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Review article

Conventional and  futuristic  approaches  for  the  computation  of  groundwa-
ter recharge: A comprehensive review
Shamla Rasheed1*, Marykutty Abraham1

1 Sathyabama Institute of Science and Technology, Chennai-600119, Tamil Nadu, India.

Abstract: Groundwater recharge is a critical hydrologic component that determines groundwater availabil-
ity and sustainability. Groundwater recharge estimation can be performed in a variety of ways, ranging from
direct  procedures  to  simulation  models.  The  optimal  strategy  for  recharge  estimation  depends  on  several
factors, such  as  study  objectives,  climatic  zones,  hydrogeological  conditions,  data  availability,  methodol-
ogy, and temporal and spatial constraints. Groundwater recharge is influenced by uncertainties in weather
and hydrology. This study discusses conventional recharge estimation techniques and their application for
optimal recharge calculation, and it also offers an overview of recent advances in recharge estimation meth-
ods. Most methods provide direct or indirect estimation of recharge across a small region on a point scale
for  a  shorter  time.  With  recent  technological  advancements  and  increased  data  availability,  several
advanced computational tools, including numerical, empirical, and artificial intelligence models, have been
developed  for  efficient  and  reliable  computation  of  groundwater  recharge.  This  review  article  provides  a
thorough  discussion  of  the  techniques,  assumptions,  advantages,  limitations,  and  selection  procedures  for
estimating groundwater recharge.

Keywords: Groundwater  recharge; Groundwater  balance; Groundwater  flow; Machine  learning; Deep
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Introduction

Groundwater  is  a  dynamic,  replenishable,  and
precious  resource  of  limited  extent,  especially  in
semi-arid countries  with  tropical  climatic  condi-
tions.  While  global  climate  discussions  highlight
the  importance  of  water,  ground-level  users  face
significant  challenges  such  as  scarcity,  excess,
contamination,  and  a  lack  of  reliable  information.
These issues hinder sustainable freshwater use and
future sustainability.  Excessive  resource  utiliza-

tion,  uncontrolled  urban and industrial  discharges,
and  agricultural  intensification  are  causing
widespread  degradation  of  aquifers  (Kemper,
2004).  Extensive  groundwater  withdrawal  in
excess  of  natural  replenishment  results  in  a
progressive  lowering  of  the  water  table,  making  a
sustainable  water  supply  increasingly  difficult.
Indiscriminate  extraction of  aquifers  can also  lead
to a decline in the physical and chemical quality of
water,  saline  water  intrusion  in  coastal  aquifers,
and land subsidence, causing the fresh water table
to recede at alarming rates. Proper management of
the groundwater system is essential to maintaining
a hydrological  balance between the water pumped
and the water recharged into the aquifer.

Groundwater  recharge  refers  to  the  process  by
which water enters the water table through unsatu-
rated zones below rooting depth, thereby contribut-
ing to aquifers (De Vries and Simmers, 2002). This
process  can  be  categorized  into  direct  or  diffuse
recharge,  localized  recharge,  and  indirect  or  non-
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diffuse recharge, based on the sources and mecha-
nisms  of  recharge.  The  fraction  of  groundwater
recharges  depends  on  natural  factors  such  as  land
cover,  terrain  characteristics,  rainfall  frequency
and  intensity,  subsurface  geology,  soil  properties,
irrigation  water  use,  depth  to  an  aquifer,  aquifer
storage  capacity,  and  the  presence  of  adjacent
water  bodies  (Simmers,  1998; De  Vries  and
Simmers, 2002; Asoka et al. 2018).

Quantifying  the  current  rate  of  groundwater
recharge  is  essential  for  efficient  and  sustainable
groundwater  resource  management  in  semi-arid
and arid areas, where these resources are often key
to economic development (De Vries and Simmers,
2002).  Assessing  recharge  helps  determine  whe-
ther  abstraction  and recharge  are  well  balanced in
an  aquifer,  which  is  crucial  for  water  resources
management.  Recent  climate  change,  population
growth, altered precipitation patterns, and land use
changes significantly  impact  groundwater  replen-
ishment (Kumar, 2012; Sun et al. 2020; Hughes et
al. 2021). Numerous studies worldwide have char-
acterized and  compared  recharge  estimation  tech-
niques  (Sihag  et  al.  2020; Mohan  and  Pramada,
2023),  with reviews conducted by researchers like
Scanlon  et  al.  (2002),  Healy  (2010),  Ali  and
Mubarak (2017), and Kumar et al. (2021).

Despite  the  growing  demands  on  groundwater
resources  and  escalating  hydrologic  stresses
complicating  groundwater  management,  these
challenges have led to the development of innova-
tive  management  techniques.  Ensuring sustainable
groundwater management in the context of climate
change  remains  a  global  challenge.  A  deeper
understanding  of  recharge  mechanisms  in  various
hydrological  zones  is  required  for  optimal  water
resource management and recharge process design.
To  address  the  uncertainty  and  data  shortages,
particularly  in  developing  countries,  machine
learning  techniques  can  enhance  the  modelling
efforts.  Therefore,  sustainable  groundwater  mana-
gement  necessitates  the  assessment  of  aquifer
recharge  using  appropriate  methods  (Shu  and
Wang, 2005).

Research on surface–subsurface water exchange
processes expanded significantly during the 1990s,
focusing  on  hydrological  and  biogeochemical
processes.  However,  challenges  in  quantifying
water  fluxes  between  groundwater  and  surface
water persist due to heterogeneity and scale issues
(Sophocleous,  2002).  Most  hydrologic  modeling
studies  have  used  one-dimensional  or  two-dimen-
sional  models,  overlooking  the  three-dimensional
nature of flow dynamics. Improvements in analyti-
cal  and  numerical  methods  are  required  to  better

simulate  observed field  conditions  and understand
stream-aquifer processes.  Characterizing  subsur-
face  heterogeneity  and  developing  operational
hierarchies for  upscaling  from  reaches  to  water-
sheds  remain  significant  research  challenges.  A
multidisciplinary  and  multiscale  approach  is
needed,  incorporating  multiple  techniques  such  as
in-situ and remote sensing observations, GIS tech-
nology,  numerical  models,  and  statistical  analyses
to study groundwater-surface water exchanges.

The uniqueness of the study lies in its compari-
son of  traditional  recharge  measurement  tech-
niques  with  cutting-edge approaches,  emphasizing
key  variables  and  influential  factors  along  with
their  reliability.  This  paper  critically  evaluates
current and  future  groundwater  recharge  estima-
tion methods,  assessing  their  strengths  and  weak-
nesses in light of climate change, land use changes,
data  availability,  economic  considerations,  and
technological  advancement.  It  highlights  crucial
elements when selecting a methodology, including
space  and  time  scales,  reliability,  and  factors  that
promote  or  limit  their  use.  This  comprehensive
evaluation  aims  to  support  groundwater  users  in
adapting their active aquifer management strategy. 

1  Groundwater  recharge  estimation
techniques

Accurate  quantitative  analysis  of  recharge  is
crucial for managing groundwater resources under
diverse climatic conditions. Conventional methods
for  understanding  and  quantifying  the  water  that
percolates  through  the  soil  to  replenish  aquifers
have been widely used for decades in groundwater
recharge  assessment.  These  methods  rely  on
empirical,  analytical,  and  numerical  approaches,
each  with  its  own  strengths  and  limitations.  To
overcome  these  limitations,  futuristic  methods
leveraging advanced technologies and data analyt-
ics  are  being  developed.  Groundwater  recharge
estimation techniques are categorized into conven-
tional and futuristic methods based on factors such
as technology, data requirements, scalability, accu-
racy,  complexity,  and  cost/labor  intensity.  This
categorization  aids  in  selecting  the  most  suitable
approach for specific applications. 

1.1 Conventional Methods

Conventional  methods  for  recharge  estimation  are
further  categorized  into  physical,  chemical,  and
numerical modelling approaches.
Physical  methods: Physical  methods  are  com-
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monly used  to  measure  recharge  from  precipita-
tion  by  measuring  or  estimating  soil  physical
parameters  and  applying  soil  physical  principles.
These  methods  are  simple,  easy  to  quantify,  and
inexpensive. However, they are not accurate in arid
and  semi-arid  locations  due  to  the  low  rates  of
recharge  fluxes,  which  vary  significantly  with  the
immeasurable  vadose  zone  physical  parameters
and  the  extreme  temporal  variability  in  arid
climates (Hendrickx, 1992).
Chemical  methods: Chemical  approaches

assess  recharge  indirectly,  identify  recharge
sources,  and  calibrate  transport  models  by  using
water-soluble  compounds  such  as  chloride  or
isotopic tracers (McConville et al. 2001; Jasechko,
2019).  Tracers,  which  include  ions,  isotopes,  or
gases,  move  with  water  and  can  be  found  in  the
atmosphere, surface water, and groundwater. These
tracers are classified into three types: Applied trac-
ers, historical tracers, and natural ambient tracers.
Numerical  models: Numerical modeling  tech-

niques  account  for  regional  variations  in  physical
parameters,  transient  flows,  and  storage  changes,
offering  recharge  estimates  as  a  residual  term
through  a  numerical  relationship  between  water
balance  components  (Scanlon  et  al.  2002; Kumar
et  al.  2021).  Integrated  models  offer  enhanced
precision in recharge estimation (Chen et al. 2012;
Abraham and Mohan, 2019). An effective ground-
water  recharge  model  necessitates  a  thorough
understanding the mechanisms governing recharge
rates.  However,  other models,  such as those using
the  Richards  equation  or  hydrological  models
combining infiltration or precipitation with analyti-
cal or numerical parameters, may be less effective
due to  their  complexity  and extensive information
requirements.

These  conventional  methods  typically  requires
extensive,  high-quality data,  which  can  be  chal-
lenging  to  obtain  or  measure  accurately.  They
often  rely  on  simplifying  assumptions,  such  as
homogeneity  and  steady-state  conditions,  which
may  not  fully  capture  the  complexities  of  natural
systems.  Additionally,  many  of  these  techniques
are  also  computationally  demanding  and  require
significant  expertise,  which  can  limit  their  routine
application.  Field  methods,  while  offering  direct
measurements,  are  often  labor-intensive,  costly,
and may not provide representative data for larger
areas.  Consequently,  these  limitations  can  lead  to
imprecise or inaccurate recharge estimates, particu-
larly  in  heterogeneous  or  data-scarce environ-
ments.  Physical  and  chemical  methods  have  long
been used  for  recharge  estimation,  but  they  strug-
gle  to  accurately  model  the  non-linearity  of  the

groundwater systems and their response to climatic
conditions.  Traditional  decision-making  appro-
aches are also inadequate for modeling the interac-
tions  between  climate,  surface  water,  and  both
unsaturated and saturated zones due to the massive
data requirements and high costs involved (Osman
et al. 2021). 

1.2 Futuristic methods

Futuristic methods  for  groundwater  recharge  esti-
mation  offer  the  potential  for  more  accurate  and
comprehensive  recharge  estimates,  which  are
crucial  for  effective  water  resource  management
amid global challenges.
Machine learning algorithms: Machine Learn-

ing  (ML)  represents  a  significant  advancement  in
recharge  estimation  by utilizing  sophisticated  data
analytics  to  enhance  accuracy,  adaptability,  and
scalability.  Unlike  traditional  methods,  which  are
often  region-specific,  ML  models  are  data  driven
and  can  quickly  process  new  information  once
trained,  providing  real-time  predictions  and
improving computational  efficiency.  ML  algo-
rithms  excel  at  analyzing  complex  and  large
datasets,  offering  more  precise  predictions  of
groundwater recharge rates.  Key steps in applying
machine  learning  for  recharge  estimation  include
data collection, preprocessing, training, evaluation,
prediction, interpretation, and uncertainty analysis.
While ML holds promise for refining recharge esti-
mation, challenges  such  as  data  quality  and  avail-
ability, model complexity, and interpretability need
to  be  addressed.  However,  machine  learning  has
the potential to significantly improve the precision
and  reliability  of  recharge  estimates,  ultimately
leading  to  better  water  resource  management  and
planning (Osman et al. 2021; Ahmadi et al. 2022).

Recharge estimation methods are further catego-
rized  based  on  the  hydrologic  sources  or  zones
from  which  data  are  collected,  including  surface
water  zone,  unsaturated  zone,  and  saturated  zone
techniques  (Lerner,  1990; Allison  et  al.  1994;
Sophocleous,  2002).  Techniques  based  on  surface
water  and  the  unsaturated  zone  estimate  potential
recharge, representing the water that infiltrates but
may  not  necessarily  reach  the  groundwater.  In
contrast,  methods  focused  on  saturated  zone
provide actual recharge estimates by measuring the
water  that  replenishes  the  saturated  groundwater
zone.

This  review  explores  various  methods  for
recharge  estimation,  including  physical  methods,
chemical methods, numerical models, and machine

Journal of Groundwater Science and Engineering    12(2024) 428−452

430 http://gwse.iheg.org.cn

http://www.gwse.iheg.org.cn


learning  algorithms.  It  highlights  the  significance
of  selecting  appropriate  techniques  based  on  the
range, spatial and temporal scales, and consistency
required for accurate assessment. 

1.3 Physical methods
 

1.3.1    Surface water zone
The interaction between surface water and subsur-
face  systems  significantly  influences  the  extent  of
groundwater  recharge  associated  with  surface
water  bodies  (Sophocleous,  2002).  Streamflow
data  is  widely  utilized  to  estimate  recharge  rates,
particularly  in  humid  and  sub-humid  regions,  due
to  its  relative  data  abundance  and  the  availability
of  sophisticated  computer  programs  for  analysis
(Healy,  2010).  In  humid  environments,  surface
waters  often  contribute  to  groundwater  recharge
through  gaining  streams,  where  water  from  the
surface  flows  into  the  groundwater  system.
Conversely,  in  arid  regions,  surface  water  bodies
may frequently  disappear  due to  thick unsaturated
zones, and they often serve as sources for ground-
water recharge. By analyzing the accumulation and
loss of surface water bodies, recharge rates can be
predicted in these environments.
Channel water balance: Channel water balance

technique is used to estimate groundwater recharge
by  evaluating  transmission  loss  or  flow  loss
between the upstream and downstream levels using
river  gauge  data.  The  water  balance  for  a  channel
is  described  as  follows  (Lerner,  1990; Scanlon  et
al. 2002):

R = Qupward −Qdownward +
∑

Qin−
∑

Qout −Ea−
∆S
∆t
(1)

Where: R is rate of recharge;
Qupward and Qdownward is  flows  at  the  upstream  and

downstream ends of the channel reach;
Qin and Qout is inflow  and  outflow  of  the  tribu-

tary along the channel reach;
Ea is  Evaporation from the  surface  water  or  the

river bed;
ΔS is Change  in  unsaturated  zone  channel  stor-

age over time (Δt).
This  technique  calculates  recharge  rates  by

analyzing transmission losses using gauge data and
tributary  flows.  Transmission  losses  can  indicate
potential  recharge  due  to  levee  retention,  aquifer
development,  or  aquifers  unable  to  accommodate
recharge.
Seepage  meter: A  seepage  meter  is  a  device

designed  to  directly  measure  the  rate  of  water
exchange  between  the  sediment-water  interface,

surface water zone and the underlying aquifer (Lee
and Cherry, 1979). The recharge rate R (depth/time-
m3/m2/hr) is calculated as:

R =
Vs

T XA
(2)

Where: Vs is the volume of water lost (m3), T is
the time interval (hour), and A is the area enclosed
(m2).

Research shows that the assuming seepage rates
remain steady is  often inaccurate  because  seepage
can be  highly  variable,  influenced by factors  such
as  temperature,  evapotranspiration,  rainfall  and
other  environmental  conditions  (Wang  and  Tang,
2024). Flowmeters have been used to improve the
accuracy  and  consistency  of  measurements.
Combining direct  seepage  meter  data  with  addi-
tional  measurements,  such  as  vertical  hydraulic
gradients  and  temperature  profiles,  provides  a
more comprehensive  understanding  of  groundwa-
ter  and  surface  water  exchange  processes  (Rosen-
berry et al. 2020).
Base-flow  discharge/Hydrograph  separation

method: The  base-flow  discharge  or  hydrograph
separation method estimates groundwater recharge
by analyzing base flow, particularly in basins with
gaining  streams  and  shallow  water  table,  where
recharge  is  assumed  to  equal  base  flow.  This
method  is  rooted  in  water  balance  techniques  that
relate  recharge  to  runoff.  However,  hydrographic
analysis  methods  based  on  steady-state  water
balance equations are often considered too subjec-
tive  and  empirical  to  provide  precise  quantitative
estimates  (Sophocleous,  2002).  Various  techni-
ques  for  baseflow  hydrographic  analysis  include
tracer-based  methods,  graphical  methods,  filter
methods,  recession-curve  displacement  method,
and digital filtering (Nathan and McMahon, 1990).

R =pumpage+ evapotranspiration+
underflow+base flow (3)

Baseflow  discharge  is  not  always  synonymous
with recharge, as factors like pumpage, evapotran-
spiration,  and underflow to deep aquifers  can also
play significant roles. These components should be
estimated  independently.  Furthermore,  baseflow
discharge  does  not  consistently  measure  potential
recharge  and  is  often  unsuitable  for  large-basins
due  to  the  challenges  associated  with  separating
flow components from bank storage effects, which
may  lead  to  over-estimation  (Chapman,  1999;
Eckhardt, 2008). 

1.3.2    Unsaturated zone
Research on unsaturated zone processes focuses on
calculating  potential  recharge  based  on  drainage
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rates  underneath  the  vadose  zone.  Approaches
related  to  the  unsaturated  zone  are  primarily
utilized  for  recharge  calculations  in  semi-arid  and
arid regions characterized by naturally thick unsat-
urated  zones  (Zhang  et  al.  2002; Healy,  2010).
These  calculations  are  particularly  relevant  to
smaller  spatial  scales  compared  to  those  used  in
groundwater or surface water approaches.
Lysimeter  method: The  lysimeter  method  is

used  to  measure  soil  water  exchanges  within  the
lysimeter zone, including parameters such as evap-
otranspiration,  irrigation,  evaporation,  and  other
parameters to provide a field estimate of the rate of
aquifer  renewal  (Zhang  et  al.  2002; Chen  et  al.
2008). The  residual  of  the  water  budgeting  equa-
tion, known as deep percolation, is then calculated
to  determine  the  recharge  component.  Percolate
collected by  lysimeters  has  been  shown  to  accu-
rately estimate the amount of recharge reaching the
water table.  The equation for this calculation is as
follows:

R = P+ I− [( ET/E)±∆S ] (4)
Where: P is precipitation; ET is evapotranspira-

tion, I is irrigation, E is evaporation.
It is important to consider evaporation instead of

evapotranspiration when there is no crop or vegeta-
tion present. The term ∆S represents change in soil
water storage  within  the  lysimeter  zone.  Percola-
tion  at  the  root  zone  can  be  measured  using  deep
drainage-type  and  weighing-type  lysimeters  (Gee
and Hillel, 1988; Zhang et al. 2024).
Zero  Flux  Plane  (ZFP)  Method: ZFP  method

is  employed  to  estimate  potential  groundwater
recharge  by  delineating  water-movement  zones
with a plane that exhibits zero hydraulic gradients.
In this method, soil water flows downward to reach
the ZFP, and any water located below this depth is
considered  to  contribute  to  recharge  at  the  water
table (Cooper et  al.  1990; Khalil  et  al.  2003).  The
depth of the ZFP can vary from a few centimeters
to several meters below the soil surface and is not
constant throughout the year.

Accurate determination of ZFP requires meticu-
lous care  and  specialized  equipment.  Measure-
ments  of  soil  matric  potential  and  soil  water
content are  essential  for  identifying  the  ZFP posi-
tion and estimating changes in storage. Tensiome-
ters are typically used to measure matric potential,
while neutron  probes  are  used  to  determine  mois-
ture  content.  The  flux  (q),  which  represents  the
movement of water across a unit area per unit time,
is described by Darcy's law.

q = −K (φ)
∂H
∂z

(5)

Where: K(φ) is unsaturated hydraulic conductiv-
ity, h is matric potential (negative), H is total water
potential  [h(φ) − z], z is  depth  below  the  surface
and φ is moisture content.

The  depth  of  the  ZFP  is  identified  through  the
inversely  calculated  matric  potential  derived  from
measured  soil  water  content.  The  ZFP  approach
underscores  the  importance  of  careful  field
handling of  equipment,  necessitating  high  instru-
ment density and frequency for accurate and direct
soil measurements (Khalil et al. 2003).
Unsaturated  water  flux  estimation  using

Richards  equation: Water-budget  techniques
based  on  the  Richards  Equation,  as  proposed  by
Richards  (1931),  can  effectively  estimate  soil
water balance in unsaturated zones. This approach
involves  measuring  water  pressure  and  hydraulic
conductivity  at  ambient  moisture  content  (Feddes
et  al.  1988).  By  utilizing  unsaturated  hydraulic
conductivity  and  water  retention  data,  the  soil
moisture flux in the subsurface zone can be calcu-
lated  by  solving  the  Richards  Equation.  The
formula  governing  one-dimensional water  move-
ment  in  a  partially  saturated  porous  medium,  as
described  in  Equation  (6),  is  an  enhanced  version
of Richards equation:

∂θ

∂t
=
∂

∂z

[
K (ψ)

(
∂ψ

∂z
+1

)]
−S (h) (6)

Where: ψ is the water pressure head (L), θ is the
volumetric  moisture  content  (dimensionless), t is
time  (T), z is  the  vertical  coordinate  axis  (L)  and
S(h)  is  the  sink  /source  term  in  the  flow  equation
(T−1)  which  corresponds  to  the  root  water  uptake,
calculated using the Feddes equation (Feddes et al.
1976).

The function K (h) and θ (h) can be determined
using  the  Maulem's  model  equation,  where  soil
water  content  is  a  function  of  pressure  head  (Van
Genuchten,  1980).  A  key  advantage  of  this
approach over the Fokker-Planck equation is that h
is a continuous function across boundaries between
distinct soils or sediments, whereas θ is discontinu-
ous  at  the  boundary  between  two  media  with
different  physical  characteristics.  In  scenarios
involving  heterogeneous  porous  media,  such  as
layered  media  or  simultaneous  saturated-unsatu-
rated flow, the Richards equation has proven to be
the most effective option (Giudici, 2023). 

1.3.3    Saturated zone
Methods based on saturated zone studies are essen-
tial for  estimating recharge points,  providing indi-
cations  of  actual  recharge,  while  unsaturated  zone
methods  typically  offer  drainage  or  potential
recharge estimates over larger areas.
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Water  Table  Fluctuation  (WTF)  method:
WTF  method  is  based  on  the  premise  that  incr-
eased  Groundwater  Levels  (GWL)  in  unconfined
aquifers  result  from  recharge  water  entering  the
water  table  (Healy  and  Cook,  2002; Park,  2012;
Kuruppath et al. 2018). This approach is grounded
in  the  principle  of  volume  balancing,  utilizing
hydrographs  and  aquifer  yield  characteristics  to
calculate recharge. Recharge is calculated as:

R = S y
∆h
∆t

(7)

Where: Sy is  specific  yield  (unitless), ∆h is  rise
in water table (m), ∆t is time within which rise ∆h
takes place (d).

The WTF method assumes that subsurface flows
are  uniformly  distributed  and  that  water  levels
respond  instantly  without  interference  from  other
connected  aquifers.  However,  the  accuracy  of
water  table  data  is  influenced  by  several  factors,
including  aquifer  diffusivity,  the  arrangement  of
abstraction wells,  air  entrapment,  and  evapotran-
spiration  by  deep-rooted  vegetation,  which  can
vary significantly between basins (Scanlon, 2000).

Research indicates that obtaining a depth-depen-
dent  specific  yield  by  measuring  soil  moisture
content from various profiles across all water table
depths  can  yield  more  reliable  recharge  estimates
than  using  a  constant  specific  yield  derived  from
pumping  tests  or  saturated  soil  moisture  contents
(Cheng  et  al.  2020; Gong  et  al.  2021). Sopho-
cleous  (1991)  introduced  the  hybrid  water  table
fluctuation  method  to  predict  groundwater
recharge in flat areas with shallow water tables by
introducing the concept of transient fillable poros-
ity.

However, limitations of this method include the
need  to  ensure  that  fluctuations  are  indeed  due  to
recharge, difficulties in determining specific yield,
and  challenges  encountered  in  fractured-rock
aquifers.  Accurate  quantification  of  recharge  is
vital, and future research should focus on address-
ing  uncertainties  and  exploring  alternative  models
(Healy and Cook, 2002).
Regional  Level  Empirical  equations: Estimat-

ing groundwater  recharge  involves  various  strate-
gies, each with advantages and disadvantages. One

common method is  the  use  of  empirical  formulas,
such as R= K1(P−K2)a where P stands for precipi-
tation, K1 , K2 and a represent localized constants.

These  empirical  expressions  exhibit  varying
effectiveness,  but  they  are  particularly  useful  for
formulating  hypotheses  about  recharge  in  areas
with  high  annual  recharge  rates  (>50  mm).  Some
representative formulas for estimating annual natu-
ral  groundwater  recharge  from  rainfall  are
provided in Table 1.
Soil  moisture  budget  method: The soil  mois-

ture  budgeting  method  estimates  recharge  by
considering  precipitation  and  evapotranspiration.
In  contrast,  the  water  balance  equation  employs  a
residual  method  to  estimate  recharge,  except  for
soil  water  storage,  and  determines  the  water
required for soil saturation by balancing inflow and
outflow. This can be expressed as:

R = [P+ I− (ET or E)−R0±∆S ] (8)

Where: P is precipitation; ET is evapotranspira-
tion; I is irrigation; E is evaporation.

It is important to note that evaporation should be
considered instead of evapotranspiration in certain
contexts. Variable R0 in the equation is runoff and
ΔS represents  change  in  soil  water  storage  in
lysimeter  zone.  Additionally,  large  areas  may
require different input parameter values, which can
introduce uncertainty and inaccuracy into the esti-
mates. The soil moisture budget method was origi-
nally  developed  by  Thornthwaite  in  1948  and  has
since been refined by various scholars.
Groundwater  Balance  Method: Groundwater

balance  estimation  is  a  systematic  approach  for
estimating  groundwater  recharge  by  considering
the  variations  in  inflow,  outflow,  and  storage.
(Lerner,  1990; Nimmo  et  al.  2005; Kumar  et  al.
2021). The equation is

(P+GWin)− (Q+ET +GWOut) = ∆S (9)

Where: GWin is  groundwater  inflow, Q is
discharge, P is precipitation, ET is evapotranspira-
tion, ΔS is  change in  storage and GWout is ground-
water  outflow.  This  method  integrates  all  water
sources in both the surface and subsurface environ-
ments. 

 

Table 1 Empirical equations for recharge estimation

Formula Name Equation (s) Parameter definition
Chaturvedi Formula (Chaturvedi, 1973) Ganga-Yamuna doab region R= 2(P−15)0.4

Modified Chaturvedi Formula - Ganga-Yamuna doab region R = 1.35(P−14)0.5

Sehgal Formula (1973)- Punjab region R = 2.5 (P−16)0.5 P = rainfall (inch)
Kumar and Seethapathi (2002) - Upper Ganga Canal command area R = 0.63 (P−15.28)0.76 R = recharge (inch)
Mohan and Abraham (2010)- Cuddalore basin , Tamil Nadu R = 3.55 (P−40)0.42 P and R (cm)
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1.4 Chemical methods
 

1.4.1    Surface water zone
Heat  tracer: The  heat  tracer  method is  employed
in  groundwater  surveys  to  measure  surface  water
infiltration  and  flow,  particularly  in  ephemeral
rivers.  This  technique  serves  as  an  alternative  to
traditional flow measurements,  especially in semi-
arid regions where water flow can be intermittent.
By  measuring  temperature  variations,  researchers
can  estimate  recharge  rates  from  streams  and
steady  drainage  rates  at  various  depths  within
heterogeneous  media  (Lapham,  1989; Stonestrom
and Constantz, 2003).

The method involves using transient and steady-
state  analytical  solutions  to  one-dimensional
conduction-advection differential equations, which
are  inverted  to  estimate  vertical  flow rates  (Kury-
lyk  et  al.  2017).  Diurnal  temperature  fluctuations,
along with matric potential recorded by heat dissi-
pation sensors or thermistors, are input into a vari-
ably  saturated  flow  model.  This  model  employs
inverse  modelling  techniques  to  estimate  the
hydraulic  conductivity  of  sediments,  ultimately
allowing for the calculation of percolation rates.
Isotopic tracers: Isotopic tracers, provide valu-

able  insights  into  groundwater  flow  patterns,  age,
recharge  zones,  losses,  and  interactions  with
surface waters as described by Coplen (1993). This
method  involves  analyzing  the  concentrations  of
conservative  stable  isotopes,  such  as 18O/2H,  in
precipitation,  soil  water,  and  groundwater.  Such
analyses  help  in  understanding  subsurface  flow
processes,  recharge  environment  and  the  cycle
characteristics  of  groundwater  (Zhao  et  al.  2021).
Thermo Finnegan  Delta  isotope  mass  spectrome-
try  is  utilized  for  measuring  soil  water  isotope
concentrations  (Wood  and  Sanford,  1995;
Adomako et al. 2010). Groundwater recharge rates
can  be  derived  from  the  measured  soil  water
isotopic profiles  using  methods  like  the  approxi-
mate  peak  shift  method  (Leibundgut  et  al.  2009)
and  transport  modelling  approaches  (Simunek  et
al. 2005). 

1.4.2    Unsaturated zone
Environmental  tracer: Environmental  tracers,
including isotopes such as oxygen-18 (18O), deuter-
ium (2H), nitrogen-15 (15N), tritium (3H), carbon-14
(14C), and chloride-36 (36Cl), are effective tools for
studying groundwater recharge due to their afford-
ability  and  availability.  Among  these,  chloride  is
particularly  favored  as  an  environmental  tracer
because  it  is  inexpensive  and  effectively  reflects
atmospheric inputs (Chen et al. 2006).

A widely used approach for estimating recharge
is the Chloride Mass Balance (CMB) method. This
method operates  under  the  assumption  that  envi-
ronmental chloride is the sole source of chloride in
groundwater (Allison and Hughes, 1983; Edmunds
and  Gaye,  1994).  It  presumes  that  precipitation
water infiltrates  the  aquifer  through  deep  percola-
tion without  surface drainage,  and that  there  is  no
additional  chloride  input  from  human  activities,
vegetation,  or  agricultural  practices.  The  recharge
can  be  estimated  using  the  following  equation:
(Allison and Hughes, 1983).

R =
(
PCwp+Cdd

)
/Cst (10)

Where: Cwp is  weighted  average  chloride
concentration in rainfall P;

Cdd is chloride concentration of dry deposition;
Cs is average  chloride  concentration  over  inter-

val 't' of interstitial water in the unsaturated zone.
The CMB  method  provides  a  precise  approxi-

mation of recharge rates, as there is an inverse rela-
tionship  between  chloride  concentration  and
drainage  in  the  unsaturated  zone  (Scanlon,  2000;
Huang et al. 2019; Kumar et al. 2021).

v

Applied tracer: Applied or artificial tracers are
used  in  recharge  calculation  by  enhancing  their
natural  concentrations  in  the  environment.  The
distribution of  these  applied  tracers  in  the  subsur-
face  is  determined  through  methods  such  as  by
digging  trenches  or  drilling  sampling  holes.  The
minimal soil water flux can be calculated based on
the time interval  between application of  the  tracer
and  its  sampling,  as  well  as  the  root  zone  depth
(Scanlon  et  al.  2002; Ali,  2017; Ali  and  Islam,
2020).  The  vertical  distribution  of  the  tracer  is
employed  to  calculate  both  the  recharge  rate  (R)
and  the  velocity  of  water  movement  ( ),  as
described by the equation:

R = vθ =
∆z
∆t
θ (11)

Where: Δz is  elevation  of  tracer  peak, Δt is
elapsed  time  between  the  tracer  application  and
sampling and θ is the volumetric moisture content.
To  avoid  complexities  associated  with  the  root
zone, it  is recommended to apply the tracer below
the root zone.
Historical tracers: Historical tracers, such as 3H

and 36Cl, are derived from by human activities and
past  events,  including  pollution  spills  or  nuclear
testing,  and  are  found  in  the  atmosphere.  These
tracers offer  advantages  such  as  minimal  addi-
tional  hazards  and  reduced  costs  (Nativ  et  al.
1995). They  can  be  particularly  effective  for  esti-
mating higher recharge rates when the water table
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is  deeper.  However,  challenges  may  arise  in  soil
sampling and accurately locating the tracer peak.

Historical  tracers  provide  point  estimates  of
water  flux  over  the  past  50  years.  Nonetheless,
they  come  with  limitations,  including  uncertainty
regarding  the  location  and  concentration  of  the
tracer,  difficulties  in  sampling  at  greater  soil
depths,  and  the  potential  for  overestimation  of
water  flux due to  evapotranspiration effects  in  the
root  zone.  Water  fluxes  can  be  calculated  using
Equation (11). 

1.4.3    Saturated zone
Groundwater  dating/Groundwater  Aging: Gro-
undwater  age  can  be  determined  using  tritium,  a
radioactive  tracer  known  for  its  shorter  half-life
compared  to  other  tracers  (Kinzelbach  and  Aes-
chbach, 2002). The age of the groundwater can be
calculated from the ratio  of  tritium to tritio-genic-
helium (3H/3He) using the following equation:

t = −1
λ

ln
⌈
1+

3Hetrit

3H

⌉
(12)

Where: λ is  the  decay  constant  (ln  2/t1/2), t1/2 is
the  half-life  of 3He  (12.43  years),  and Hetrit is  the
tritio-genic-3He (Ali and Mubarak, 2017).

The  primary  assumption  in  this  method  is  that
the  groundwater  system is  closed.  Factors  such as
porosity,  geological  structure,  and  recharge  rates
significantly  influence  groundwater  aging  in
unconfined  aquifers  (Cook  and  Bohlke,  2000).
Groundwater ages  can  be  estimated  with  a  preci-
sion of 2 to 3 years using 3H/3He and chlorofluoro-
carbons  for  groundwater  that  is  up  to  about  50
years  old.  For  older  groundwater,  the  radioactive
decay of 14C can be used to estimate ages ranging
from  200  years  to  20,000  years  (Cook  and
Solomon,  1995). The  decay  equation  for  estimat-
ing groundwater residence duration is given by.

Age = ln
(

A
A0

)
8266.7 (13)

Where: A0 is the  initial  radiocarbon  concentra-
tion of water.

R =
Lφe

T
(14)

Where: L is flow path length, φe is the effective
porosity,  and T is  age  of  the  groundwater  at  the
distance L.

Understanding  groundwater  ages  significantly
enhance  the  accuracy  of  recharge  rate  estimates,
which  can  be  integrated  into  automated  inverse-
modeling  exercises.  Baseflows  estimates  provide
Darcian flux, while travel times help estimate seep-
age  flux.  Both  types  of  flux  data  are  essential  for
effective porosity estimation. Additionally, carbon-

14-based ages  can also  be  used to  estimate  paleo-
recharge rates in certain cases (Sanford, 2002). 

1.5 Numerical models

Watershed  model: Watershed models  are  essen-
tial  for  predicting  recharge  rates  across  extensive
regions, providing estimates as a residual factor in
the  water-budget  equation  (Ali  and  Mubarak,
2017).  The  spatial  resolution  of  these  models
varies; some provide lumped estimates of recharge
for the entire catchment, while others divide basins
into  hydrologic-response  units  (Flint  et  al.  2002).
The  precision  of  recharge  approximation  depends
on the  accuracy  of  various  water  balance  compo-
nents.  Notable  watershed  models  include
MIKESHE, SWAT, and HSPF, which integrate all
hydrologic components  and  offer  advanced  capa-
bilities  for  parameter  estimation  and  water  budget
studies (Daniel et al. 2011).
Unsaturated  zone  model: Recent advance-

ments in  computational  algorithms  have  signifi-
cantly enhanced the feasibility of conducting long-
term simulations of aquifer recharge (Shamsi et al.
2020; Zeinali  et  al.  2020).  Unsaturated  zone
modeling  enables  the  estimation  of  potential
recharge; however,  drainage  rates  in  deep  unsatu-
rated  zones  may  not  accurately  reflect  real  rech-
arge  rates  at  the  water  table,  as  infiltrated  water
may  not  completely  reach  the  groundwater.  The
Richards  equation,  governing  unsaturated  flow,  is
addressed  through  various  methods,  including
numerical  solutions,  techniques  for  routing  soil-
water  storage,  and  quasi-analytical  methods.
Several software packages facilitate the analysis of
unsaturated flow by solving the Richards equation,
including SWIM (Ross, 1990); VS2DI (Hsieh et al.
2000);  WASH123D  (Yeh  et  al.  2006);  Feflow
(Trefry  and  Muffles,  2007);  FEHM  (Zyvoloski,
2007);  Hydrus-1D,  2D/3D  (Simunek  et  al.  1998,
2005);  Hydrogeosphere  (Brunner  and  Simmons,
2012).  Despite  these  advancements,  uncertainties
associated  with  hydraulic  conductivity  and  non-
linear  interactions  often  make  this  approach  more
suitable for small-scale analyses.
Groundwater  flow  models: Groundwater  flow

models are essential for mathematically describing
groundwater flow  and  forecasting  aquifer  condi-
tions. The most widely used numerical groundwa-
ter  flow  model  is  MODFLOW,  developed  by  the
United  States  Geological  Survey  (McDonald  and
Harbaugh,  1988).  It  employs  a  block-centered
finite  difference  approach  for  the  saturated  zone.
Other  models  used  for  recharge  measurements
include  HST3D,  MODFLOW  SURFACT,
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MODFLOWT,  MOC,  VAM2D,  WHI  Unsat  Suite
(Kumar,  2004).  These models  estimate  the  impact
of  withdrawal  or  recharge  rates  on  aquifer  water
levels,  supporting  research  on  groundwater  sup-
plies  and  pollutant  transport.  While  most  models
focus  on  the  saturated  zone,  some  sophisticated
models can  replicate  both  unsaturated  and  satu-
rated zone flow. Groundwater modeling results are
subject to various uncertainties, including parame-
ter,  conceptual,  and  measurement  uncertainties,
primarily  due  to  the  challenges  in  monitoring
hydrodynamic parameters and variables across the
aquifer.

A  semi-coupled  modeling  approach  computes
the  spatio-temporal  variability  of  groundwater
recharge  where  the  net  recharge  from  unsaturated
flow models  is  used as  input  to  groundwater  flow
models  (Sophocleous  and  Perkins,  2000). Addi-
tionally,  groundwater  models  coupled  with  Soil
Vegetation  Atmospheric  Transport  (SVAT)
models  help  assess  the  impact  of  land  use,  soil
type,  and  climate  on  groundwater  budget.  SVAT
models  simulate  hydrologic  process  in  the  vadose
zone,  using  governing  equations  for  moisture  and
energy  movement  in  vertical  direction,  applicable
at  various  soil  profile  levels.  The  recharge  output
from  the  deep  soil  level  is  then  input  into  the
groundwater flow model (Facchi et al. 2004).

However,  predicting  groundwater  recharge  in
watersheds with hydrological and geographic vari-
ability presents  challenges.  Geographic  Informa-
tion  Systems  (GIS)  can  assist  in  resolving  these
issues by employing physical-based coupled water
balance-groundwater  flow  models  (Batelaan  and
De Smedt, 2007; Dereje and Nedaw, 2019). These
models  requrie  inputs  related  to  the  watershed
system,  the  physical  rules  governing  its  behavior,
and the  boundary  and  initial  conditions.  Nonethe-
less,  conventional  methods  used  in  this  approach
are  computationally  intensive,  necessitating  subs-
tantial  data  and  calibration  efforts  (Daniel  et  al.
2011).

Groundwater models incorporate recharge based
on  the  process  controlling  it  and  the  modelling
objectives.  In  arid  regions,  recharge  is  primarily
influenced by climate and soil conditions, while in
wetter  regions,  it  is  determined  by  the  aquifer
system's  ability  to  transmit  water.  Mixed-type
boundary conditions  are  used for  accurate  simula-
tion.  Groundwater  models  estimate  regional
recharge rates  largely  based  on  water  level  infor-
mation and aquifer permeability distribution. Vari-
ably saturated  subsurface  flow  models,  like  inte-
grated  surface  and  subsurface  hydrologic  models,
simulate  water  movement  across  surface  water,

saturated,  and  unsaturated  zones,  relying  on
climate  data.  However,  their  outputs  may  be  less
meaningful  in  certain  situations  due  to  storage
dynamics  in  the  capillary  fringe  above  the  water
table (Gong et al. 2023).
Inverse  Model: Inverse modeling  is  a  tech-

nique  used  to  determine  appropriate  values  for
model  parameters  by  comparing  model  outputs
with  field  measurements.  This  approach  is  com-
monly applied  in  calibrating  models  for  forecast-
ing  natural  systems  in  fields  such  as  hydrology,
meteorology,  and  climatology.  In  the  context  of
groundwater  flow  modeling,  outputs  typically
include  hydraulic  heads,  drawdown,  groundwater
age,  surface  water  gains  and  losses,  and  travel
times.  The  most  widely  used  approach  in  inverse
aquifer  modeling  is  parameter  estimation,  which
seeks  the  optimal  solution  based  on  available
measurements.  Inverse  modeling  is  employed  to
identify  factors  affecting  a  physical  system  by
using  observations  from  measured  hydraulic
heads/field  data,  and  to  predict  recharge  rates
through  numerical  approximation  of  the  two-
dimensional groundwater flow equation (Kendy et
al. 2003). 

1.6 Machine learning algorithms

Machine learning  techniques  have  proven  effec-
tive in predicting groundwater system behavior by
analyzing  data  from  various  hydrological  zones,
such  as  recharge  areas,  water  levels,  and  water
quality,  and  applying  algorithms  to  predict  future
trends.  These  algorithms  employ  available  data  to
identify  the  optimal  function  for  classification,
forecasting,  or  detection  of  specific  outputs,  thus
qualifying them as empirical models (Ahmadi et al.
2022). Artificial Intelligence (AI) approaches have
facilitated the  probabilistic  calculation  of  ground-
water balance  components  by  examining  correla-
tions and causal relationships with other hydrologi-
cal,  climatic,  and  geospatial  variables  (Tao  et  al.
2022). Linear  regression,  logistic  regression,  deci-
sion  trees,  support  vector  machines,  Naive  Bayes,
K-means  clustering,  Random  Forest,  gradient
boosting,  and  adaptive  boosting  are  some  of  the
commonly  used  ML methods.  Below are  some  of
them used in this field.
Multivariate Linear Regression (MLR): MLR

is a  statistical  method  used  to  model  the  relation-
ship  between  input  parameters  and  outcome
measures,  quantifying  the  correlation  between
input  and output  variables  (Mogaji  et  al.  2015).  It
is valuable for forecasting GWL, modeling trends,
and  predicting  recharge  rates  by  correlating
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recharge values with other groundwater condition-
ing factors or predictor variables to build the reser-
voir  prediction  regression  model.  MLR  also
assesses  the  impact  of  climatic  and environmental
variables  on  groundwater  recharge  using  time
series data (Huang et al. 2019; Tao et al. 2022).
Random  Forest  (RF): The  RF  approach  uses

multiple  decision  trees  for  classification  and
prediction  by  aggregating  the  votes  for  selecting
the prediction (Breiman, 2001). It handles complex
datasets  effectively  by  combining  classification
and regression trees with randomization and utiliz-
ing  random  variables  for  node  splitting.  RF
improves prediction  accuracy  by  expanding  deci-
sion trees without pruning based on the number of
trees  and  predictor  variables  (Di  Salvo,  2022).  Its
small  parameter  set  makes  it  suitable  for  water
resources  applications  (Liaw et  al.  2002).  The  RF
regression  algorithm  predicts  groundwater  rech-
arge  using  multiple  hydrogeological  attributes  as
input  predictor  variables  such  as  precipitation,
evapotranspiration,  soil  moisture,  aridity  index,
vegetation  indices,  and  so  on.  The  algorithm  is
built  using the training dataset  from experimental/
field data or from recharge values estimated using
numerical  or  physical  based methods  (Sihag et  al.
2020).
Extreme Gradient Boosting (EGB): EGB is an

ensemble  learning  technique  that  uses  gradient
boosting  algorithm  for  prediction.  It  builds  tree
type predictors sequentially and focuses on residu-
als from earlier learners to reduce errors. It is flexi-
ble and compatible with various programming lan-
guages  but  requires  technical  expertise.  However,
it  is  complex,  memory-intensive, and  lacks  trans-
parency.  XGB  regression  modeling  uses  climatic
variables and GWL data to predict GWL behavior
(Osman et al. 2021; Tladi et al. 2023).
Support Vector Machine (SVM) and Support

Vector  Regression  (SVR):  SVMs  are  statistical
learning techniques that utilize structural risk mini-
mization  and  kernel  functions  to  transform  data
into a high-dimensional space for optimal classifi-
cation and regression (Naghibi et al. 2017). SVR is
a  variant  of  SVM,  used  for  regression  problems.
SVM  enhances  its  generalization  ability  and
prediction accuracy by minimizing empirical error
and model complexity simultaneously, focusing on
testing  error  rather  than  training  error  (Di  Salvo,
2022; Anh  et  al.  2023).  SVM  can  predict  GWL
fluctuations over  various  periods  by  approximat-
ing nonlinear  process  using  different  kernel  func-
tions (Tao et al. 2022).
Gaussian  Process  Regression  (GPR)  and

Gaussian Mixture Models (GMM): GPR is a non-

parametric,  kernel-based  probabilistic  method,
which can  be  used  for  preferential  learning,  regu-
larization  of  parameters,  uncertainty  handling  and
probabilistic  predictions.  GMMs  assume  that  data
points  result  from  a  combination  of  Gaussian
distributions with unknown characteristics (Zeng et
al. 2008; Reynolds, 2009). GPR models, regulated
by covariance functions, offer robustness and relia-
bility,  often  outperforming  other  ML  models  in
GWL prediction (Ahmed et al. 2022).
Deep  learning  algorithms: Deep  learning  is  a

branch of  ML in which millions of  data are given
as  input  that  uses  neural  networks  with  multiple
layers  to  analyze  and  emulate  complex  nonlinear
patterns by  building  relationships  with  the  vari-
ables  and  enhancing  the  stability  of  the  whole
system.  Annual/Regional  groundwater  extraction
data calculated  using  chemical  methods  or  physi-
cal methods  and  the  groundwater  predictor  vari-
ables  are  used  to  train  the  network.  The  recharge
values are then calculated using the input potential
variables based on the trained network parameters
(Huang  et  al.  2023).  The  top  ten  popular  deep
learning  algorithms  include  Convolutional  Neural
Networks  (CNNs),  Long  Short-Term  Memory
Networks  (LSTMs),  Recurrent  Neural  Networks
(RNNs),  Generative  Adversarial  Networks
(GANs),  Radial  Basis  Function  Networks
(RBFNs),  Multilayer  Perceptrons  (MLPs),  Self-
Organizing  Maps  (SOMs),  Deep  Belief  Networks
(DBNs), Restricted Boltzmann Machines (RBMs),
and Auto encoders. Deep learning has been utilized
to predict  parameters  in  the  numerical  homoge-
nization  of  Richards  equation  (Stepanov  et  al.
2023). Artificial Neural Networks (ANNs) are self-
learning algorithms  that  mimic  the  brain's  struc-
ture and operation through interconnected process-
ing  units,  can  simulate  complex  processes  like
pattern  creation  and  decision-making.  Fuzzy  logic
and  neuro-fuzzy  models  integrate  ANNs  with
Fuzzy Logic (FL) to leverage the strengths of both
methodologies (Sharafati  et  al.  2020).  The ANFIS
model  is  frequently  used  in  hydrology  for  GWL
prediction,  using  meteorological  parameters  as
inputs (Bak and Bae, 2019).

In  extensive  research  areas,  while  ML  models
cannot  replace  numerical  models,  they  offer  cost-
effective tools that can enhance groundwater fore-
casts  for  specific  locations.  ML  models  improve
numerical  model  calibration,  predict  head  errors,
and aid  in  variables  selection,  thus  refining  deci-
sion-making  procedures.  Nevertheless,  they  have
limitations  like  uncertainty  quantification,  short
forecast  time  frames,  and  challenges  in  handling
non-spatial data sources (Huang et al. 2019).
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ML models, which are often bottom-up and data
driven,  face  challenges  with  lengthy  calibration
and  prediction  time.  Bottom-up  models,  requiring
spatially sensitive data,  struggle with interpolating
and  upscaling  spatio-temporal  behaviour  in  areas
with  sparse  sampling  data.  For  spatio-temporal
groundwater  recharge  prediction,  deep  learning
models  with  top-down  approach  outperform  other
approaches due to their superior prediction perfor-
mance, long term forecasting capabilities,  interpo-
lation, upscaling, minimal training time, and strong
generalization ability (Huang et al. 2023).

Machine  learning  applications  in  forecasting
groundwater and  climate  variables  have  demon-
strated accuracy comparable to or exceeding tradi-
tional  numerical  models.  These  methods  require
fewer  input  parameters  and  bypass  the  typical
model  building  and  parameter  estimation  stages,
offering  a  viable  alternative  for  models  with
lengthy  computational  times.  ML  techniques
reduce processing times without compromising the
accuracy  of  GWL  forecasting  (Banerjee  et  al.
2024),  addressing  errors  from  multiple  sources
without assumptions about error distribution. They
also allow for the integration of diverse input data,
enhancing the prediction capabilities of physically-
based  models  under  varying  conditions. Table  2
illustrates  the  diverse  range  of  machine  learning
algorithms utilized in recent groundwater level and
recharge prediction research. ML algorithms effec-
tively address the challenges in modelling complex
hydrogeological processes, capturing the nonlinear
and  dynamic characteristics  of  systems  without
explicit  mathematical  descriptions,  as  demonstr-
ated  in  studies  by  Ahmadi  et  al.  (2022),  Derbela
and Nouiri (2020), Di Salvo (2022), and Osman et
al. (2021).

Despite  limitations  such  as  overtraining  and
dependency  on  training  data,  ML  methods  offer
simplicity,  high-speed  processing,  and  reasonable
accuracy without requiring a deep understanding of
the  problem's  physics.  However,  these  methods
often overlook the spatial correlation of target vari-
ables (Reichstein et al. 2019) and are opaque, lack-
ing  physical  mechanisms,  which  can  increase
uncertainty  in  simulation  outcomes.  To  mitigate
this  uncertainty,  various  studies  has  employed  the
Bayesian  optimization  algorithm  to  fine-tune
model hyperparameters,  thereby  reducing  simula-
tion uncertainty to a certain degree.

Limitations  in  modelling  nonlinear  and  non-
stationary  processes  in  AI  models  have  led  to  the
development  of  hybrid  modeling  approaches,
combining  different  AI  methods  at  various  stages
of the modeling process. Hybrid methods integrate

AI-based models,  computational  machine  learning
models,  and  traditional  regression  models  to
enhance  performance  accuracy  or  achieve  optimal
outcomes. These hybrid approaches can be applied
in  prediction  or  optimization  stages  depending  on
their  intended  goals,  are  proven  to  be  more
dependable  and  capable  of  surpassing  single
models  in  terms  of  modeling  accuracy.  Various
hybrid models, particularly those integrating Artifi-
cial  Neural  Networks  (ANNs),  have  demonstrated
significant improvements in GWL prediction (Tao
et al.  2022).  Wavelet-AI model,  Genetic program-
ming-AI  model,  AI-Kriging,  Wavelet-ANN  and
Wavelet-ANFIS  models  are  coupled  to  leverage
their combined potential for spatio-temporal simu-
lation of GWL (Rajaee et al. 2019). Integrating AI
with  conceptual-numerical models  to  create  inte-
grated  modular  models,  eg.  ANN-MODFLOW
(Abd-Elmaboud  et  al.  2021),  can  effectively
addresses the  limitation  of  each  approach.  Predic-
tive error of physically-based groundwater models
are  frequently  prone  to  random  and  systematic
errors  due  to  deficiencies  in  model  structure,
parameter, and data. Such errors can be effectively
reduced using coupled numerical models with data
driven  models  from  machine  learning  algorithms.
Combining  local  data,  remote  sensing,  and  GIS
with  AI  improves  our  understanding  of  recharge
(Tao et al. 2022). 

2  Selection of  suitable  recharge  esti-
mation methods

Sustainable groundwater  extraction  faces  chal-
lenges  due  to  limited  knowledge  and  tools  for
understanding  groundwater  dynamics.  Accurate
groundwater  recharge  projections  are  crucial  for
assessing the impacts of climate change on ground-
water  resources  and  for  effective  planning  and
management.  With  the  increasing  water  demands
of irrigated  agriculture,  precise  recharge  estima-
tion methods become crucial. Current methods for
modelling  groundwater  dynamics  often  focus  on
time series data analysis, neglecting spatial compo-
nents due to challenges in capturing both temporal
and  spatial  similarity  of  recharge  variables  (Sena
and  Nagwani,  2016).  Errors  and  uncertainties  in
recharge  estimations  arise  from  spatio-temporal
variations  in  processes  and  parameter  values,
measurement errors, and the validity of underlying
assumptions  (Healy  and  Cook,  2002; Sanford,
2002). The selection of estimation method depends
on  factors  such  as  the  study's  purpose,  required
accuracy level, the area under study, and history of
recharge monitoring. Table 3 provides a  summary
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Table 2 Details  of  machine  learning  algorithms  utilized  in  recent  studies  for  groundwater  level  and  recharge
predictions.

References
Machine learning
models

Predictive evaluation metrics Input data
Target
prediction

Emamgholizadeh
et al. 2014

Artificial Neural
Network (ANN) and
Adaptive Neuro-
Fuzzy Inference
System (ANFIS)

Root-Mean-Square-Error
(RMSE) and determination
coefficient (R2)

Rainfall recharge, irrigation
returned flow and pump-
ing rates from water wells

Groundwater
level (GWL)

Pandey et al.
2020

ANN optimized with a
Genetic Algorithm
(GA-ANN)

Coefficient of determination
(R2), coefficient of efficiency
(CE), correlation coefficient
(r), Mean Absolute Devia-
tion (MAD), RMSE, Coeffi-
cient of Variation of Error
Residuals (CVER), Absolute
Prediction Error (APE) and
Performance Index (PI)

Groundwater recharge,
groundwater discharge
and previous groundwa-
ter level data

Seasonal ground-
water table
depth

Derbela and
Nouiri, 2020

ANN RMSE, R2, Nash–Sutcliffe
(NASH) efficiency coeffi-
cient

Monthly rainfall, evapotran-
spiration and initial water
table level

Monthly water
table levels

Dadhich et al.
2021

Time series forecasting
models (Simple
Exponential Smooth-
ing, Holt's Trend
Method, ARIMA)
and ANN

Root-Mean-Square-Error
(RMSE) and determination
coefficient (R2)

Groundwater data GWL and qual-
ity parameters

Pham et al. 2022 Random Tree (RT),
Random Forest (RF),
decision stump, M5P
regression algorithm,
Support Vector
Machine (SVM),
locally weighted
linear regression
(LWLR), and reduce
error pruning tree
(REP Tree)

RMSE, Mean Absolute Error
(MAE), Relative Absolute
Error (RAE), Root Relative
Squared Error (RRSE),
Correlation Coefficient (CC),
and Taylor diagram

Historical GWL, mean
temperature, rainfall, and
relative humidity datasets

Groundwater
level (GWL)

Huang et al. 2023 Top-down deep learn-
ing model (s-LSTM),
bottom-up machine
learning models (m-
Linear, m-MLP, and
m-LSTM)

Root-Mean-Square-Error
(RMSE), absolute errors
between calibrated and
predicted data

Groundwater extraction,
mean number of wet days
per year, seasonal mini-
mum temperature,
seasonal rainfall, and
seasonal actual evapora-
tion

Groundwater
recharge

Banerjee et al.
2024

Linear Regression
model to the intri-
cate Extreme Gradi-
ent Booting
(xgboost)

Inversive correlation and k-fold
cross-validation

Precipitation, Land Use
Land Cover (LULC), soil
type, land slope, tempera-
ture, potential evapotran-
spiration, and aridity
index

Groundwater
recharge
pattern under
different
climate change
scenarios

Ramadan and
Boubaker,
2024

SVM, RF, Linear
Regression (LR), and
Gradient Boosting
(GB)

Mean Squared Error (MSE), R-
squared (R2), Mean Absolute
Error (MAE), Explained
Variance Score (EVS), Mean
Absolute Percentage Error
(MAPE), and Median Abso-
lute Error (medae)

Weather data Water consump-
tion, ground-
water recharge

Fahim et al. 2024 Multiple Linear Regres-
sion (MLR), regres-
sion trees, SVM,
Gaussian Process
Regression (GPR),
and ANN

Overall correlation coefficient
(R) and MSE

Groundwater storage (GWS)
gridded data from the
Global Land Data Assimi-
lation System (GLDAS)
and other data sources
such as population, rain-
fall, temperature, irriga-
tion, and elevation

Groundwater
level (GWL)
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Table 3 Brief outline of the various methods of estimation of groundwater recharge with their advantages, disad-
vantages and scope of application

Zones Methods
Climatic
regions

Advantages Disadvantages Scope of application

Physical methods
Surface

water
zone

Channel
Water
Balance

All
Climatic
Regions

Analyzes recharge Rate
based on transmis-
sion losses;

Provides potential
recharge values.

Uncertainty issues due to
inherent fluctuations in
hydrologic cycle and
related measurement
mistakes;

Overestimation due to bank
storage/evapotranspiration/
perched aquifer effects.

Represent average recharge
values over the reach
between gauging
stations;

Temporal scales range
from event scale to long-
term summation of indi-
vidual events.

Seepage
Meters

All
Climatic
Regions

Direct, Fast Measure-
ment;

Simple computation;
Affordable;
Rational on-site imple-

mentation.

Point estimates of fluxes;
Requires multiple measure-

ments.

Localized Recharge Esti-
mation providing actual
recharge values;

Time scales range from
individual events to
days;

Wide application range.
Hydrograph

Separation
Method

Humid Simple recharge esti-
mator;

No sophisticated instru-
ment required;

Estimates recharge over
longer times by
summing shorter
time estimates.

Not suitable for large basins
with high pumpage, evapo-
transpiration, deep aquifer
underflow and losing
stream;

Difficulty in separating flow
components from bank
storage effects.

Watershed/catchment/
regional level estima-
tion providing net
recharge values;

Time scales range from
months to years;

Best for shallow water-
table regions with gain-
ing streams.

Unsatu-
rated
zone
tech-
niques

Lysimeter
Method

All
Climatic
Regions

Percolate gathered by
lysimeters closely
approximates the
recharge reaching the
water table.

High costs and impracticabil-
ity in non-identical soils,
drainage areas, deep rooted
vegetation condition and
sidewall flow.

Overestimation due to
changes in surface and
subsurface flow routes;

Point-estimate of recharge.

Measures aquifer renewal
rate;

Used for local estimation at
point scales;

Temporal scale ranges
from minutes to years,
depending on drainage
accuracy and lysimeter
surface area;

Wide application range.
Zero Flux

Plane
Method

All
Climatic
Regions

Direct point estimation
of potential ground-
water recharge.

Costly requires expensive
devices and data;

Fails with sufficient infiltra-
tion due to a positive
hydraulic gradient;

ZFP depth is not fixed and
fluctuates throughout the
year, ranging from a few
centimeters to a few meters
below the soil surface;

Accurate determination
requires special care and
sensitive instruments,
making it difficult to
measure;

Not applicable in wet areas.

Applicable in areas with FP
and deep water table;

Cannot be used when water
fluxes are downward or
when water storage
grows;

Downward movement of a
wetting front can
obscure the zero-flux
plane.

Unstaurated
Zone Flux
Estimation
Using
Richards
Eqution

Arid/Semi-
arid

Water draining below
the root zone (or
passing through
unsaturated zone)
contributes to
recharge.

Difficulties in measuring soil-
water potential gradient at
deeper layer/profile;

Variabilities in hydraulic
properties of field soil,
field measured data of
hydraulic properties, etc;

Point estimate of recharge
over a wide range of time;

Does not indicate total
recharge as it only
accounts for diffuse or
matrix flow.

The minimum recharge
rate that can be esti-
mated using Richards
equation depends on the
accuracy of hydraulic
conductivity and head
gradient measurement.
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Table 3 (continued)

Zones Methods
Climatic
regions

Advantages Disadvantages Scope of application

Saturated
Zone
Tech-
niques

Water Table
Fluctua-
tion
Method

All
Climatic
Regions

Widely used method
for estimating
groundwater
recharge based on
groundwater levels;

Applicable in arid and
semiarid regions with
shallow WT;

Most promising and
attractive approaches
due to its accuracy,
ease of use and low
application cost in
semiarid areas;

Effective for analyzing
short-term fluctua-
tions in water levels
in shallow water
tables and for deter-
mining long-term
recharge changes
induced by climate
or land-use change.

Not suitable for deep aquifers
due to the delayed rise in
WT;

Time intervals for recording/
measurement should
consider wet/dry spell
length, aquifer depth, and
recharge estimation objec-
tive;

Accumulated errors from
other fluxes can lead to
significant mistakes.

Applicable to unconfined
aquifer only;

Used for local to catch-
ment/regional level esti-
mation providing actual
recharge values;

Rates for recharge range
from tens to hundreds or
thousands of meters;

Time spans range from
event scale to hydro-
graphic record length.

Chemical methods

Surface
Water
Zone

Heat Tracer Arid/Semi-
arid

Measures surface water
infiltration and flow
through ephemeral
rivers;

Alternative to flow
measurements in
semi-arid regions
prone to erosion.

Point estimate of recharge. Uses a variably saturated
flow model to estimate
sediment hydraulic
conductivity and perco-
lation rates based on
temperature fluctuations
and matric potential
from heat dissipation
sensors.

Isotopic
Tracer

All
Climatic
Regions

Direct method for field
surveys;

Accurate results with-
out absorption or
tracer loss;

Requires only one-time
sampling, allowing
for smaller flux esti-
mates;

Doesn't require
frequent field visits.

Radioactive material may not
be permitted in all areas
due to environmental
protection laws;

Requires costly instruments
for reading samples and
technical operation;

Point estimates of recharge
require multiple measure-
ments;

Difficulties in soil sampling
at greater depths and locat-
ing tracer peak;

Water content within root
zone is underestimated due
to evapotranspiration.

Application of tracer at
multiple sites and appro-
priate averaging of the
results can give more
realistic value of
recharge;

Understanding groundwa-
ter flow patterns, age,
recharge zones, losses,
and interactions with
surface waters.

Unsatu-
rated
Zone
Tech-
niques

Environmen-
tal Tracer

Arid/Semi-
arid

Chloride Mass Balance
(CMB) Model for
Recharge Rate Esti-
mation;

Cost-effective and envi-
ronmentally friendly;

Accurately estimates
recharge rates;

Conserves atmospheric
inputs;

Provides integrated
value.

Ambiguity in determining
chloride concentration in
wet/dry deposition;

Extreme rainfall affects
concentration;

CMB method relies on runoff
for Cl concentration causes
errors in humid regions;

Provides precise recharge
rate approximation for a
few years to longer peri-
ods;

Used for local to catch-
ment/regional level esti-
mation providing poten-
tial estimates if with-
drawals greater than
recharge.
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Table 3 (continued)

Zones Methods
Climatic
regions

Advantages Disadvantages Scope of application

Historical
Tracer

Arid/Semi-
arid

No extra hazard;
No extra cost of tracer;
Historical tracers

provide point esti-
mates of water flux
over the last 50
years.

Uncertainties regarding tracer
location and concentration;

Difficulties of soil sampling
at greater depths and locat-
ing tracer peaks in areas
with higher recharge rate;

Water fluxes estimated from
tracers within the root zone
can overestimate water
fluxes below the root zone
due to evapotranspiration.

Historical tracers or event
markers such as bomb-
pulse tritium (3H) has
been widely used in the
past in both unsaturated
and saturated zones to
estimate recharge.

Applied
Tracer

Humid No environmental
hazard;

Easy to apply and
sampling;

Low cost;
Visual observation is

possible for visible
dyes;

Provides precise
recharge estimations
as they are unaf-
fected by surface
runoff and other
water balance
component and
driven only by
recharge component.

Observed recharge rate will
be higher than actual due to
preferential pathways;

Negligible concentration
towards greater depth with
insufficient initial concen-
tration;

Tracers don't directly measure
water flow, leading to over-
or under-estimation;

Issues with secondary tracer
inputs, mixing, and dual
flow mechanisms;

Technique yields point esti-
mates of recharge through
soil matrix only;

Low recharge rate calcula-
tion due to the slow move-
ment of tracer through root
zone.

Calculated recharge rates
represent the time
between application and
sampling;

Used for local to catch-
ment/regional level esti-
mation providing poten-
tial estimates if with-
drawals exceed recharge.

Saturated
Zone
Tech-
niques

Ground Water
Dating/
Aging

All
Climatic
Regions

Easy to implement if
the instrument for
reading the sample is
available;

No additional field
setting/experiment is
needed.

Costly instrument;
Variation of isotopic signa-

ture with depth may occur
due to various reasons;

Multiple sampling through-
out the depth up to aquifer
is needed;

Neoconservative nature;
Lack of mass balance

research;
Affected by contamination;
High cost, and specialized

personnel requirements.

Used for local to catch-
ment/regional level esti-
mation giving actual
recharge values;

Range is not limited;
The temporal scales repre-

sented by the recharge
values range from years
to long term average.

Numerical models

All Hydro-
logical
Zones

Numerical
Modelling

All
Climatic
Regions

Requires less data;
Can model large areas

and complex condi-
tions;

Can provide the miss-
ing information;

Calibrated models can
assess spatial and
temporal distribution
and Scenarios;

Can provide a predic-
tive tool to quantify
impacts on the
system;

Higher generalization
ability than AI
models.

Computationally intensive
due to iterative techniques;

Simulation models may
display errors in parameter
estimation, measurement
errors, and application
scale due to inherent
assumptions and valida-
tion processes;

Complexity in model prepara-
tion, realistic problem
description and result eval-
uation.

Numerical relationship
between basic

components in the water
budget method is used;

Provides the recharge esti-
mate as a residual term;

Used for catchment to
regional level estima-
tion;

Range is medium to large
basins;

Temporal scales repre-
sented by the recharge
values range from
months to years.
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of  various  methods,  outlining  their  advantages,
disadvantages, and applications.
Climatic  geomorphology: Recharge estimation

methods vary significantly across different climatic
regions and  often  rely  on  limited  historical  moni-
toring data (Delin et al. 2000; Kumar et al. 2021).
Historical tracers are useful in unsaturated zones in
humid  regions,  where  watershed  modelling
approaches  offer  higher  accuracy due to  perennial
surface-water flow for calibration. In contrast, arid
and  semiarid  regions  typically  use  unsaturated-
zone techniques more frequently, though interpret-
ing groundwater hydrographs and water-table rises
can  be  challenging  in  these  areas,  particularly
where the water table is deep.
Spatial and temporal scale: Surface-water and

groundwater  techniques  generally  offer  regional
recharge  estimates,  while  unsaturated-zone meth-
ods  provide  point-based  or  small-scale  estimates.
Recharge rates can vary significantly depending on
the  time  scale  of  the  study,  with  surface-water
methods  offering  short-term  or  event-based esti-
mates,  while  unsaturated  and  saturated-zone tech-
niques provide estimates ranging from event scales
to multiple years. Numerical modelling can predict
recharge over extended periods, though estimation
based  on  climate  data  are  typically  constrained  to
around 100 years. Tracer techniques, such as those
using 36Cl, 3H, 3H/3He, CFCs, 14C, and Cl, can offer
comprehensive long-term estimations.
Cost and time requirement: The cost and time

requirements for various approaches vary consider-
ably. Tracer techniques are advantageous for quick
recharge estimations, as a single sampling is often
sufficient for chemical and isotopic tracers, poten-
tially  costing  less  than  short-term  monitoring,

which requires monitoring equipment and continu-
ous  data  collection  and  analysis.  Numerical  and
ML models,  on the other  hand,  require  significant
investment  in  terms  of  time  and  cost  during  the
design process.  Deep  learning  models,  in  particu-
lar,  are expensive to train, necessitate high-quality
data, and are often considered "black boxes" due to
their  high  computational  costs  (Hussein  et  al.
2020).
Accuracy: Saturated-zone  techniques  typically

provide  more  reliable  recharge  estimates  by
measuring actual recharge, while surface-water and
unsaturated-zone  techniques  estimate  potential
recharge.  In  arid  and  semi-arid  regions,  where
recharge  constitutes  a  small  portion  of  the  water
budget,  inaccuracies  in  water-budget  techniques
can  accumulate,  making  them  less  accurate
compared  to  humid  regions.  Variability  in
hydraulic  conductivity  affects  the  accuracy  of
approaches using this data, such as unsaturated and
saturated  zone  techniques.  Properly  applied  ML
techniques  can  yield  more  accurate  predictions
compared to some traditional physical models.
Uncertainty in data: Uncertainties in hydraulic

conductivity  are  more  pronounced  in  unsaturated
systems  due  to  the  nonlinear  relationship  between
hydraulic  conductivity  and  water  content.  Tracer
data  estimations  also  carry  uncertainties  related to
tracer  concentrations  measurements,  estimated
inputs,  and  assumptions  about  tracer  transport
processes,  though  these  are  generally  less  than
those  associated  with  water-budget  approaches  or
hydraulic-conductivity  data.  Physically  based
numerical models are subject to inherent uncertain-
ties  from  structural  errors,  parametric  calibration,
and  input  data  inaccuracies.  AI  models  also  face

Table 3 (continued)

Zones Methods
Climatic
regions

Advantages Disadvantages Scope of application

Machine learning algorithms
All Hydro-

logical
Zones

Machine
Learning/
Deep
Learning

All
Climatic
Regions

Improves calibration of
numerical models;

Requires fewer input
parameters, reducing
computational times
without sacrificing
accuracy of detail;

Easy to use with
reasonable accuracy
without needing to
understand the
system's physics;

Deep learning models
are robust, relying on
significant predic-
tors, so eliminating
any predictor doesn't
affect the system.

Lack of understanding the
underlying physical
process;

Lower generalization ability
due to overtraining;

Require a high number of
models runs for optimiza-
tion, sensitivity / uncer-
tainty analysis;

Lengthy calibration and
prediction time;

Spatial recharge dynamics is
not covered as it is data
intensive;

Short forecast time period;
Not suitable for large

research areas.

Effective for groundwater
management when used
in combination with
numerical models;

Machine learning models
can improve numerical
models especially with
limited field data,
enabling accurate predic-
tion at specific locations
using various codes and
software.
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uncertainties  throughout  the  stages  of  training,
learning,  prediction,  preprocessing,  and  data
collection.  Addressing  uncertainty  measurements
in  different  AI  and  numerical  models  is  essential,
Suggesting an  iterative  approach  to  recharge  esti-
mation  that  employs  multiple  techniques  to
account  for  these  uncertainties  (Scanlon  et  al.
2002;  Nimmo  et  al. 2005; Kumar  et  al.  2021).
Hybrid models,  which  integrate  multiple  tech-
niques, often outperform single models in terms of
effectiveness, and addressing various issues associ-
ated with individual techniques (Tao et al. 2022). 

3  Challenges  and  progressions  in
recharge estimation

Recharge estimation methods have inherent limita-
tions and are often dependent on specific problems
and scales. Accurate groundwater recharge estima-
tion  is  an  iterative  process  that  involves  ongoing
data collection and evaluation of aquifer responses.
Field measurements  are  crucial  for  capturing real-
istic  recharge  processes,  as  they  provide  data  that
cannot  be  solely  derived  from  modeling.  Models
used for recharge estimation must accurately repre-
sent essential  flow mechanisms  to  ensure  reliabil-
ity.  Recharge  processes  are  influenced  by  both
climatic factors and surface and subsurface condi-
tions,  which  may  not  always  align  with  lithology
and climate conditions.  Geological factors such as
regolith, duricrust,  and  karst  formations  signifi-
cantly impact  recharge  and  are  shaped  by  histori-
cal  geological  processes  (De  Vries  and  Simmers,
2002; Dang and Zhang, 2008). Over time, various
methods  have  been  developed  for  evaluating
recharge, including basin water balance, numerical
modeling,  empirical  rainfall-recharge relationships
(Beyene  et  al.  2024).  Each  method  is  constrained
spatially and temporally by its underlying assump-
tions and structural features, thus limiting the range
of  detectable  recharge  magnitudes  (Scanlon  et  al.
2002).  Recharge  estimation  involves  field  measu-
rements,  heavily  influenced  by  climate,  surface,
and  subsurface  conditions.  Challenges  include  the
influence of vegetation, soil properties, and precip-
itation  characteristics,  and  the  difficulty  of  direct
observation.  Recharge-precipitation  relationships
exhibit spatial heterogeneity and temporal variabil-
ity,  with  varying  lag  times  due  to  hydrological
impacts  and  urban  development.  Numerical  mo-
delling and tracer methods are sensitive to bound-
ary  conditions  and  require  reliable  parameters.
Tracer  methods,  such  as  chloride  mass  balance,
offer  valuable  insights  into  recharge  sources  but
rely  on  assumptions  of  system  steadiness.  While

tracer approaches can yield reliable estimates, they
require careful  interpretation  to  account  for  local-
ized  and  regional  variability  (Moeck  et  al.  2020).
Physical  methods,  such  as  lysimeters,  offer  high
temporal  resolution  for  recharge  estimation,
through  direct  and  indirect  measurements  such  as
the  zero-flux  plane  and  the  WTF  method.
However,  accurately applying the WTF method is
challenging  due  to  its  dependence  on  factors  like
time, water table depth, and soil texture. Exploring
newer techniques  with  local  specificity  is  recom-
mended.

Geological  complexities  and  low  precipitation
further challenge the estimation of spatial recharge
distribution.  In  arid  environments,  site-scale
recharge  models  are  essential  for  predicting  net
surface infiltration and nonuniform recharge at the
water  table  (Flint  et  al.  2002).  Physically  based
models  are  commonly  employed  in  quantitative
groundwater flow and solute transport analysis, but
their  accuracy  diminishes  as  field  observations,
computer  capacity,  and  hydrogeological  systems
expand.  Practical  limitations  include  the  need  for
extensive data and input parameters, as well as the
difficulty  of  obtaining  accurate  model  parameter
estimates across study areas.

The groundwater study process involves gather-
ing geological  and hydrological  data on the basin,
including  surface  and  subsurface  geology,  water
tables,  precipitation,  and  land  use.  In  cases  where
data  are  lacking,  fieldwork is  necessary to  build  a
conceptual model,  which  is  validated  with  physi-
cal  and  hydrological  stress  data  to  outline  inflow
and  outflow.  Results  are  typically  presented
through  maps  and  cross-sections.  For  numerical
modelling, contour maps of aquifer boundaries and
characteristics  are  essential,  aided  by  auxiliary
maps. Studies require comprehensive data on phys-
ical and  hydrogeologic  frameworks,  encompass-
ing  geological  and  topographic  maps,  water  table
data,  and  hydraulic  conductivity  distributions.
Gathering  data  for  groundwater  modelling  can  be
challenging, especially when information about the
study  area  is  limited.  While  some  data  may  be
available from  existing  reports,  additional  field-
work  is  often  needed.  Collected  data  may  not
always match the required format and may contain
inaccuracies,  necessitating  validation.  Estimating
hydrological stresses  such  as  groundwater  pump-
ing is relatively straightforward, whereas inferring
evapotranspiration  from  land  use  and  potential
evapotranspiration data is feasible. Aquifer charac-
teristics are typically determined through pumping
or laboratory tests, although lab values may under-
estimate  field  values  due  to  sample  constraints.
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Modelling  anisotropic  media  requires  data  on
hydraulic  conductivity  components,  which  can  be
derived  from  stratigraphic  details  or  estimated
during model. 

4  Data  challenges  in  developing
countries

Developing nations  often  lack  extensive  monitor-
ing  systems  for  groundwater  levels,  precipitation,
and soil moisture, which hinders accurate recharge
estimation.  This  lack  of  infrastructure  results  in
sparse  data  coverage,  particularly  in  rural  or
remote  areas,  making  it  difficult  to  capture  the
variability  of  recharge  processes  across  different
regions and  hydrogeological  settings.  Data  incon-
sistencies  and  incompleteness  are  common,  often
due  to  outdated  measurement  techniques,  lack  of
quality control measures, or insufficient data shar-
ing  and  integration  efforts.  Limited  resources  for
data collection  and  management,  including  finan-
cial, technical, and institutional constraints, further
impede effective data collection, management, and
analysis. Additionally,  a  lack  of  technical  exper-
tise for groundwater monitoring, data management,
and  analysis  exacerbates  these  issues.  Addressing
these challenges requires a multi-faceted approach
involving  infrastructure  investments,  capacity
building,  collaboration,  and  policy  support  to
ensure sustainable  groundwater  resource  manage-
ment.  An  important  development  in  addressing
data scarcity issues is the use of Basin Characteri-
zation  Model  (BCM)  (Stern  et  al.  2021)  in  water
balance modelling. BCM offers a thorough under-
standing  of  groundwater  recharge  and  runoff
dynamics  by  integrating  local  and  global  datasets
in  a  seamless  manner,  especially  in  areas  with
restricted  data  availability.  This  method  improves
estimating  precision  by  utilizing  remote  sensing
technologies  and  climate  data  (Mekonen  et  al.
2023).

The  Global  Land  Data  Assimilation  System
(GLDAS)  gridded  Groundwater  Storage  (GWS)
data  presents  a  cost-effective alternative  to  estab-
lishing  an  extensive  groundwater  monitoring
network. By  employing  advanced  data  assimila-
tion  techniques  and  land  surface  modelling,
GLDAS GWS data has proven effective in various
regions,  serving  as  a  viable  substitute  for  in-situ
data (Fahim et al. 2024). GIS technologies are well-
suited  for  groundwater  studies  due  to  their  ability
to handle  both locational  and attribute  data  simul-
taneously. GIS  technology  facilitates  the  integra-
tion of diverse datasets, such as topographic maps,

lithological maps, and water level data, which need
to  be  integrated  for  coherent  interpretation.
Advances  in  computer  technology  have  improved
GIS's  capacity  to  process  large  volumes  of  data
quickly and accurately, leading to higher accuracy
and  repeatability  of  results  compared  to  manual
methods.

This  review  has  focused  on  conventional  and
machine learning  techniques  for  recharge  estima-
tion, highlighting their scope of application. Future
research  should  emphasize  hybrid  AI  models  and
coupled  numerical  models  for  optimal  evaluation
of  water  storage,  withdrawal,  and  groundwater
reservoir operations.

Developing a management action plan to accel-
erate groundwater  recharge  is  essential  for  maxi-
mizing the natural underground reservoir for water
storage  and  stormwater  collection.  Managed
projects could enhance recharge by capturing water
from streams during high flows and directing it  to
recharge  sites  where  it  can  infiltrate  into  the
groundwater  reservoir.  Without  reliable  recharge
estimates, it  is  challenging to assess optimal with-
drawal  rates  from  an  aquifer/wellfield  or  predict
how an  aquifer  will  respond  to  different  manage-
ment  plans  over  time.  Stormwater  management
and  managed  aquifer  recharge,  when  properly
designed,  can  achieve  high  stormwater  recharge
efficiency  by  using  estimated  recharge  capacities
and  understanding  recharge  mechanisms  (Abra-
ham  and  Mohan,  2019).  Many  countries  have
introduced  groundwater  management  policies  to
sustainably  manage  groundwater  resources  and
implement  rain  water  harvesting,  storm  water
management  and  recharge  programs.  To  address
these needs, simulator-optimizer models should be
employed  for  groundwater  reservoir  operations,
combining  prediction  and  exploitation  policies.
Zheng and Huang (2023) suggest that these models
represent  a  crucial  direction  for  future  research,
integrating  advanced  simulation  and  optimization
techniques  to  ensure  sustainable  groundwater
management. Future directions also include ensur-
ing  high-quality data  availability  for  model  train-
ing,  enhancing  model  interpretability,  fostering
interdisciplinary  collaboration,  and  integrating
machine  learning  with  Internet  of  things  and  big
data  for  real-time  groundwater  monitoring  and
management. 

5  Conclusion

Groundwater  is  a  valuable  but  limited  resource
facing  numerous  challenges  such  as  scarcity,
contamination,  and lack of  reliable  data.  Effective
groundwater  recharge  estimation  is  critical  for
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sustainable  water  resource  management.  Recharge
estimation methods fall  into two broad categories:
Conventional approaches  and  advanced  tech-
niques  such  as  machine  learning  algorithms.
Conventional  methods  include  physical,  chemical,
and numerical  models,  while  advanced techniques
leverage  machine  learning  to  enhance  predictive
accuracy.  Based  on  hydrologic  sources  or  zones
from which data are gathered, recharge estimation
methods  are  further  classified  as  surface  water,
unsaturated,  and  saturated  zone  techniques.
Surface  water  and  unsaturated  zone  techniques
typically estimate  potential  recharge,  while  satu-
rated zone  methods  provide  actual  recharge  esti-
mates. Physical methods, although simple and cost-
effective,  often  lack  accuracy  in  arid  regions.
Chemical methods  use  tracers  for  indirect  assess-
ment,  and  numerical  models  offer  detailed
recharge  estimates  by  modelling  water  balance
elements  and  accounting  for  regional  variations
and transient flows.

The  choice  of  the  method  depends  on  factors
such as spatial  and temporal  scales,  as well  as the
consistency of  recharge  estimates.  Machine  learn-
ing  algorithms  represent  a  modern  approach,
analyzing complex datasets and predicting ground-
water behaviour using techniques like multivariate
linear  regression,  random  forest,  extreme  gradient
boosting,  support  vector  machines,  Gaussian
process regression, and deep learning. These algo-
rithms  address  the  limitations  of  traditional
modelling  approaches  by  providing  faster,  more
accurate predictions and enhancing understanding.

Future  research  should  focus  on  evaluating  the
significant  impacts  of  external  factors  such  as
climate change,  land  use  changes,  and  groundwa-
ter extraction.  Developing climate-driven recharge
models to assess future changes in recharge rates is
crucial.  Additionally,  integrating  AI  models  to
predict groundwater level time series, including lag
considerations,  is  vital  for  advancing  groundwater
management  practices.  Exploring  various  hybrid
AI  models  to  improve  prediction  accuracy,
employing deep learning methods to address miss-
ing  groundwater  data,  and  integrating  nature-
inspired algorithms with machine learning for opti-
mal  parameter  adjustment  are  essential  research
avenues.  The  development  of  hybrid  AI  models
and  coupled  hydrologic  models  that  integrate
groundwater,  surface  water,  and  atmospheric
processes can address the challenges of predicting
nonlinear  relationships  between  input  and  output
variables  in  groundwater  recharge.  It  is  advisable
to combine different methodologies, such as merg-
ing  numerical  methods  with  physical  or  tracer-

based  approaches  and  AI  techniques,  rather  than
applying them  separately  within  a  single  water-
shed. Additionally, investigating input data assimi-
lation is  essential  for  reducing  uncertainty  associ-
ated with spatial estimation.
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