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Research Article

Evaluating machine  learning  methods  for  predicting  groundwater  fluctua-
tions using GRACE satellite in arid and semi-arid regions
Mobin Eftekhari1*, Abbas Khashei-Siuki1

1 Department of Water Engineering, University of Birjand, Birjand, Iran.

Abstract: This  study  aims  to  evaluate  the  effectiveness  of  machine  learning  techniques  for  predicting
groundwater fluctuations in arid and semi-arid regions using data from the Gravity Recovery and Climate
Experiment satellite mission. The primary objective is to develop accurate predictive models for groundwa-
ter  level  changes  by  leveraging  the  unique  capabilities  of  GRACE  satellite  data  in  conjunction  with
advanced machine learning algorithms. Three widely-used machine learning models, namely DT, SVM and
RF, were employed to analyze and model the relationship between GRACE satellite data and groundwater
fluctuations  in  South  Khorasan  Province,  Iran.  The  study  utilized  151  months  of  GRACE  data  spanning
from 2002 to 2017, which were correlated with piezometer well data available in the study area. The JPL
model was selected based on its strong correlation (R2 = 0.9368) with the observed data. The machine learn-
ing models were trained and validated using a 70/30 split of the data, and their performance was evaluated
using various statistical metrics, including RMSE, R2 and NSE. The results demonstrated the suitability of
machine learning approaches for modeling groundwater fluctuations using GRACE satellite data. The DT
model  exhibited  the  best  performance  during  the  calibration  stage,  with  an  R2 value  of  0.95,  RMSE  of
0.655, and NSE of 0.96. The SVM and RF models achieved R2 values of 0.79 and 0.65, and NSE values of
0.86 and 0.71, respectively. For the prediction stage, the DT model maintained its high efficiency, with an
RMSE of 1.48, R2 of 0.87, and NSE of 0.90, indicating its robustness in predicting future groundwater fluc-
tuations using GRACE data. The study highlights the potential of machine learning techniques, particularly
Decision  Trees,  in  conjunction  with  GRACE  satellite  data,  for  accurate  prediction  and  monitoring  of
groundwater  fluctuations  in  arid  and semi-arid  regions.  The  findings  demonstrate  the  effectiveness  of  the
DT model in capturing the complex relationships between GRACE data and groundwater dynamics, provid-
ing reliable predictions and insights for sustainable groundwater management strategies.

Keywords: Decision  Trees; Support  Vector  Machines; Random  Forests; GRACE  Satellite; Groundwater
level
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Introduction

Groundwater refers  to  water  that  exists  at  rela-
tively  significant  depths  and  can  freely  move

within the earth's subsurface through coarse pores,
fissures, and fractures under the influence of grav-
ity.  This  layer  is  considered  as  a  water-bearing
layer  (Li  et  al.  2023).  Groundwater  is  accessed
through well  drilling  into  these  layers,  highlight-
ing  the  importance  of  groundwater  exploitation
(Haileslassie  and  Gebremedhin,  2015).  Excessive
use  of  groundwater  leads  to  the  phenomenon  of
drought.  Drought  is  a  continuous  and  sustained
period  during  which  water  resources  significantly
decrease,  resulting  in  reduced  moisture  in  the  soil
and  surface  water  bodies,  which  can  occur  in  any
climate  (Gleeson  et  al.  2020).  Although  drought
causes  environmental  damage  and  economic  and
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social losses, it receives less attention compared to
other  phenomena  (Wilhite  and  Glantz,  1985).
Since  ancient  times,  constructing  and  utilizing
piezometric  wells  has  been  one  of  the  common
methods  for  investigating  groundwater  levels  and
monitoring  their  changes  (Coelho  et  al.  2018).
Unfortunately,  due  to  the  lack  of  precise  spatial
resolution,  point-based  measurements,  and  the
costly nature of this method, it is not practical and
cost-effective (Font-Capo et  al.  2015).  The launch
of  gravity-sensing  satellites  such  as  GRACE  has
opened a new chapter in science towards hydrolog-
ical studies  and  estimating  changes  in  groundwa-
ter  (Meyer  et  al.  2019).  Due to  its  suitable  spatial
and  temporal  coverage,  alongside  hydrological
models,  the  GRACE  satellite  can  be  used  as  an
alternative method to  estimate  changes  in  ground-
water  levels  (Yang  et  al.  2014).  This  satellite  has
the  capability  to  create  monthly  gravity  fields
induced  by  variations  in  water  on  Earth's  surface,
which can convert these variations into changes in
total water on Earth through a process. By captur-
ing changes in soil moisture, which plays a signifi-
cant  role  in  regional  water  changes,  among  other
factors,  the remaining amount can be attributed to
groundwater  (Wouters  et  al.  2014).  Pragnaditya
and  colleagues  (2021)  utilized  Support  Vector
Machine  (SVM) model  to  predict  rapid  decline  in
Groundwater  Level  (GWL)  based  on  Gravity
Recovery and Climate Experiment (GRACE) grav-
ity and water data, along with groundwater storage
data based on land surface model and meteorologi-
cal variables. Findings based on the data used indi-
cate  that  GRACE-based estimations  can  success-
fully  be  used  to  predict  GWLA  (Groundwater
Levels  Anomaly)  in  most  parts  of  the  IGBM
(Indus-Ganges-Brahmaputra-Meghna) basin. When
additional meteorological variables are included as
independent  variables  alongside  GRACE  GWSA
(Groundwater  Storage  Anomaly)  in  the  model,
there  are  significant  improvements  in  model
performance. However,  relatively  poor  perfor-
mance is observed in intensified agricultural areas.
This is primarily attributed to the coarse resolution
of  GRACE  products,  which  have  limitations  in
calculating groundwater pumping, highly heteroge-
neous  groundwater  extraction  across  local  scales.
Additionally, the conflicting predictive potential of
observation wells at different aquifer depths relates
to the fact that groundwater in the region is primar-
ily  extracted  from  deeper  aquifer  portions,  and
their representation in localized modeling. GWLAs
using GRACE  have  limitations  Kumar  and  Bhat-
tacharjya applied the GRNN (Generalized Regres-
sion Neural Network) model to predict groundwa-

ter  level  fluctuations  in  the  Uttarakhand  state  of
India using GRACE data in 2021.  The groundwa-
ter  level  in  this  state  has  decreased  by  50% from
2007 to 2010, and the GRNN model for prediction
demonstrates  an  acceptable  level  of  accuracy  as  a
supervised  machine  learning  method  (Kumar  and
Bhattacharjya. 2021). Sun in 2013 developed Arti-
ficial  Neural  Network  (ANN)  models  for  direct
prediction  of  groundwater  level  changes  using
GRACE products and other general hydrometeoro-
logical  data.  As  a  feasibility  study,  group  ANN
models were used to predict monthly and seasonal
changes  in  groundwater  levels  in  several  wells
across  different  regions  of  America.  The  results
indicated  that  while  GRACE  data  play  a  modest
yet  significant  role  in  the  performance  of  ANN
groups (Sun, 2013) In 2022, Ram employed unsu-
pervised learning  methods  for  the  GRACE  satel-
lite  to  predict  groundwater  fluctuations.  When
these  representations  were  used  as  inputs  to
groundwater  prediction  models,  they  reduced
RMSE  (Root  Mean  Square  Error)  by  up  to  19%
and improved NSE (Nash-Sutcliffe  Efficiency)  by
up  to  8  times  compared  to  traditional  satellite
inputs  in  three  different  spatial  scales:  National,
state, and county. This improvement indicates that
novel methods in monitoring groundwater fluctua-
tions using  the  GRACE  satellite  provide  accept-
able results (Ram, 2022)

Seo  and  Lee  (2021)  focused  on  predicting
changes in  groundwater  storage in  space and time
through the integration of multiple satellite datasets
and deep learning models.  In this  study,  two deep
learning  models,  LSTM  (Long  Short-Term
Memory)  and  CNN-LSTM (Convolutional  Neural
Network- Long Short-Term Memory), were devel-
oped  using  satellite  data.  These  data  included  ter-
restrial  water  storage  heterogeneity  from  GRACE
satellites,  precipitation  from  TRMM  (Tropical
Rainfall Measuring  Mission)  satellites,  tempera-
ture  and  humidity  from  GLDAS  (Global  Land
Data  Assimilation  System),  and  NDVI  (Normal-
ized  Difference  Vegetation  Index)  and  MNDWI
(Modified  Normalized  Difference  Water  Index)
indices from  Landsat  5  and  8  satellites.  Compar-
isons  with  field  measurements  demonstrated  that
the  CNN-LSTM  model  exhibits  higher  accuracy
and  significant  improvements  over  the  LSTM
model,  particularly  in  capturing  spatiotemporal
trends.  Additionally,  comparisons  with  NDVI,
MNDWI,  and  TWSA  (Terrestrial  Water  Storage
Anomaly) data showed that  changes in land cover
and overall water storage are influential. The incor-
poration of satellite-derived parameters as training
data  for  deep  learning  models  substantially
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enhances model performance (Seo and Lee, 2021)
South  Khorasan  Province  in  eastern  Iran  has  a
warm and  arid  climate.  Water  scarcity  is  consid-
ered a fundamental issue in this region, and recent
droughts  have  imposed  serious  constraints  on
water  resources.  Being  situated  in  a  semi-arid  to
arid zone, South Khorasan Province is not exempt
from  this  predicament.  Factors  such  as  surface
water  scarcity,  decreasing  average  annual  rainfall,
occurrences of drought, etc., have laid the ground-
work for human water needs to rely on groundwa-
ter (Eftekhari et al. 2019) Overuse of groundwater
has led  to  a  decline  in  groundwater  levels,  result-
ing  in  consequences  such  as  land  subsidence  and
the formation  of  sinkholes  in  various  areas.  Esti-
mating the  extent  of  groundwater  and  its  fluctua-
tions requires scientific studies, specialized investi-
gations, and practical research in the field of water
resource  management  (Khanlari  et  al.  2012)  The
conventional  method  for  measuring  groundwater
level  changes  involves  the  use  of  piezometric
wells, which, despite their suitable accuracy, come
with limitations such as high costs, lack of compre-
hensive  information,  and  time-consuming  proce-
sses due to their limited study areas (Kalbus et al.
2006).  In  arid  and  semi-arid  regions,  groundwater
fluctuations  play  a  crucial  role  in  understanding
and  managing  groundwater  resources,  which
provide a  significant  portion  of  the  world's  drink-
ing water (36%) and irrigation water (42%) (Zhang
et  al.  2024).  The  dynamics  of  the  water  table  and
its  response  to  recharge  events  provide  insights
into  the  sustainability  of  groundwater  extraction
rates,  as  the  water  table's  response  to  infiltrating
water can be used to estimate recharge, vital infor-
mation  for  assessing  the  risk  of  groundwater
resource  depletion  due  to  human  activities  (Gong
et al. 2023). However, estimating recharge is chal-
lenging  due  to  the  high  spatial  heterogeneity  and
temporal  variability  of  the  relationship  between
precipitation and recharge (Gong et al. 2021). The
Groundwater  Level  Fluctuation  (GLF)  method,
which  relates  changes  in  water  table  elevations  to
recharge rates through the specific yield parameter,
is  a  widely  used  approach for  estimating  recharge
in  arid  and  semi-arid  regions  (Gong  et  al.  2021).
Understanding  and  quantifying  the  processes  that
control groundwater  recharge  fluctuations  is  criti-
cally important for effective resource management
and  securing  water  supplies  for  human  needs  and
ecosystems in drylands, as groundwater recharge is
one of the least understood components of ground-
water systems due to its wide spatial and temporal
variability,  making  direct  measurement  difficult
(Zhang et  al.  2024). One of the fundamental  solu-

tions is remote sensing techniques, which serve as
an  alternative  method  to  save  costs  and  achieve
more  accurate  results  by  researchers.  While
humans  play  a  significant  role  in  gathering  and
interpreting terrestrial  data,  remote  sensing  meth-
ods  are  primarily  executed  by  sensors  (Yao  et  al.
2019). The primary objective of this research is to
develop and evaluate machine learning models that
leverage GRACE satellite data for accurate predic-
tion  of  groundwater  level  fluctuations  in  South
Khorasan  Province,  with  a  focus  on  long-term
forecasting  capabilities.  This  study  involves  the
use of random forest, support vector machine, and
decision tree  models,  and  it  compares  the  perfor-
mance  of  these  models  with  each  other.  So  far,
there has not been sufficient attention to the simul-
taneous  examination  of  these  methods  using  the
GRACE satellite in the study area. 

1  Overview  of  machine  learning
models

This  study employs three widely-used and power-
ful  Machine Learning (ML) models  for  predicting
groundwater  level  fluctuations:  Support  Vector
Machines  (SVMs),  Random  Forests  (RFs),  and
Decision Trees  (DTs).  These  models  were  care-
fully selected  due  to  their  proven  ability  to  effec-
tively  handle  and  learn  from  the  complex  spatio-
temporal  data  generated  by  the  GRACE  satellite
mission,  as  well  as  their  diverse  approaches  to
modeling and learning from data, which allows for
a robust comparison and evaluation of their respec-
tive  strengths  and  limitations.  Support  Vector
Machines (SVMs), introduced by Vladimir Vapnik
and colleagues  in  the  1990s,  have  gained  signifi-
cant  popularity  for  their  exceptional  performance
in  both  classification  and  regression  tasks  (Joa-
chims.  2012).  The  fundamental  principle  behind
SVMs is  to  find  an  optimal  hyperplane  that  sepa-
rates data points of different  classes (in classifica-
tion)  or  approximates  the  relationship  between
input features  and  the  target  variable  (in  regres-
sion) with maximum margin. This approach allows
SVMs  to  effectively  model  non-linear relation-
ships  and  handle  high-dimensional  data,  making
them well-suited for applications involving remote
sensing  datasets  like  GRACE,  where  the  number
of  input  features  can  be  large.  Random  Forests
(RFs), on the other hand, are a powerful ensemble
learning  method  that  combines  multiple  decision
trees to improve accuracy and robustness in predic-
tions (Fawagreh et al. 2014). RFs evolved from the
concept  of  Classification  and  Regression  Trees
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(CART)  and  leverage  the  strengths  of  individual
decision  trees  while  mitigating  their  weaknesses
through  an  ensemble  approach.  By  constructing  a
large  number  of  decision  trees,  each  trained  on  a
different  subset  of  the  data  and  considering  a
random  subset  of  features  for  splitting,  RFs  can
effectively  capture  complex,  non-linear  patterns
and reduce the risk of overfitting, leading to more
reliable predictions. Decision Trees (DTs) form the
building blocks of Random Forests and are widely
used  for  both  classification  and  regression  tasks
due  to  their  interpretability  and  ability  to  handle
non-linear relationships (Rivera-Lopez et al. 2022).
DTs  operate  by  recursively  partitioning  the  input
data into smaller subsets based on a series of deci-
sions or rules, ultimately forming a tree-like struc-
ture. The prediction process involves traversing the
tree from the  root  node  to  the  leaf  nodes,  follow-
ing  the  decisions  or  rules  defined  at  each  internal
node based  on  the  input  feature  values.  This  intu-
itive  and  easily  interpretable  structure  makes  DTs
valuable  for  understanding  the  relationships
between input  features  and the  target  variable.  By
employing  these  three  machine  learning  models –
SVMs,  RFs,  and  DTs – this  study  leverages  their
diverse  strengths  and  learning  approaches  to
comprehensively  analyze  and  model  the  complex
relationships between GRACE satellite data,  envi-
ronmental factors,  and  groundwater  level  fluctua-
tions. The  comparison  of  these  models'  perfor-
mances and their respective advantages and limita-
tions provide valuable insights into the most effec-
tive  strategies  for  predicting  and  monitoring
groundwater resources using remotely sensed data. 

1.1 Support Vector Machines

Support Vector Machines (SVMs) employ a math-
ematical approach to  predicting  groundwater  fluc-
tuations,  distinguishing  them  from  decision  trees.
They  find  a  dividing  line  (hyperplane)  in  a  high-
dimensional  space  that  best  separates  different
groundwater  level  values.  This  allows  SVMs  to
capture  complex  relationships  between  various
factors  influencing  groundwater,  such  as  GRACE
data, time, and location. Kernel functions are used
to create  this  hyperplane,  making  SVMs  particu-
larly adept at handling these intricate relationships
(Sahour et al. 2022). Furthermore, SVMs are well-
suited  for  analyzing  large,  complex  datasets  like
those  obtained  from  remote  sensing.  They  are
robust  to  high-dimensional data  with  many  vari-
ables  and  can  prevent  overfitting  the  model
through  regularization  techniques.  While  not  as
easy  to  interpret  as  decision  trees,  SVMs can  still

provide  insights  into  the  importance  of  different
factors  influencing  groundwater  levels  through
feature  ranking  or  selection  (Gilbert  et  al. 2023)
This  study  utilizes  SVMs  to  develop  accurate
models for  groundwater  monitoring  and  manage-
ment. Their  ability  to  handle  complex  relation-
ships,  high-dimensional data,  and  prevent  overfit-
ting  makes  SVMs  a  valuable  tool  for  effectively
analyzing GRACE satellite data and other relevant
variables to predict groundwater fluctuations. 

1.2 Random forests

Random  forests,  a  powerful  ensemble  learning
method  using  multiple  decision  trees,  are  well-
suited for predicting groundwater fluctuations from
GRACE satellite data (Schelter, 2021). By combin-
ing  numerous  decision  trees,  they  achieve  higher
accuracy and robustness than individual trees. This
approach reduces the impact of biases and overfit-
ting, leading to more reliable predictions (Seni and
Elder,  2010).  Random  forests  excel  at  capturing
complex relationships within groundwater systems.
They  can  effectively  model  how  various  factors
like  GRACE  data,  time,  and  location  influence
groundwater fluctuations.  Additionally,  they  iden-
tify  the  most  influential  data  points  within  the
GRACE  data,  guiding  future  data  collection  and
model  development.  Furthermore,  their  inherent
robustness  to  noise  and  outliers  makes  them ideal
for  handling  real-world satellite  data  with  poten-
tial  inconsistencies.  Finally,  their  ability  to  be
parallelized  allows  for  efficient  training  on  large
datasets, making them a powerful tool for ground-
water  monitoring  and  management  (Ali  et  al.
2021). 

1.3 Decision trees

Decision trees are a machine learning method used
here  to  predict  groundwater  fluctuations  from
GRACE satellite  data.  They  work  by  splitting  the
data based on a series of rules, building a tree-like
structure.  This  process  continues  until  the  data  is
sufficiently categorized,  leading  to  final  predic-
tions  based  on  the  specific  features  that  reached
each  terminal  node  (Maimon  and  Rokach.  2014).
Decision  trees  offer  several  advantages  for  this
task. They are easy to understand, which is impor-
tant for stakeholders to grasp the reasoning behind
predictions.  Additionally,  they  can  capture  com-
plex relationships between various factors  impact-
ing groundwater  and  can  identify  the  most  rele-
vant data  points  for  accurate  predictions.  Further-
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more,  they  are  resilient  to  outliers  and  missing
data,  making them suitable  for  working with  real-
world  satellite  data.  By  leveraging  decision  trees,
this  study  aims  to  develop  insightful  and  robust
models  for  groundwater  fluctuation  prediction,
aiding in  groundwater  monitoring  and  manage-
ment (Liu et al. 2022). 

2  Materials and methods
 

2.1 Case study

South  Khorasan  Province,  spanning  150,800
square kilometers,  is  located in  eastern Iran,  char-
acterized  by  a  dry  and  semi-arid  climate.The
region  is  characterized  by  a  complex  geological
setting, with sedimentary rocks of various ages and
lithologies  underlying  the  surface.  The  primary
aquifers in  the  region  are  hosted  within  the  frac-
tured and  porous  formations  of  sandstone,  lime-
stone,  and  conglomerate  units.  These  aquifers  are
generally  semi-confined  to  confined,  with  varying
degrees  of  hydraulic  connectivity  and  recharge
mechanisms.  The  depth  to  the  water  table  ranges
from a few meters to several hundred meters below
the  surface,  depending  on  the  location  and  the
specific  aquifer  unit.  The  distribution  and  burial
depth of these aquifers play a crucial role in deter-
mining groundwater  flow patterns  and availability
within the province its center is the city of Birjand.
It shares borders with Razavi Khorasan Province to
the  north,  Afghanistan  to  the  east,  Yazd,  Isfahan,
and  Semnan  provinces  to  the  west,  and  Kerman
and Sistan and Baluchestan provinces to the south.
In terms of hydrological divisions, South Khorasan
Province  includes  parts  of  four  major  basins:  The

Loot Desert,  Hamoun-e Hirmand, Khaf Salt  Lake,
and Central Desert. The province comprises a total
of 35 study areas, including 9 open study areas, 18
restricted  study  areas,  and  8  critically  restricted
study areas. This study incorporated data from 200
piezometers  distributed  across  South  Khorasan
Province,  whose  locations  are  illustrated  in Fig.  1
to  provide  spatial  context  for  the  groundwater
monitoring network (Rajaee et al. 2011) 

2.2 Methodology

One of the methods for studying water resources is
through  the  measurement  of  the  Earth's  gravity
field  and  its  variations.  Changes  in  the  Earth's
gravity  field  are  similar  to  the  changes  on  a  large
body and their effects on the surrounding environ-
ment.  Changes  in  the  distribution  of  the  Earth's
mass  can  lead  to  variations  in  the  Earth's  gravity,
which  can  be  investigated  using  satellite  and
ground  measurement  equipment  (Swenson  et  al.
2002).  Researchers  in  space  sciences  have  been
able  to  obtain  comprehensive  information  about
changes  in  groundwater  reserves  as  a  result  of
changes  in  the  Earth's  gravity  using  gravity-sens-
ing satellites (Feng et al.  2018). GRACE satellites
are  among  the  gravity-sensing  satellites  that  have
shown  high  sensitivity  to  changes  in  water  levels
and  establish  a  connection  between  changes  in
water  levels  and  changes  in  the  Earth's  gravity
field  by  providing  an  estimation  of  the  Earth's
gravity  field  (Chen  et  al.  2022).  The  Gravity
Recovery  and  Climate  Experiment  (GRACE)
project  provides  regular  and  monthly  estimations
of the Earth's gravity field in the form of harmonic
geopotential  models.  GRACE  satellite  data  is  a
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Fig. 1 Study area and piezometer locations

Journal of Groundwater Science and Engineering    13(2025) 5−21

http://gwse.iheg.org.cn 9

http://www.gwse.iheg.org.cn


new and valuable tool for monitoring groundwater.
These satellites are currently the only remote sens-
ing  satellites  capable  of  monitoring  changes  in
groundwater  levels.  The  primary  application  of
GRACE  satellites  is  to  determine  hydrological
changes  by  continuously  measuring  changes  in
water stored  in  water  bodies,  soil,  surface  reser-
voirs, and snow with an accuracy of a few millime-
ters in water height over spatial dimensions of 400
kilometers  on  the  Earth's  surface.  In  this  process,
factors causing  mass  displacement  in  the  afore-
mentioned  spatial  dimensions  on  or  within  the
Earth  are  monitored  by  GRACE  over  a  monthly
period.  GRACE,  through  observations  of  Total
Water Storage (TWS) changes and with the help of
the  Global  Land  Data  Assimilation  System
(GLDAS) hydrological  system analysis  and  simu-
lation models,  can  estimate  changes  in  groundwa-
ter.  This  model  calculates  factors  such  as  soil
moisture, snow water equivalent, and water stored
in  plant  canopies.  Therefore,  after  converting  the
outputs  of  the  hydrological  model  into  spherical
harmonic  analysis,  the  total  water  storage-related
changes  are  subtracted,  and  the  residual  effects  in
GRACE observations depict changes in groundwa-
ter  (Afraza  et  al.  2021). Changes  in  the  distribu-
tion of mass on Earth lead to variations in its grav-
ity  field.  Measuring  changes  in  the  gravity  field
can  identify  changes  in  mass  distribution  and
determine  increases  or  decreases  in  mass  in  a
region.  To  examine  the  Earth's  gravity  field  over
different  time  intervals,  the  GRACE gravity-sens-
ing satellite can be utilized. The process of estimat-
ing  groundwater  changes  using  GRACE  data
involves  several  key  steps.  Utilization  of  the
GLDAS hydrological model to determine the opti-
mal state of the Earth's surface and quantify hydro-
logical  effects.  Removal  of  these  hydrological
effects  by  calculating  and  subtracting  spherical
harmonic  coefficients  derived  from  the  GLDAS
model  outputs.  Computation  of  the  difference
between the  residual  spherical  harmonic  coeffi-
cients  (after  hydrological  effect  removal)  and  the
coefficients obtained directly from GRACE. Appli-
cation of a wavelet transform to filter the resulting
signal,  yielding  an  estimate  of  groundwater
changes.  Finally,  the  changes  derived  from  these
monthly  harmonic  coefficients  are  transformed
into  groundwater  level  fluctuations  specific  to  the
study area, as described by Equation 1.

∆σ (θ,λ) =
a.ρave

3

∞∑
n=0

n∑
m=0

2n+1
1+ kn

·

P̄nm (cos (θ)) · (∆Jnmcos mλ+∆Knmsin mλ) (1)

ρave

∆Jnm

∆Knm

P̄nm

Where:  ∆σ  (θ, λ)  represents  the  change  in
surface  mass  density  (expressed  in  kg/m2)  at  a
given colatitude θ and longitude λ. This term effec-
tively  quantifies  the  variation  in  water  thickness,
which  we  use  as  a  proxy  for  groundwater  level
changes.  In  this  relation, =5,517  Kg/m3 repre-
sents  the  average  volumetric  mass  of  the  Earth's
surface, kn denotes  the  Love  numbers,  and

 represent the monthly variations of spherical
harmonic  coefficients,  and  signifies  the
normalized Legendre functions.

To improve the estimation of the Earth's gravity
field,  the  coefficient Wn can  be  introduced  into
Equation 1.

∆σ (θ,λ) =
a ·ρave

3

∞∑
n=0

n∑
m=0

2n+1
1+ kn

·Wn · P̄nm (cos(θ)) ·

(∆Jnmcos mλ+∆Knmsin mλ) (2)

b =
ln2

1− cos
( r
a

) (3)

W0 =
1

2π
(4)

W1 =
1

2π

(
1+ e−2b

1− e−2b
− 1

b

)
(5)

Wn+1 = −
2n+1

b
Wn+Wn−1 (6)

a
In Equation 3, the value of r represents the aver-

aging  radius,  and  denotes  the  average  radius  of
the  Earth.  Equation  4  is  a  recursive  equation  for
calculating  the  averaging  kernel  W,  which  varies
with changes in the averaging radius. The response
in  Equation  2  is  the  surface  density  anomaly,
obtained by dividing the water density by the verti-
cal  water  height  fluctuations  for  the  study  area.
One  of  the  most  critical  issues  in  GRACE data  is
the  accumulation  of  data  due  to  the  89.5-degree
inclination  angle  of  the  satellite's  orbit  around  the
Earth,  leading  to  data  accumulation  in  the  north-
south  direction  and  causing  spatial  correlation
among GRACE data points (Li et al. 2018).

In  geographical  maps,  these  correlations  appear
as  bands  in  the  north-south  direction.  Wavelet
analysis is  a  suitable  tool  for  filtering and localiz-
ing  signals  and  investigating  the  effects  of  local
and  temporal  variations  in  the  gravity  field.  Since
GRACE can observe the total  mass changes,  such
as  changes  in  water  reservoirs,  if  the  goal  is  to
investigate  changes  in  groundwater,  it  is  essential
to  remove  hydrological  effects.  The  Earth  system
analysis  and simulation system in global  coverage
is a combination of satellite data and ground refer-
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ence  observations,  created  based  on  advanced
drought models  and  advanced  data  fusion  tech-
niques,  to  determine  the  optimal  condition  of  the
Earth's surface (Springer et al. 2017). The process-
ing of gravity data from the GRACE satellite in the
Google  Earth  Engine  processing  engine  has  been
carried out using three algorithms provided by the
German  Research  Centre  for  Geosciences  (GFZ),
the  Jet  Propulsion  Laboratory  (JPL),  and  the
University  of  Texas  Center  for  Space  Research
(CSR)  organizations.  Furthermore,  in  the  last  two
decades,  new-generation machine  learning  tech-
niques  for  data  mining  have  been  significantly
developed. 

2.2.1    Data  preparation  for  machine  learning

models
The  integration  of  GRACE-derived  data  with
ground-based Piezometric  measurements  and their
structuring for Machine Learning (ML) analysis is
a critical step in our methodology. Here, we outline
the data preparation process and the resulting input
structures  for  our  ML  models.  From  the  GRACE
mission, we  obtained  monthly  gravity  field  solu-
tions, processed to estimate changes in groundwa-
ter  storage  (∆σ).  These  estimates  have  a  spatial
resolution of 1° × 1° (approximately 111 km at the
equator)  and  a  temporal  resolution  of  one  month.
For  each  grid  cell  covering  South  Khorasan
Province,  we  extracted  a  time  series  of  ∆σ  values
from 2002 to 2017, resulting in 151 data points per
cell  (Frappart  and  Ramillien， 2018)  .  Data  from
the 200 piezometers distributed across the province
were aggregated to match the spatial and temporal
resolution  of  the  GRACE  data.  For  each  1°  ×  1°
grid cell, we calculated the mean monthly ground-
water  level  from  all  piezometers  within  that  cell.
This aggregation helps reduce noise and aligns the
ground  truth  data  with  the  GRACE  observations.
We  then  paired  each  GRACE-derived  ∆σ  value
with  its  corresponding  aggregated  piezometric
measurement,  creating  a  dataset  where  each  data
point  consists  of  the  GRACE-derived  ∆σ  (change
in groundwater storage) as the input feature and the
change in groundwater level from piezometric data
as the  target  variable.  Both  input  and  target  vari-
ables  were  normalized  using  min-max  scaling  to
the range [0, 1] to facilitate ML model training. To
capture the temporal dependencies in groundwater
dynamics,  we  created  time-lagged  features.  For
each time step t, we included ∆σ values from t-1, t-
2,  and  t-3 (the  previous  three  months)  as  addi-
tional input features. This structure allows the ML
models  to  learn  from  recent  historical  patterns
when making predictions (Wang and Gupta, 2024).

The  resulting  dataset  was  divided  into  training
(70%)  and  testing  (30%)  subsets.  The  split  was
performed  chronologically,  with  earlier  data  used
for  training  and  later  data  for  testing,  to  simulate
real-world  forecasting  conditions  (King  et  al.
2022).  For  each  ML  model  (Decision  Trees,
Random  Forests,  and  Support  Vector  Machines),
the  input  data  structure  consists  of  ∆σ(t),  ∆σ(t-1),
∆σ(t-2), and ∆σ(t-3) as features, and the change in
groundwater  level  at  time  t  as  the  target.  This
structure  provides  a  rolling  window  of  GRACE-
derived  information  to  predict  contemporaneous
changes  in  groundwater  levels.  By  incorporating
time-lagged  features,  we  enable  the  models  to
capture both the magnitude and trend of groundwa-
ter storage  changes,  crucial  for  accurate  predic-
tions  (Roy  et  al. 2023).  These  machines  can  be
used  to  discover  and  extract  knowledge  from
databases  as  well  as  create  predictive  models
(Shouval  et  al.  2014)  The  primary  goal  of  these
machine  learning  models  is  to  find  a  useful
approximate function  that  demonstrates  the  rela-
tionship  between  input  variables  and  desired
outcomes  (Wang  et  al.  2022).  In  this  study,  three
machine  learning  models,  including  Random
Forest  (RF),  Support  Vector Machine (SVM), and
Decision Tree  (DT),  were  used  to  predict  fluctua-
tions in underground water levels in the study area.
Support Vector Machine (SVM) is a novel technol-
ogy  in  the  field  of  machine  learning  that  utilizes
non-parametric  and  semi-supervised  statistical
methods  (Dong  et  al. 2021).  This  method  was
introduced  by  Vapnik  and  his  colleagues  in  1992
based  on  the  theory  of  statistical  learning.  In  the
years following, they introduced the theory of opti-
mal hyperplane  as  a  linear  classifier  and  intro-
duced non-linear classifiers  using kernel  functions
(Yaman and Cengiz, 2021). The fundamental prin-
ciples of  Support  Vector Machine,  which are now
recognized as a valid method, can be traced back to
the work  of  Vapnik  and  his  colleagues,  and  ulti-
mately,  the  extension  of  Support  Vector  Machine
based  on  regression  was  achieved  by  Vapnik  in
1995  (Sansone  et  al.  2013).  This  method  uses
Support  Vector  Machine  classification  models  to
solve classification problems where data belong to
different  classes,  and  Support  Vector  Machine
regression  models  are  used  to  solve  prediction
problems  (Bhavsar  and  Panchal,  2012).  The  main
feature  of  this  method  is  its  high  ability  to  use
fewer  training  samples  while  achieving  higher
accuracy  compared  to  other  methods  (Shao  and
Lunetta,  2012).  Random Forest  method is  a  novel
and powerful approach in the field of data mining
that  has  brought  significant  improvements  in  this
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area. The Random Forest technique has evolved as
an  expanded  model  of  the  Classification  and
Regression  Tree  (CART)  method  (Ziegler  and
König, 2014). In other words, Random Forest is a
tree-based learning  method.  This  method  is  capa-
ble  of  learning  complex  patterns  and  considering
nonlinear  relationships  between  explanatory  and
dependent  variables  (Louppe,  2014).  The  training
process of the tree starts with a repeatable process
that begins at the root node and ends at the termi-
nal nodes (leaves). Then, a new sample is selected,
and  another  tree  is  trained.  Once  the  tree  is  com-
plete, a  set  of  decision  rules  is  extracted  to  esti-
mate  new data  (Genuer  et  al.  2020).  The Random
Forest method offers several advantages over other
methods  such  as  high  prediction  accuracy,  ability
to  learn  nonlinear  relationships,  high  capability  in
determining important  variables  in  prediction,  and
non-parametric  nature  (Matin  et  al.  2018).  The
Decision Tree algorithm is one of the strongest and
most  widely  used  machine  learning  algorithms
utilized  in  both  classification  and  regression  tasks
(Charbuty  and  Abdulazeez,  2021).  This  algorithm
employs a tree structure to represent decisions and
their  combinations  based  on  input  features  and  is
easily  interpretable  (Barros  et  al.  2011).  The  tree
structure consists of root nodes, internal nodes, and
leaves,  which  partition  the  data  based  on  various
features (Patel and Prajapati, 2018). Each decision
node in the decision tree is determined based on a
selected  feature,  and  the  decision-making  process
starts  from  the  root  and  continues  by  recursively
splitting the data into sub-nodes (Zhu et al. 2018).
The  training  process  of  the  decision  tree  involves
selecting  the  optimal  feature,  dividing  the  data
based on this feature, and repeating this process to
create  leaf  nodes  (Rai  et  al.  2016).  Although  this
algorithm is easily interpretable and performs well
on  clean  data,  it  may  suffer  from  overfitting  and
sensitivity to  small  changes in the data  (Hilario et
al.  2006).  Overall,  the  Decision  Tree  algorithm  is
recognized  as  a  powerful  tool  in  decision-making
for complex  problems.  Machine  learning  model-
ing using data obtained from the GRACE satellite
from  2003  to  2017  has  been  conducted  in  the
Google Earth Engine environment. To identify the
most suitable GRACE satellite data product for our
study  area,  we  evaluated  the  correlation  between
ground  subsidence  measurements  and  the  outputs
from  three  different  processing  algorithms:  JPL,
CSR, and GFZ. The algorithm exhibiting the high-
est  correlation  with  observed  subsidence  was
selected  for  further  analysis.  Validation  was
performed using data  from 2013 to  2016 to  select
the  optimal  prediction  model.  Then,  by  selecting

the sample pattern, the prediction of future ground-
water  fluctuations  for  the  next  10  years  was
addressed. In  this  study,  machine  learning  meth-
ods were implemented in the Python environment.
During the modeling process using these methods,
the data  were  divided  into  two  categories:  Train-
ing data and testing data.  In this  research,  70% of
the  total  data  were  allocated  for  model  training,
and  the  remaining  30% were  used  as  testing  data
for  the  model.  Random  selection  of  training  and
testing data  was  performed  using  software,  ensur-
ing that the data from each stage were not used in
the other stage. 

2.2.2    Data processing and filtering
The  raw  data  from  the  GRACE  satellite  mission
require  significant  processing  and  filtering  to
extract meaningful information about groundwater
storage  changes.  The  key  steps  in  this  process
involve  spherical  harmonic  analysis,  removal  of
non-hydrological  signals,  filtering  and  smoothing,
leakage  correction,  and  validation  and  calibration
(Humphrey et al. 2023). GRACE satellite measure-
ments  of  Earth's  gravitational  field  variations  are
represented as changes in spherical harmonic coef-
ficients. These  coefficients  describe  the  gravita-
tional  potential  field  using  a  series  of  spherical
harmonic functions. Processing GRACE data invo-
lves  converting  raw  measurements  into  monthly
sets  of  spherical  harmonic  coefficients,  which  can
then be analyzed to obtain information about mass
redistribution  on  Earth's  surface  (Chen,  2019).
GRACE  data  reflect  changes  in  Earth's  gravity
field caused  by  various  factors,  including  ground-
water  storage,  surface  water,  soil  moisture,  and
glacial  ice  mass.  To  isolate  groundwater  signals,
contributions from other sources must be removed.
This is  done  by  incorporating  data  from  comple-
mentary  models  and  observations,  such  as  the
Global Land Data Assimilation System (GLDAS),
which  provides  estimates  of  soil  moisture,  snow
cover,  and  surface  water  variations  (Moore  and
Fisher,  2012).  GRACE  data  are  noisy  due  to
measurement errors, atmospheric disturbances, and
limited  spatial  resolution.  To  reduce  noise  and
enhance  the  signal-to-noise  ratio,  various  filtering
and smoothing techniques are applied, such as Ga-
ussian  smoothing,  de-striping  filters,  and  wavelet-
based  filters.  The  choice  of  filtering  method  de-
pends on the study area's characteristics and analy-
sis  objectives  (Werth  et  al.  2009).  The  limited
spatial resolution of GRACE data can cause signal
leakage from adjacent regions, leading to potential
errors  in  estimating  groundwater  storage  changes.
Leakage  correction  techniques,  involving  scaling
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or  gain  factors,  adjust  GRACE  data  based  on
expected signal strength and leakage patterns in the
study  area  (Longuevergne  et  al.  2010).  To  ensure
the  reliability  and  accuracy  of  processed  GRACE
data,  validation  and  calibration  are  essential.  This
involves  comparing  GRACE-derived  groundwater
storage  changes  with  ground-based  observations,
such  as  well  measurements  or  other  in-situ  data
sources. Validation helps assess GRACE data per-
formance and  identify  potential  biases  or  discrep-
ancies,  which  can  then  be  addressed  through
further  processing  refinements  or  additional  data
sources  (Frappart  and  Ramillien,  2018).  Data
processing  and  filtering  are  crucial  for  extracting
reliable  information  about  groundwater  storage
changes  from  GRACE  satellite  data.  These  steps
mitigate  the  inherent  limitations  and  uncertainties
of  satellite  measurements,  enabling  more  accurate
and  meaningful  interpretations  for  groundwater
monitoring and management (Chen et al. 2016). 

2.2.3    Model training and validation
The success of machine learning models in predict-
ing groundwater fluctuations relies on proper train-
ing and validation procedures (Singha et al. 2021).
This  section  outlines  the  process  of  training  and
validating  the  decision  tree,  random  forest,  and
Support  Vector  Machine  (SVM)  models  used  in
this  study,  including  data  splitting,  evaluation
metrics,  and  relevant  techniques.  Before  training
the  models,  the  available  data  were  split  into  two
subsets: a  training set  and a  testing set.  The train-
ing set was used to train the models, allowing them
to learn the patterns and relationships between the
input  features  (e.g.  GRACE  satellite  data,  time,
spatial  coordinates)  and  the  target  variable
(groundwater  fluctuations).  The  testing  set  was
held  out  during  the  training  process  and  used  to
evaluate the performance of the trained models on
unseen data.  In this  study,  the data were split  into
70% for  training  and  30% for testing  using  strati-
fied  sampling  techniques  to  ensure  that  both  sets
were  representative  of  the  entire  data  distribution
(Seidu  et  al.  2023).  The  training  process  for  each
machine  learning  algorithm  involved  optimizing
the model's  parameters  to  achieve  the  best  possi-
ble  performance.  For  decision  trees,  recursive
partitioning  algorithms  split  the  data  based  on  the
most informative  features  at  each  node.  Parame-
ters  such  as  maximum  tree  depth,  minimum
samples  per  leaf,  and  splitting  criteria  were  tuned
to control  tree complexity and prevent  overfitting.
Random forest  models  were  trained  by  construct-
ing an  ensemble  of  decision trees,  each built  on  a
bootstrap sample of the training data and a random

subset  of  features.  Parameters  like  the  number  of
trees in the ensemble, the maximum depth of indi-
vidual trees,  and  the  number  of  features  consid-
ered for splitting were optimized to balance model
complexity and performance. For SVMs, the train-
ing  involved  finding  the  optimal  hyperplane  that
separates  the  data  points  with  the  maximum
margin. Key  parameters  such  as  the  kernel  func-
tion (e.g.  linear,  polynomial,  or  radial  basis  func-
tion),  the  regularization  parameter  (C),  and  kernel
parameters  (e.g.  gamma  for  RBF  kernel)  were
tuned  for  optimal  performance  (Saputra  et  al.
2024).  To evaluate  the  performance of  the  trained
models  and  select  the  most  suitable  one  for
groundwater fluctuation prediction, various evalua-
tion  metrics  were  employed.  Root  Mean  Square
Error (RMSE) measures the average magnitude of
the errors between predicted and observed ground-
water fluctuation values, with lower RMSE values
indicating  better  performance.  The  Coefficient  of
Determination  (R2)  represents  the  proportion  of
variance  in  the  groundwater  fluctuation  data
explained by the model, with higher R² values indi-
cating  a  better  fit.  The  Nash-Sutcliffe  Efficiency
(NSE) quantifies predictive performance relative to
a baseline scenario, with values closer to 1 indicat-
ing  better  performance.  Additionally,  techniques
such  as  cross-validation  and  ensemble  methods
were used to ensure the robustness and generaliza-
tion capabilities  of  the trained models.  Cross-vali-
dation  involves  partitioning  the  training  data  into
multiple subsets and iteratively training and evalu-
ating  the  model  on  different  subsets,  providing  a
more realistic estimate of the model's performance
on  unseen  data  (Liu  et  al. 2021).  By  following  a
rigorous training and validation process and evalu-
ating  the  models  using  multiple  performance
metrics,  the most suitable algorithm for predicting
groundwater fluctuations  based  on  GRACE  satel-
lite  data  and  other  relevant  input  features  was
selected. This ensures reliable and accurate predic-
tions for  groundwater  monitoring  and  manage-
ment applications. 

2.3 Assessing the  efficiency  of   meth-
ods

To  evaluate  the  models  used  in  the  simulation,
several  statistical  criteria  were  employed.  These
criteria  include Root  Mean Square Error  (RMSE),
Nash-Sutcliffe Efficiency  (NSE),  and  the  coeffi-
cient of correlation (R2). These metrics are defined
by  the  following  Equation,  respectively  (Honar-
bakhsh et al. 2019).
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In  Equations  7  and  8, n represents  the  total
number of points under consideration, and O and P
respectively  denote  the  mean  of  observed  values
and the mean of predicted values. Additionally, Oi

and Pi represent the observed and predicted values,
respectively,  at  point i.  In Equation 9, OBSi signi-
fies  the  observed  value, SIMi represents  the
predicted  value,  and  OBSbar  denotes  the  mean  of
observed values. Fig. 2 illustrates the stages of the
method. 

3  Results and discussion

The  changes  in  the  groundwater  level  of  South
Khorasan Province in centimeters have been deter-
mined using GRACE satellite data and three algo-
rithms:  CSR,  GFZ,  and  JPL,  the  results  of  which
are  presented  in Fig.  3.  The  time  span  of  the
changes  corresponds  to  the  years  2003  to  2017.
Additionally,  the  average  piezometers  for  the
entire area are also shown in the figure.

To  examine  the  algorithms  provided  by  the

GRACE  satellite,  a  linear  regression  was  con-
ducted between the changes obtained from the data
of  this  satellite  with  all  three  algorithms:  GFZ,
JPL, CSR, and the piezometric wells from 2003 to
2017,  which  were  obtained  through  the  Regional
Water Company of South Khorasan Province. The
results are presented in Figs. 4 to 6.

In  examining  the  results,  the  linear  correlation
coefficients  between  the  JPL,  GFZ,  and  CSR
models are  0.9065,  0.9368,  and  0.8951,  respec-
tively.  These  coefficients  indicate  that  the  JPL
model is  more  suitable  for  monitoring  groundwa-
ter fluctuations in South Khorasan Province. 

3.1 Calibration (Validation)

The  validation  of  three  models  was  conducted  to
select the appropriate model for predicting ground-
water  fluctuations.  This  was  done  by  performing
validation  for  the  years  2013  to  2016,  and  the
selected  machine  learning  models,  including  DT,
RF, and SVM, were examined to determine which
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Fig. 3 Fluctuations of groundwater in South Khorasan Province using three algorithms: JPL, CSR, and GFZ of
the GRACE satellite and selected piezometers
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one  provides  better  performance  and  features  for
prediction (Fig. 7).

The  correlation  between  observational  data  and
the model was also examined for all three models,
and the  values  of  error  indices  and  model  perfor-
mance were obtained.

The results  of  predicting  groundwater  fluctua-
tions  using  three  machine  learning  methods  are
presented  in  the  table  below.  The  DT,  SVM,  and
RF models have RMSE values of 0.655, 1.304, and
1.896,  respectively,  indicating  better  performance

in  estimating  groundwater  fluctuations.  However,
R2 values also confirm the results. The NSE coeffi-
cient  indicates  the  predictive  performance  of  the
selected models, where the closer this coefficient is
to 1, the more suitable the model is for prediction.

According  to Table  1,  the  NSE  coefficients  for
the three models DT, SVM, and RF are 0.96, 0.86,
and  0.71,  respectively.  This  indicates  that  the  DT
model  performs  better  in  predicting  groundwater
levels in the region.

By  selecting  the  decision  tree  model  as  the
machine learning  model  for  predicting  groundwa-
ter levels  in  South Khorasan province,  the  predic-
tion  of  groundwater  fluctuations  in  the  province
until  2028  has  been  addressed,  with  predicted
values  averaged  over  12  months.  Additionally,
performance and  error  indices  have  been  calcu-
lated.  Since  the  Nash-Sutcliffe  coefficient
exceeded  0.7,  it  indicates  that  the  model  and  its
predictions have the best performance (Fig. 11).

Furthermore,  the  95% confidence  interval  has
been  determined  both  as  the  upper  and  lower
limits,  indicating  the  state  of  uncertainty  and  the
maximum  to  minimum  range  of  prediction.  This
can  serve  as  a  tool  for  analyzing  uncertainty
regarding issues  affecting  groundwater  fluctua-
tions  such  as  climate  change,  precipitation,  etc.
The  prediction  results  indicate  that  from  2017  to
2020,  we  have  faced  a  decrease  in  groundwater
levels,  which  signifies  groundwater  management.
However, from 2020 to 2028, we observe a signifi-
cant decline in groundwater levels in the region.

Table 2 presents the prediction evaluation results
for  the  decision  tree  model.  With  a  correlation
coefficient of 0.87 and a Nash-Sutcliffe Efficiency
(NSE)  of  0.9,  the  decision  tree  model  exhibits
satisfactory performance  in  predicting  groundwa-
ter  fluctuations  in  South  Khorasan  province.
Results show that demonstrates the effectiveness of
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Fig. 6 Correlation between GFZ and piezometers
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the decision tree (DT) model in accurately predict-
ing  groundwater  level  fluctuations  using  GRACE
satellite data. The superior performance of the DT
model, as evidenced by its high correlation coeffi-
cient  (R2 =  0.87)  and  Nash-Sutcliffe  Efficiency
(NSE = 0.9), highlights its capability to capture the
complex  spatiotemporal  dynamics  governing
groundwater  systems.  The  DT  model's  ability  to
handle  non-linear  relationships  and  its  inherent
interpretability  are  particularly  valuable  in  the
context  of  groundwater  modeling.  Groundwater
fluctuations are influenced by a myriad of interact-
ing  factors,  including  precipitation  patterns,  land
use,  aquifer  characteristics,  and  anthropogenic
activities.  The  decision  tree  algorithm's  recursive
partitioning  approach  effectively  identifies  and
incorporates  these  intricate  relationships,  enabling
accurate  predictions  even  in  the  presence  of
nonlinearities. Furthermore,  the  hierarchical  struc-
ture of  the DT model  offers  valuable insights  into
the  relative  importance  of  different  input  features.
By  analyzing  the  feature  importance  rankings,  we
can gain a deeper understanding of the key drivers
influencing  groundwater  dynamics  within  our
study  area.  This  knowledge  can  inform  targeted
management strategies, such as prioritizing conser-
vation  efforts  in  areas  with  high  sensitivity  to
specific factors  or  implementing focused monitor-
ing programs for critical variables. 

3.2 Practical implications  for   ground-
water management in arid regions

Our research  holds  significant  practical  implica-
tions  for  groundwater  management  strategies  in
arid  and  semi-arid  regions,  where  groundwater
resources  are  critical  for  sustaining  agricultural,
industrial,  and  domestic  activities.  The  accurate
prediction  of  groundwater  fluctuations  facilitated
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Fig. 8 Correlation between JPL data and DT model
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Fig. 9 Correlation between JPL data and SVM model
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Fig. 10 Correlation between JPL data and RF model
 

Table 1 Calibration  evaluation  of  machine  learning
models

Models R2 RMSE NSE
SVM 0.79 1.304 0.86
DT 0.95 0.655 0.96
RF 0.65 1.896 0.71
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Fig. 11 Prediction of Groundwater Fluctuations until 2028
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by our approach can inform targeted and proactive
management  interventions  tailored  to  the  specific
challenges  faced  in  these  water-stressed environ-
ments.  In  regions  like  South  Khorasan  Province,
where  surface  water  resources  are  scarce  and
precipitation patterns  are  highly  variable,  ground-
water  serves  as  a  vital  buffer  against  drought  and
water scarcity. The ability to forecast groundwater
levels  with  high accuracy enables  water  managers
to  anticipate  potential  shortfalls  and  implement
timely  mitigation  measures,  such  as  promoting
water  conservation  practices,  implementing
groundwater extraction limits, or exploring alterna-
tive  water  sources.  Our  study's  findings  can
contribute  to  the  development  of  early  warning
systems  for  groundwater  depletion,  which  are
particularly  crucial  in  arid  regions.  By  leveraging
the  spatiotemporal  predictions  generated  by  our
decision  tree  model,  authorities  can  identify  areas
at  risk of  rapid groundwater  decline and prioritize
intervention  efforts  accordingly.  This  targeted
approach  can  optimize  the  allocation  of  resources
and ensure that critical areas receive the necessary
attention before reaching unsustainable groundwa-
ter extraction levels. Furthermore, our research can
inform the  design  and  optimization  of  groundwa-
ter  monitoring  networks  in  arid  regions.  The
spatial  patterns  revealed  by  our  model  can  guide
the  strategic  placement  of  piezometers  or  other
monitoring infrastructure,  ensuring that  areas  with
high  groundwater  sensitivity  or  rapid  fluctuations
are adequately covered. This data-driven approach
can  enhance  the  cost-effectiveness  and  efficiency
of monitoring programs, which are often resource-
constrained in arid environments. Importantly, our
study contributes  to  the  broader  goal  of  achieving
sustainable  groundwater  management  in  arid
regions. By  providing  accurate  and  reliable  fore-
casts  of  groundwater  dynamics,  our  approach  can
support  the  development  of  long-term manage-
ment plans that balance the needs of various stake-
holders  (e.g.  agriculture,  industry,  domestic  use)
while  ensuring  the  preservation  of  groundwater
resources  for  future  generations.  Integrating  our
research  findings  with  existing  groundwater
management frameworks, such as Integrated Water
Resources  Management  (IWRM)  or  Managed
Aquifer  Recharge  (MAR)  strategies,  can  further
enhance  their  effectiveness  in  arid  regions.  Our

predictive  capabilities  can  inform  the  design  and
implementation of aquifer recharge schemes, opti-
mizing the timing and locations of recharge efforts
based  on  anticipated  groundwater  fluctuations.
Additionally, our  research  can  contribute  to  rais-
ing awareness among local  communities and poli-
cymakers  about  the  importance  of  sustainable
groundwater  management  in  arid  regions.  By
providing  clear  and  data-driven  insights  into
groundwater  dynamics,  our  findings  can  facilitate
informed decision-making and foster collaboration
between  various  stakeholders,  promoting  a  shared
understanding of the challenges and the urgency of
implementing  effective  management  strategies.
Overall,  our  study  represents  a  significant  step
towards  leveraging  advanced  data  analytics  and
machine learning  techniques  to  address  the  press-
ing challenges of groundwater management in arid
regions.  By  combining  the  strengths  of  satellite
remote  sensing  and  cutting-edge  modeling
approaches,  our  research  provides  a  powerful  tool
for  informed  decision-making  and  contributes  to
the broader goal of ensuring long-term water secu-
rity in these vulnerable environments. 

4  Conclusion

This  study  investigated  the  effectiveness  of  mac-
hine learning techniques,  particularly the Decision
Tree  (DT)  model,  in  leveraging  GRACE  satellite
data  for  accurate  prediction  of  groundwater  level
fluctuations. Our analysis revealed the DT model's
superior  performance  (R2 =  0.87,  NSE  =  0.9)  in
capturing the complex spatiotemporal dynamics of
groundwater  systems  compared  to  other  models.
The  DT  model's  ability  to  handle  non-linear rela-
tionships and provide interpretability makes it well-
suited for groundwater modeling, where numerous
interacting factors influence fluctuations. Addition-
ally,  the  model's  structure  offers  insights  into  the
relative  importance  of  input  features,  informing
targeted management strategies and focused moni-
toring  efforts.  Our  findings  highlight  the  potential
of  integrating  GRACE  data  and  machine  learning
for long-term groundwater forecasting. This facili-
tates  proactive  decision-making  and  interventions
to  mitigate  declining  groundwater  levels  or
droughts. The spatiotemporal predictions can guide
the  optimization  of  monitoring  networks  and
resource allocation in vulnerable areas. The impli-
cations extend beyond the study area, contributing
to  sustainable  groundwater  management  in  arid
regions.  Our  approach  can  inform  early  warning
systems,  aquifer  recharge  initiatives,  demand-side

 

Table 2 Evaluation  of  the  DT  model  in  predicting
groundwater fluctuations

RMSE R2 NSE
1.48 0.87 0.9
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management policies, and the exploration of alter-
native  water  sources.  Traditionally,  groundwater
level  measurement  relied  on  observation  wells.
However,  these  methods  have  limitations  such  as
uneven  distribution  across  regions,  high  cost,  and
time-consuming nature. GRACE satellite data with
high spatial resolution offers a valuable alternative
for  monitoring  groundwater  changes.  This  study
used  DT,  SVM,  and  RF  models  for  prediction,
with  DT  exhibiting  the  best  performance  (NSE  =
0.9). The successful  application of  machine learn-
ing highlights its  potential  for efficient  groundwa-
ter  fluctuation  prediction.  While  this  research
presents a significant step forward, future avenues
include integrating additional data sources, explor-
ing  ensemble  and  hybrid  modeling  approaches,
addressing  uncertainty  quantification,  expanding
spatial  and  temporal  scales,  and  incorporating
stakeholder perspectives.  Addressing  these  direc-
tions  can  further  refine  our  understanding  of
groundwater dynamics  and  facilitate  the  transla-
tion of scientific findings into actionable strategies.
Ultimately,  our  research  contributes  to  achieving
long-term water security in arid regions by provid-
ing accurate  and reliable  forecasts  of  groundwater
dynamics.  By  combining  satellite  remote  sensing
and  advanced  modeling  techniques,  our  study
offers  a  powerful  tool  for  informed  decision-
making,  fostering  collaboration  between  resear-
chers,  policymakers,  and  local  communities  in
preserving this  vital  resource  for  future  genera-
tions.
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