TPS1500 thermal constant analyzer and processed sample
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 3  Test results of rock thermal proper-
ties

 3.1 Thermal conductivity

The  test  results  of  thermal  conductivity  of  rocks
(Fig.  4)  show  that  the  thermal  conductivity  of
rocks  in  the  basin  predominantly  falls  within  the
range of 0.690–6.460 W/(m·K). Categorically,  the
thermal conductivity of igneous rocks spans 0.690–
3.123 W/(m·K), with a mean value of 1.489±0.647
W/(m·K).  Metamorphic  rock  exhibit  a  range  of
1.818–4.346 W/(m·K), with a mean value of 2.567±
0.509  W/(m·K).  Sedimentary  rocks  show  the
broadest  range,  ranging  from  1.308  W/(m·K)  to
6.460  W/(m·K),  with  an  average  value  of  3.510±
1.175  W/(m·K).  The  thermal  conductivity  among
the three major rock types displays evident differ-
ences,  with  igneous  rock having the  lowest  value,
followed  by  metamorphic  rock  with  a  more
concentrated  distribution,  and  sedimentary  rock
exhibiting  a  wide  range  of  variations  and  higher
overall values.

Further  classification  of  rock  samples  into  12
types based  on  lithology  reveals  the  average  ther-
mal  conductivity  for  each  lithology,  listed  from
smallest  to  largest:  Tuff  0.990  W/(m·K),  basalt
1.294 W/(m·K),  granulite  2.290  W/(m·K),  meta-
granulite  2.300  W/(m·K),  granite  2.313  W/(m·K),
schist  2.425  W/(m·K),  gneiss  2.632  W/(m K)  and
limestone  2.968  W/(m·K),  metamorphic  granite
3.030  W/(m·K)  and  clay  rock  3.132  W/(m·K),
sandstone  3.460  W/(m·K),  dolomite  5.450
W/(m·K).

By  comparing  the  thermal  conductivities  of  the
same  lithologies  in  other  regions  of  the  North
China Craton, including the Jizhong Depression in
the  eastern  land  mass  (Su,  2021; Gao,  2023),  the
Ordos  Basin  in  the  western  land  mass  (Sun  et  al.
1996), and the Qingshui Basin in the middle zone,

(Sun  et  al.  2006; Qi,  2021),  indicate  distinct
patterns  (Table  1).  Mudstones  and  sandstones  in
Datong Basin closely align with those in the Ordos
Basin  and  surpass  those  in  Qinshui  Basin  and
Jizhong  Depression.  Dolomites  and  gneisses  in
Datong  Basin  exhibit  significantly  higher  thermal
conductivity than those in the eastern and western
land  masses  of  the  North  China  Craton,  while
being  the  lowest  in  the  Ordos  Basin.  Thermal
conductivity  values  of  fine  sandstone and granites
are slightly higher than those in the Qinshui Basin.
Tuff thermal conductivity values are the lowest  in
Datong  Basin,  the  highest  in  Ordos  Basin,  and
similar  in  Qinshui  Basin  and  Jizhong  Depression.
Overall,  the  higher  thermal  conductivity  values  of
rocks in the Datong Basin compared to other areas
of the North China Craton may be attributed to the
retention and dehydration of the subducting Pacific
plate  in  the  mantle  transition  zone  and  the  up-
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Fig. 4 Thermal conductivity box patterns of different
lithologies in Datong Basin
Notes: The serial number of horizontal coordinate is expressed respec-
tively:  1-tuff;  2-tuffaceous  breccia;  3-basalt;  4-diabase;  5-monzonitic
granite; 6-granite; 7-metagranulite; 8-granulite; 9-schist; 10-gneiss; 11-
marble;  12-metamorphic  granite;  13-mudstone;  14-limestone;  15-silt-
stone;  16-shale;  17-marl;  18-sandstone;  19-pebbly  sandstone;  20-
dolomite; 21-Soil (dry); 22-Soil (saturated)

Table 1 Comparison between thermal conductivity of different lithologies and other areas of North China Craton

Lithology
Datong basin W/(m·K)
(This text)

Ordos Basin
W/(m·K)
(Sun et al. 1996)

Qingshui Basin
W/(m·K)
(Sun et al. 2006; Qi, 2021)

Jizhong Depression
W/(m·K)
(Su, 2021; Gao, 2023)

Mudstone 2.961（1） 1.984±1.032（20） 1.820±0.820（18） 2.350（15）

Sandstone 3.375±0.593（9） 2.943±1.008（46） 2.440±0.280（16） 2.150
Limestone 2.968±0.676（9） 3.668±1.110（10） 3.350±0.490（8） 3.920（9）

Dolomite 5.451±1.486（4） 3.345±1.120（7） — 5.670（10）

Gneiss 2.632±0.663（9） 1.786（1） — 2.590（11）

Fine sandstone 2.997（1） — 2.260±0.740（18） —
Granite 3.120（1） — 2.715 —
Notes: Number of samples is shown in brackets
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welling of thermal material due to localized mantle
convection  during  the  destruction  of  the  North
China Craton (Yu, 2021).

 3.2 Thermal diffusivity

The thermal diffusivities of majority of rocks in the
Datong Basin range from 0.441–2.023 mm2/s, with
a  mean value  of  1.170  mm2/s.  Examining  the  box
plots depicting  thermal  diffusivities  across  differ-
ent  lithologies  (Fig.  5)  reveals  that  the  thermal
diffusivity  of  igneous  rocks  spans  0.441–1.486
mm2/s,  with  a  mean  value  of  0.700±0.285  mm2/s.
Metamorphic rocks exhibit a range of 0.795–1.865
mm2/s,  with  a  mean  value  of  1.123±0.097  mm2/s.
while  sedimentary  rocks  show  a  range  of  0.983–
2.023  mm2/s,  with  a  mean  value  of  1.373±0.243
mm2/s. The trend of thermal diffusivity among the
three  major  lithologies  aligns  closely  with  that  of
thermal  conductivity,  with  igneous  rocks  having
the  smallest  values,  followed  by  metamorphic
rocks and  sedimentary  rocks.  However,  the  distri-
bution  of  thermal  diffusivity  in  sedimentary  rocks
is  slightly  more  concentrated  than  that  of  thermal
conductivity.
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Fig. 5 Box  diagram  of  rock  thermal  diffusivity  in
Datong Basin
Notes: The serial number of horizontal coordinate is expressed respec-
tively:  1-tuff;  2-tuffaceous  breccia;  3-basalt;  4-diabase;  5-monzonitic
granite; 6-granite; 7-granulite; 8-metagranulite; 9-schist; 10-gneiss; 11-
marble;  12-metamorphic  granite;  13-mudstone;  14-limestone;  15-fine
sandstone;  16-shale;  17-marl;  18-sandstone;  19-pebbly  sandstone;  20-
dolomite
 

Linear fitting  of  thermal  conductivity  and  ther-
mal diffusivity  for  rocks  in  the  study  area  indi-
cates  a  clear  positive  correlation  between  the  two
(Fig. 6), expressed by the correlation equation K =
2.733κ−0.415 (R2 = 0.731, P < 0.0001). Arranging
the average thermal diffusivity in descending order
for  various  lithologies  yields  the  following  sequ-
ence: Tuff 0.479 mm2/s, basalt 0.618 mm2/s, gran-
ulite  0.958  mm2/s,  schist  1.018  mm2/s,  granite
1.059  mm2/s,  metagranulite  1.076  mm2/s,  gneiss

1.077  mm2/s,  claystone  1.295  mm2/s,  limestone
1.345  mm2/s,  metamorphic  granite  1.352  mm2/s,
sandstone 1.385 mm2/s, dolomite 1.497 mm2/s.
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Fig. 6 Relationship between thermal conductivity and
thermal diffusivity of rock
 

 3.3 Specific heat capacity

The  specific  heat  capacity  of  rocks  in  Datong
Basin  ranges  from  0.569  KJ/(kg·°C)  to  1.117
KJ/(kg·°C),  with  an  average  value  of  0.933
KJ/(kg·°C).

Analyzing  the  specific  heat  capacity  box  dia-
gram  for  various  lithologies  (Fig.  7),  reveals
that  igneous  rocks  have  a  range  of  0.723–1.068
KJ/(kg·°C),  with  a  mean  value  of  0.830±0.101
KJ/(kg·°C).  Metamorphic rocks exhibit  a  range of
0.742–1.063  KJ/(kg·°C),  with  a  mean  value  of
0.866±0.098  KJ/(kg·°C),  while  sedimentary  rocks
displays  a  range  of  0.688  KJ/(kg·°C)  to  1.117
KJ/(kg·°C),  with  a  mean  value  of  0.901±0.122
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Fig. 7 Box diagram of specific heat capacity of rocks
in Datong Basin
Notes: The X axis represents: 1-tuff; 2-basalt; 3-diabase; 4-monzonitic
granite;  5-granite;  6-granulite;  7-metagranulite;  8-schist;  9-gneiss;  10-
metamorphic  granite;  11-mudstone;  12-limestone;  13-fine  sandstone;
14-shale; 15-marl; 16-sandstone; 17-dolomite
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KJ/(kg·°C). The average difference in specific heat
capacity  among  the  three  lithologies  is  not  more
than  0.500,  suggesting  that  lithology  has  no
pronounced effect  on the specific  heat  capacity  of
the  rocks.  In  other  words,  rocks  with  different
lithologies  exhibit  similar  heat  storage  capacities
(Xiong et al. 2020).

Arranging  the  average  specific  heat  capacity  in
descending order for various lithologies yields the
following  sequence:  Granulite  0.785  KJ/(kg·°C),
granite  0.789  KJ/(kg·°C),  metagranulite  0.798
KJ/(kg·°C),  basalt  0.824  KJ/(kg·°C),  sandstone
0.885  KJ/(kg·°C),  metamorphic  granite  0.887
KJ/(kg·°C),  gneiss  0.891  KJ/(kg·°C),  tuff  0.899
KJ/(kg·°C),  schist  0.944  KJ/(kg·°C),  clay  rock
0.947  KJ/(kg·°C),  dolomite  1.039  KJ/(kg·°C),
limestone 1.286 KJ/(kg·°C).

 4  Discussion

The  thermal  conductivity  of  rocks  is  affected  by
various  factors,  encompassing  both  internal  and
external  elements.  Internal  factors  include mineral
content, presence of glass, and pore fluids, as well
as rock structure involving pore and fissure condi-
tions, mineral distribution, and arrangement. Exter-
nal  factors  comprise  temperature  and  pressure.
Investigating the  internal  causes  aids  in  establish-
ing  predictive  models  for  thermal  conductivity,
while studying external  causes aims to understand
how  rocks  change  with  temperature  and  pressure.
The derivation of correction formulas is crucial for
maximizing the restoration of rock thermal conduc-
tivity  values  in  in-situ  conditions.  This  paper  foc-
uses on temperature as the primary external factor
influencing  rock  thermal  conductivity,  conducting
experimental  research  to  analyze  the  relationships
between  rock  thermal  conductivity,  density,  water
saturation and lithostratigraphy.

 4.1 Temperature

The experimental  tests  on  thermal  conductivity  of

rocks  at  various  temperatures,  i.e.  30°C,  60°C,
90°C,  120°C,  150°C,  180°C,  were  conducted  on
samples  of  different  lithologies  in  the  study  area.
The  results,  presented  in Table  2 and  graphically
depicted  in Fig.  8,  reveal  a  decreasing  trend  in
thermal conductivity for different lithologies as tem-
perature increases. The reduction percentages with
increasing  temperature  are  as  follows:  36% for
dolomite,  26% for  shale,  17% for  limestone,  16%
for  metamonzonite  granite,  6% for  monzonitic
granite, and about 6% for gneiss. Notably, carbon-
ate  rocks  exhibit  higher  degrees  of  decrease  in
thermal conductivity at high temperatures, and the
greater  the  thermal  conductivity  of  rocks  at  room
temperature, the greater the decrease with increas-
ing temperature.

By  linear  fitting  of  thermal  conductivity  and
temperature  measured  at  high  temperature,  a
temperature correction formula for the correspond-
ing  lithologic  thermal  conductivity  in  the  Datong
Basin  is  obtained  (Table  3).  The  temperature
measurement  curves  (Fig.  9)  from  the  DR1  well
within  the  Datong  Basin  (Zhang,  2019)  suggested
that the average geothermal temperature gradient is
29.3°C/km in  the  Archaean  gneiss  thermal  reser-
voir from 1,400 m to 1,605 m (linear warming sec-
tion),  and  the  temperature  at  1,500  m  is  about
65°C.  The temperature-corrected equation thermal
conductivity  of  the  gneiss  thermal  reservoir  sug-
gests  an  in-situ  thermal  conductivity  of  1.907  W/
(m·K).

The temperature dependence of thermal conduc-
tivity of rock components is illustrated, such as the
decrease  in  the  thermal  conductivity  of  CaO  with
increasing  temperature  (Fig.  10)  (Meng  et  al.
2022).  The  transfer  of  thermal  energy  in  rocks
primarily occurs through the vibration of the lattice
inside minerals.  The thermal  conductivity of  crys-
tals is influenced by specific heat capacity, phonon
velocity, and mean free range of phonons. At high
temperatures,  it  is  mainly  determined  by  velocity
and  the  free  range  (Tan  et  al.  2004). The  vibra-
tional  amplitude  of  the  lattice  increases  with

Table 2 Data of rock thermal conductivity at different temperatures

Sample Number
Temperature/°C

Lithology 25°C 30°C 60°C 90°C 120°C 150°C 180°C Reduction/%

GLX-10 Dolomite 6.460 5.701 5.460 5.131 4.727 4.569 4.128 36
GLX-2 Shale 3.873 3.742 3.430 3.484 3.140 2.984 2.876 26
GLX-8 Limestone 2.947 2.947 2.911 2.741 2.624 2.539 2.446 17
TZX-5 Metamonzonite granite 3.055 3.001 2.996 2.892 2.733 2.603 2.554 16
DTA-6 Monzonitic granite 2.264 2.264 2.254 2.246 2.209 2.153 2.119 6
DTB-1 Gneiss 1.939 1.896 1.900 1.894 1.864 1.836 1.821 6
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temperature, resulting in larger anharmonic oscilla-
tions,  more phonon numbers,  and more collisions,
reduced  mean  free  range  of  thermal  waves,  and
ultimately a decrease in the thermal conductivity of
the rock (Zhao et al. 1995; Miao et al. 2013; Gao,
2015). Additionally, elevated temperatures create a
"thermal  impedance"  between  mineral  particles,
further  contributing  to  the  reduction  of  effective
thermal conductivity (Yu et al. 2020).

 4.2 Density

The  plot  of  density  versus  thermal  conductivity
(Fig. 11) reveals a positive correlation between the
thermal conductivity  values  of  igneous  and  sedi-
mentary  rocks  and  their  density  among  the  three
major  rock  types.  However,  there  is  no  evident
correlation  between  the  thermal  conductivity  of
metamorphic rocks and their density. As rocks are
porous medium,  their  density  is  primarily  influ-
enced  by  factors  such  as  mineral  composition,
content,  porosity,  pore  fluid  composition,  and  the
pressure applied to the rock. Among them, mineral
composition,  content,  and  pore  distribution  are
categorized  as  rock  composition  factors,  while
pressure  is  an  environmental  factor.  Since  these

factors  impact  both  thermal  conductivity  and
density,  the  positive  correlation  observed  between
rock  density  and  thermal  conductivity  suggests  a
shared underlying influence (Zhu et al. 2022).

Mineral density is determined by a combination
of atomic masses, ratios,  and bonding modes. The
arrangement  of  atoms  and  their  bonding  modes
also influences the efficiency of phonon heat trans-
fer,  which  is  reflected  on  a  macroscopic  level  in
the  magnitude  of  thermal  conductivity.  However,
some rocks  with  similar  densities  exhibit  signifi-
cantly  different  thermal  conductivities.  This
discrepancy  may  arise  from  similarity  in  atomic
compositions and sizes but differences in chemical
bonding,  resulting  in  variations  in  heat  transfer
efficiency.  Consequently,  rocks  within  the  same
mineral  family  with  similar  crystal  structures
demonstrate  a  consistent  trend:  Higher  density
corresponds to higher thermal conductivity (Zhu et
al. 2022).

 4.3 Water saturation

Fig.  12 illustrates  that  the  thermal  conductivity  of
rocks  in  the  water-saturated  state  exhibits  varying
degrees  of  increase  compared  to  the  dry  state.
Clastic  rocks,  in  particular,  show  a  significant
difference  between  the  water-saturated  state  and
dry  states,  with  conglomerate-bearing  sandstones
experiencing the  most  substantial  increase,  reach-
ing  up  to  0.986  W/(m·K),  an  approximate  35%
rise. In  contrast,  metamorphic  rocks  and  Ordovi-
cian  tuffs  exhibit  smaller  differences,  such  as
schist,  which  shows  a  minimal  increase  of  only
0.016 W/(m·K), equivalent to a 0.7% rise.

This  observed variation  can  be  attributed  to  the
fact  that  the  thermal  conductivity  of  water  ,  about
0.600  W/(m·K),  is  much  higher  than  that  of  air
(0.026  W/(m·K)).  Additionally,  water,  being  an
infiltrating fluid, adheres to contact points between
rock  particles  and  pores,  enhancing  the  thermal
conductivity  effect  and  forming  a  "liquid  bridge"
for  heat  flow  (Li  et  al.  2009).  The  extent  of  the
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Fig. 8 Relation  between  thermal  conductivity  and
temperature of rocks

Table 3 Temperature correction formula of rock thermal conductivity in Datong Basin

Sample Number Lithology Correction formula R2

GLX-10 Dolomite λ(T) = −0.0163(T−T0)+λ(T0) 0.895
GLX-2 Shale λ(T) = −0.0069(T−T0)+λ(T0) 0.918
GLX-8 Limestone λ(T) = −0.0034(T−T0)+λ(T0) 0.981
TZX-5 Metamonzonite granite λ(T) = −0.0033(T−T0)+λ(T0) 0.965
DTA-6 Monzonitic granite λ(T) = −0.0008(T−T0)+λ(T0) 0.918
DTB-1 Gneiss λ(T) = −0.0008(T−T0)+λ(T0) 0.979
Note: λ(T0) refers to the thermal conductivity value at room temperature and pressure.
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increase  in  thermal  conductivity  depends  on  the
porosity  of  the  rock,  where  rocks  with  higher
porosity absorbs more water after saturation, lead-
ing to a greater increment in thermal conductivity.
In  contrast,  low-porosity  rocks  exhibit  minimal
changes in thermal conductivity after water satura-
tion  (Yang  et  al.  1986). Therefore,  water  satura-
tion  primarily  influences  thermal  conductivity  by
creating  a  "liquid  bridge"  for  heat  flow  in  the
rock's  porosity,  and  the  difference  in  thermal

conductivity  between  the  water-saturated  and  dry
states  indirectly  reflects  the  magnitude  of  rock's
porosity.

 4.4 Stratigraphic

By  combining  the  stratigraphy  and  lithology  of
rocks in the study area and comparing the thermal
conductivity  of  rocks  with  the  same  lithology,  a
trend  emerges  where  the  thermal  conductivity
generally increase with older age of the strata. For
example,  the  thermal  conductivities  of  Quaternary
Cetian  basalt  and  Hannoba  basalt  are  1.014
W/(m·K), 2.166 W/(m·K), respectively.  Similarly,
the  thermal  conductivities  of  sandstones  in  the
Cretaceous,  Jurassic,  and  Permian  formations  are
2.225  W/(m·K),  3.220  W/(m·K),  and  4.044
W/(m·K),  respectively.  The  thermal  conductivity
of  Ordovician  dolomite  is  4.702  W/(m·K),  while
Middle-Proterozoic  dolomite  is  6.460  W/(m·K).
Previous  studies  have  suggested  that  the  older  the
age  of  the  formation,  the  longer  the  compaction
time experienced, resulting in a higher compaction
degree, denser particle arrangement, and increased
thermal conductivity (Song et al. 2019).

However,  it  is  worth  noting  that  some  rock
samples, like gneiss and saprolite, exhibit no clear
pattern  between  thermal  conductivity  values  and
strata. Since  the  strata  represent  specific  geologi-
cal eras, either new or old, with an emphasis on the
time  factor,  analyzing  the  relationship  between
strata and thermal conductivity becomes challeng-
ing  due  to  the  difficulty  of  controlling  a  single
variable in this context.

 5  Conclusions

(1)  The  thermal  conductivity  in  the  Datong  Basin
follows  a  pattern  where  igneous  rocks  exhibit  the
lowest  values,  metamorphic  rocks  have  higher
values  than  igneous  rocks,  and  sedimentary  rocks
have a wider range of variations with higher over-
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Fig. 9 Temperature  measurement  curve  and  ground
temperature gradient ladder diagram of well DR1
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Fig. 10 Relationship  between  thermal  conductivity
and temperature of CaM (Meng et al. 2022)
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Fig. 11 Relation between thermal conductivity and density of rocks
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all  values.  The  trend  of  rock  thermal  diffusivity
aligns closely  with  thermal  conductivity,  demon-
strating  a  clear  positive  correlation  between  the
two,  expressed by the  equation  K= 2.733κ−0.415.
The  specific  heat  capacity  shows  a  concentrated
distribution among different lithologies,  indicating
similar heat storage capacities.

(2)  The  primary  factor  influencing  the  thermal
conductivity  of  rocks  in  the  Datong  Basin  is
temperature. As temperature increases, the thermal
conductivity of each lithology experiences varying
degrees of reduction. Temperature correction equa-
tions  for  the  corresponding  lithologies  have  been
derived for  the  Datong  Basin.  Through  tempera-
ture correction,  the in situ thermal conductivity of
the Archaean  gneiss  thermal  reservoir  is  calcu-
lated to be 1.907 W/(m·K).

(3)  Rock  density  is  not  a  direct  determinant  of
thermal  conductivity.  Only  homologous  minerals
with similar crystal structures exhibit a clear corre-
lation, where higher density corresponds to greater
thermal conductivity.  In  the  study  area,  the  ther-
mal  conductivity  values  of  Archaean  gneiss  and
Ordovician limestone thermal storage change mini-
mally  after  water  saturation.  Due  to  challenges  in
controlling  a  single  variable  with  stratigraphic
factors,  the  relationship  between  stratigraphy  and
thermal conductivity is not universally applicable.
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Fig. 12 Thermal conductivity of rocks under dry and
water-saturated conditions
Notes: The serial number of horizontal coordinate is expressed respec-
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