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Abstract: Seismic data plays a pivotal role in fault detection, offering critical insights into subsurface struc-
tures and seismic hazards. Understanding fault detection from seismic data is essential for mitigating seis-
mic risks and guiding land-use plans. This paper presents a comprehensive review of existing methodolo-
gies  for  fault  detection,  focusing  on  the  application  of  Machine  Learning  (ML)  and  Deep  Learning  (DL)
techniques to enhance accuracy and efficiency. Various ML and DL approaches are analyzed with respect
to fault segmentation, adaptive learning, and fault detection models. These techniques, benchmarked against
established seismic datasets,  reveal  significant  improvements  over  classical  methods in  terms of  accuracy
and computational efficiency. Additionally, this review highlights emerging trends, including hybrid model
applications  and  the  integration  of  real-time  data  processing  for  seismic  fault  detection.  By  providing  a
detailed comparative analysis of current methodologies, this review aims to guide future research and foster
advancements  in  the effectiveness  and reliability  of  seismic studies.  Ultimately,  the study seeks to  bridge
the gap between theoretical investigations and practical implementations in fault detection.
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Introduction

Seismic  data,  obtained  through  seismic  reflection
and refraction methods, represent measurements of
vibrations produced by controlled sources or natu-
ral  phenomena  within  the  Earth's  interior.  These
data are indispensable across various industries. In
oil  and  gas  explorations,  seismic  data  delineate
subsurface  structures,  identify  hydrocarbon-bear-
ing  traps  or  reservoirs,  and  optimize  boreholes
placement.  In  geology,  they  are  instrumental  in
investigating  Earth's  structural  features,  including
fault  lines,  stratigraphy,  and tectonic movements -
information  critical  for  geological  mapping  and
hazard assessment.

Additionally,  seismic data play a pivotal role in
environmental  studies,  such  as  underground water
resource  exploration,  monitoring  land  subsidence,
and  assessing  the  geological  impact  of  human
activities, including  mining  and  hydraulic  fractur-
ing.  These  diverse  applications  underscore  the
significance  of  seismic  data  as  a  powerful  tool  in
scientific research, resource management, and risk
mitigation  across  numerous  disciplines  (Ul  Islam,
2020; Wang et al. 2023; Alfarhan et al. 2020).

This  paper  provides  a  comprehensive review of
fault detection in seismic data interpretation, high-
lighting its  pivotal  role  in  understanding  subsur-
face  structures.  The  review  focuses  on  recent
advancements  in  automated  and  semi-automated
fault detection  techniques.  Accurate  fault  detec-
tion  enables  geologists  and  engineers  to  delineate
geological  layers,  fault  lines,  and  stratigraphic
sequences,  which  are  critical  for  understanding
geological  evolution  and  identifying  potential
reservoirs.  Furthermore,  identifying  fault  lines  is
essential for  mitigating  hazards  such  as  earth-
quakes  and  tsunamis,  contributing  to  informed
urban  planning,  infrastructure  development,  and
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disaster  preparedness.  In  the  oil  and  gas  industry,
effective fault  detection  enhances  resource  extrac-
tion  strategies  by  revealing  fault  networks  and
structural  complexities,  facilitating  more  efficient
drilling  operations  and  reducing  operational  risks.
Despite these  benefits,  fault  detection  from  seis-
mic data faces challenges such as noise, data ambi-
guity, and the massive volume of data. This review
addresses  these  challenges  while  offering  insights
into current methodologies and future directions in
the field (Aloisio et al. 2021; Share et al. 2019; Li
and wang, 2021).

Seismic data  is  often  affected  by  noise  intro-
duced  by  instrumentation,  environmental  factors,
and  geological  heterogeneities.  This  noise  can
obscure fault signature or result in false detections.
The  interpretation  of  seismic  images  is  further
complicated by the inherent ambiguities of subsur-
face structures and the limitations of imaging tech-
niques. Fault characteristics can vary widely due to
factors  such  as  lithology,  fluid  content,  and
tectonic settings, adding to the complexity of their
identification.

Additionally, the  vast  volumes  of  data  gener-
ated during  exploration  surveys  necessitate  effi-
cient methods of processing and analysis to extract
fault-related information. Traditional manual inter-
pretation,  while  effective,  is  time-consuming  and
labor-intensive.  Analyzing  extensive  datasets  and
complex  geological  formations  requires  skilled
experts,  often  lead  to  delays  in  decision-making
processes.

Recent  advances  in  seismic  fault  interpretation
involve  the  use  of  automated  or  semi-automated
Machine  Learning  (ML)  algorithms  such  as
Random  Forests  (RFs),  Support  Vector  Machines
(SVMs),  and  Convolutional  Neural  Networks
(CNNs).  Models  like  U-Net for  image  segmenta-
tion and  Deep  Fault  Detection  Networks  signifi-
cantly  enhanced  the  accuracy  and  efficiency  of
fault  detection.  These  techniques  leverage  large-
scale data  processing and advanced pattern  recog-
nition capabilities, reducing dependence on manual
analysis  and  expediting  decision-making  process
across  various  applications  (Alfarhan  et  al.  2020;
Hosseini-Fard  et  al.  2022; An  et  al.  2021; Mizu-
tani et al. 2020).

Moreover,  human interpretation  of  seismic  data
is  influenced  by  the  knowledge,  experience,  and
subjective  judgment  of  the  individuals  involved,
making  it  prone  to  inconsistencies  or  incorrect
fault  identifications.  Furthermore,  the  extensive
amount  of  seismic  data  produced  necessitates
significant manpower,  rendering  manual  interpre-
tation  economically  unfeasible  for  large-scale

projects. To address these limitations, ML and DL
algorithms  have  emerged  as  promising  solutions,
paving  the  way  for  automated  fault  detection  in
seismic data analysis.

When  trained  on  labeled  seismic  datasets,  ML
algorithms  excel  at  recognizing  intricate  patterns
and correlations  inherent  in  the  data.  These  algo-
rithms  process  vast  amount  of  labelled  seismic
data,  extract  meaningful  features,  and  identify
subtle anomalies indicative of faults. Notably, their
ability  to  generalize  from  learned  patterns  allow
them to make accurate predictions on unseen data,
thus enabling efficient fault detection.

DL models, particularly CNNs and RNNs, have
demonstrated  exceptional  performance  with  large-
scale  seismic  datasets.  CNNs  are  highly  effective
at  extracting spatial  features  from seismic images,
making  them  ideal  for  detecting  complex  spatial
patterns  associated  with  faults.  Conversely,  RNNs
are  adept  at  capturing  temporal  dependencies  in
sequential  data,  which  is  critical  for  identifying
faults  in  the  temporal  patterns  of  seismic  signals.
By  leveraging  these  advanced  DL  architectures,
seismic data  analysts  can  navigate  the  complexi-
ties  of  large  datasets  to  uncover  critical,  hidden
features  indicative  of  fault  occurrences  (Di  et  al.
2021; Michie et  al.  2021; Bi et  al.  2021; He et  al.
2021).  Despite  significant  advancements,  existing
fault detection  techniques  often  lack  comprehen-
sive evaluation  and  analysis.  While  various  meth-
ods have been proposed to address subsurface fault
detection challenges,  few  studies  provide  a  thor-
ough  summary  of  these  approaches.  This  review
paper  aims  to  bridge  this  gap  by  contributing  the
following:

Enhancing  fault  detection  from seismic  data  by
reducing  model  complexity  and  training  time,
while  incorporating  physical  and  geological
constraints.  A  detailed  review  of  existing  fault
segmentation  and  ML  techniques  is  provided,
highlighting their significance and limitations.

Addressing label discrepancies, overfitting chal-
lenges, and reliability assessment issues by analyz-
ing  existing  DL  techniques,  including  adaptive
learning and advanced fault detection models, with
an emphasis on their significance and limitations.

Offering  a  comprehensive  comparative  analysis
of the existing models, accompanied by a summary
of  findings  and  an  exploration  of  future  research
directions based on these insights. 

1  Review of fault detection from seis-
mic data
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Seismic  surveys  are  the  primary  mechanism
employed in the exploration of natural gas and oil,
conducted both offshore and onshore. This process
comprises  two  main  stages:  Data  acquisition  and
seismic  interpretation.  A critical  aspect  of  seismic
surveys  is  fault  detection,  traditionally  performed
using  reflection  continuities,  which  are  manually
tracked  in  post-stack  seismic  data.  This  paper
reviews fault  detection  methodologies  from  seis-
mic  data,  focusing  on  identifying  changes  and
discontinuities  in  subsurface  structures.  To  ensure
a comprehensive analysis,  the review is structured
across  different  directions  and  techniques. Fig.  1
illustrates  the  flow  diagram of  the  review  process
for fault detection from seismic data.
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Fig. 1 Flow  diagram  of  the  review  process  for  fault
detection from seismic data
 

The process of fault detection from seismic data,
as illustrated in Fig. 1, is carried out in five distinct
directions.  The  review  primarily  focuses  on  fault
segmentation, fault detection using ML techniques,
fault detection  using  DL  techniques,  fault  detec-
tion  using  Adaptive  Learning  techniques,  and
Enhanced  fault  detection  techniques  from  seismic
data. 

1.1 Review of fault detection from seis-
mic data  using  segmentation   tech-
niques

Fault  segmentation  from  seismic  data  has  been
conducted  using  various  techniques,  with  a  focus
on  accuracy,  scalability  and  efficiency.  These
methods differ in their architecture and techniques,
but  all  aim  to  address  challenges  such  as  class
imbalance,  feature extraction,  training complexity,
and generalization to real-world data.

Wu  et  al.  (2019)  performed  fault  detection  in
seismic data using binary segmentation with Fully

Convolutional  Networks  (FCNs)  trained  on
synthetic  data.  This  approach  utilized  cross-
entropy-based  class-balanced  loss  to  address  the
class imbalance, with 200 3D seismic images used
to enhance scalability and efficiency. However, the
method has limited practical applicability due to its
reliance  on  manually  labelled  synthetic  data.  In
contrast,  Hu  et  al.  (2020)  improved  the  VGG16
architecture  by  incorporating  Hybrid  Dilation
Convolution  and  Atrous  Spatial  Pyramid  Pooling,
which  optimized  training  time  and  segmentation
accuracy, though it still relies on a complex archi-
tecture.  Dou  et  al.  (2021)  introduced  an  attention
mechanism  to  enhance  feature  sensitivity,  along
with new loss functions, Λ-BCE and Λ-smooth L1,
supervised on a few 2D seismic slices using a 3D
CNN.  Indeed,  larger  and  more  expansive  training
datasets  often  require  more  extensive  synthetic
data, as demonstrated by Lefevre et al. (2020), who
used analog models to simulate fault growth exper-
iments.  Their  work  highlighted  the  need  for  more
comprehensive  synthetic  training  datasets.  To
improve  edge  detection  capabilities,  Dou  et  al.
(2022)  proposed  the  use  of  Mask  Dice  loss  and
multiscale  compression-fusion  blocks,  which
helped reduce  false  negatives  in  fault  segmenta-
tion.  However,  their  approach  still  depends  on
human  annotations,  raising  concerns  about  the
quality of the training data used.

The  simulation  of  rupture  rates  along  fault
networks  to  advance  seismic  hazard  assessment
has  been  discussed  by  Visini  et  al.  (2020),  but
issues  related  to  accuracy  persists.  These  issues
were  addressed  by  the  FRESH  and  SUNFISH
methodologies  introduced  by  Li  et  al.  (2023),
which incorporates Fault-Seg-Net with multi-scale
residual  and  attention  modules.  These  approaches
showed  very  high  precision  in  detecting  faults,
particularly on synthetic datasets, but face scalabil-
ity  challenges  when  applied  directly  to  large  field
datasets, as noted in other studies. To achieve high
accuracy,  Lima  et  al.  (2024)  proposed  a  DNFS
segmentation model for data with sudden geologi-
cal transitions,  though  it  exhibits  lower  perfor-
mance  when  dealing  with  gradual  transitions.  Liu
et  al.  (2020)  introduced  a  segmentation  technique
that  embeds  domain  knowledge  into  CNNs,
achieving  better  consistency  in  predictions  and
interpretability.  However,  it  faces  explainability
issues,  which  were  mitigated  by  introducing  a
multi-path  learning-based  dynamic  and  scalable
network for fault detection. This network strikes a
balance  between  precision  and  efficiency,  but  it
requires  continuous  tuning  to  accommodate  data
variance.  To improve parameter tuning,  Khayer et
al. (2023) proposed an innovative delineation strat-
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egy, utilizing the Histogram of Oriented Gradients
method  for  feature  extraction,  which  enhances
classification  and  generalization  to  real-world
scenarios.  Dou  et  al.  (2024)  proposed  a  semi-
supervised FaultSSL framework that uses synthetic
and  limited  labeled  data.  However,  it  remains
highly dependent on sometimes inaccurate 2D slice
annotations. Table  1 compares  various  fault
segmentation techniques  from  seismic  data,  high-
lighting the advantages and disadvantages of algo-
rithms  such  as  Fault-Seg  Net,  Convolutional
Neural  Networks,  Fully  Convolutional  Networks,
and Deep Networks for Fault Segmentation. 

1.2 Review of fault detection from seis-
mic data using Machine Learning Algo-
rithms

The application of Machine Learning techniques in
fault  detection  from  seismic  data  is  discussed  in
this  section.  ML  techniques  are  employed  to
analyze  large  datasets  to  identify  faults.  These
techniques range  from  enhancing  feature  extrac-
tion  and reducing  noise  to  the  precise  localization
of faults.  While the use of ML algorithms in fault
detection from  seismic  data  offers  several  advan-
tages,  it  also  presents  limitations  that  require

further advancements to overcome.
A  fault  diagnosis  system  utilizing  SVM

combined with VMD has been introduced by Zeng
et  al.  (2021),  focusing  on  noise  reduction  and
feature extraction. This method outperforms PCA-
based  approaches,  even  in  noisy  environment,
although  it  remains  dependent  on  VMD,  which
requires  a  more  robust  noise-reduction  technique.
The finding is consistent with the report by Martín
et  al.  (2023),  where  fault  identification  using  K-
Nearest  Neighbors  (KNN)  was  hindered  by  the
geometrical  complexity  of  faults  in  noisy  spaces,
making  it  difficult  to  establish  fault  boundaries.
Ashraf  et  al.  (2020)  applied  neural  networks  and
geostatistical filtering to identify fracture networks,
emphasizing the  necessity  of  parameter  optimiza-
tion, and concluded that more complex tuning was
required  for  further  enhancement.  Additionally,
Noori et al. (2019) applied GPR technique for fault
localization,  but  faced  uncertainty  issues,  often
resulting in false positives. To estimate fault risks,
Ren  et  al.  (2023)  introduced  a  hybrid  SVM  with
Particle Swarm  Optimization  model,  which  accu-
rately  detected  faults,  though  it  still  experienced
mispredictions in fault probability. Poor input data
remains a common issue in such studies, as shown
by  Wu  et  al.  (2021),  who  employed  FCNs  with
cross-entropy loss functions for fault segmentation,

 

Table 1 Comparison of fault segmentation techniques from seismic data

Reference
Techniques
used

Significance Limitations

Wu et al. (2019) Fully Convolu-
tional Neural
Network

Efficient fault segmentation, Automatic
feature extraction

Requires expert knowledge for accurate
labelling, Time-consuming label creation

Hu et al. (2020) CNN Limited training set usage, Reduced
training duration, Improved segmen-
tation

Balancing model complexity with resources
is challenging

Dou et al. (2021) 3D-CNN Effective training with limited data,
Attention mechanism for noise reduc-
tion

Hyperparameter tuning is required, Limited
data for attention module

Lefevre et al. (2020) Analog models Understanding fault geometry determi-
nants

Difficulty in achieving true scale similarity

Dou et al. (2022) Fault-Net archi-
tecture

Reduction of false negatives, Preserv-
ing edge information

Incomplete labelling may lead to inaccurate
training

Visini et al. (2020) FRESH and
SUNFISH

Improving PSHA methodologies Lack of user-friendly interface, Uncertainty
handling needs improvement

Li et al. (2023) Fault-Seg-Net High precision fault localization,
Compound loss for uneven segmenta-
tion

Increased computational overhead, Training
time prolongation

Lima et al. (2024) DNFS Enhanced accurate predictions Sensitivity to geological transitions
Liu et al. (2020) CNN Improved interpretability, Better predic-

tion accuracy
Need for deeper interpretability exploration,

Additional domain knowledge integration
Li et al. (2024) Fault-Seg-LNet Achieve the tradeoff between model

precision and efficiency
Continuous fine-tuning required, Adaptation

to changing geological conditions
Khayer et al. (2023) HOG Enhances the accuracy of geological

object delineation in seismic images
The quality of seismic data and the optimiza-

tion of HOG parameters affects the system
performance

Dou et al. (2024) FaultSSL Enhances fault detection by effectively
integrating limited labelled data

Constrained by the reliance on sparse and
potentially inaccurate 2D slice annotations

Journal of Groundwater Science and Engineering    13(2025) 193−205

196 http://gwse.iheg.org.cn

http://www.gwse.iheg.org.cn


but faced limitations in integrating domain knowl-
edge. In  an  attempt  to  improve  detection  effi-
ciency,  Wu  et  al.  (2019)  incorporated  synthetic
seismic  images  along  with  CNNs,  although  the
method heavily relied on the trainability  of  CNNs
for  achieving  optimal  performances.  Recently,
Jang  et  al.  (2023)  used  Random  Forests  (RF)  in
combination with PCA for fault distribution analy-
sis, though  they  encountered  challenges  in  inter-
preting feature importance.

Jang  et  al.  (2023)  and  Gong  et  al.  (2024)  also
recognized  the  need  for  advanced  methods  to
manage feature interaction and temporal dynamics,
respectively.  Despite  achieving  better  detection
accuracy with machine learning models, they high-
lighted  the  challenge  of  correctly  interpret  the
results.  Wang et  al.  (2020)  and Feng et  al.  (2022)
introduced  knowledge  distillation  and  workflow-
based  Loc-FLOW  within  the  framework  of
machine learning, to detect faults more efficiently.
Both approaches  focused  on  enhancing  the  train-
ing  process  but  encountered  difficulties  with
geological  configurations,  which  made  them  hard
to  apply.  These  challenges  were  addressed  by  the
tomography  method  proposed  by  Waheed  et  al.

(2021),  which  uses  neural  networks  and  physics-
informed regularizers. All three studies underscore
the  importance  of  high-quality data  and  appropri-
ate  training  strategies  to  minimize  errors  in  fault
detection  models. Table  2 presents  a  summary  of
some  ML  algorithms  used  for  fault  detection  in
seismic data:  Support  Vector  Machines,  Convolu-
tional  Neural  Networks,  K-Nearest  Neighbors,
Random  Forests,  and  Fully  Convolutional  Net-
works with Gaussian Process Regression. 

1.3 Review of fault detection from seis-
mic data  using  Deep  Learning   algo-
rithms

The introduction of Deep Learning techniques has
notably  advanced  fault  detection  in  seismic  data
analysis, addressing  both  challenges  and  limita-
tions in the field. For pixel-level binary classifica-
tion  of  faults,  An  et  al.  (2021)  employed  Deep
Convolutional  Neural  Networks  (DCNNs),  which
reduced  the  dependency  on  labelled  crosslines,
thus  improving  performance  compared  to  earlier
methods.  However,  challenges  related  to  labelling

 

Table 2 Review of fault detection from seismic data using ML algorithms

Reference Techniques used Significance Limitations
Zeng et al. (2021) SVM, VMD Intelligent fault diagnosis, noise attenua-

tion, strong relationship between seis-
mic features and faults

Ineffective for non-stationary or
complex noise patterns

Martín et al. (2023) KNN Interactive 3D fault identification, litho-
logical classification

Struggles with complex fault geome-
tries and heterogeneities

Ashraf et al. (2020) NN, ACO Advanced fracture network recognition,
fault identification using seismic data

Requires careful parameter tuning for
optimization, may not effectively
handle all types of faults

Noori et al. (2019) Gaussian process
regression

Fault detection via abnormality identifica-
tion, fault edge determination

Propagation of uncertainties from GPR
into fault detection may lead to false
positives or missed detections

Ren et al. (2023) SVM, PSO Provided insights into fault exposure
conditions for roads and wells in the
target coal seam

Lack of true fault existence probability
assessment.

Wu et al. (2021) FCN Fault segmentation based on FCN,
balanced loss function for model opti-
mization

Incorporating physical and geological
constraints in model architecture is
challenging

Wu et al. (2019) MTL-CNN Fault detection, structure-oriented smooth-
ing, seismic normal vector estimation

Designing CNN architectures for
improved structural interpretation is
challenging

Jang et al. (2023) PCA, RF Relationship between fault distribution
and controlling factors, efficient RF
classification

Challenge in interpreting feature impor-
tance due to RF's bias toward corre-
lated features

Gong et al. (2024) SOM-GWO-SVM Intelligent data preprocessing, fault identi-
fication accuracy improvement

Struggles to capture temporal dynamics
of fault patterns and seismic activity
evolution

Wang et al. (2020) CNN Enhanced fault detection through knowl-
edge amalgamation, student CNN
trained on synthetic and field data

Investigation of appropriate training
data sets and labels needed for effec-
tive fault interpretation

Feng et al. (2022) LOC-FLOW Enhances earthquake catalog accuracy and
provides high-resolution velocity struc-
tures

Effectiveness is constrained by the
availability and quality of seismic
data from dense station networks

Waheed et al. (2021) PINNTOMO Enhances seismic tomography by leverag-
ing physics-informed neural networks

Has extremely complex geological
settings
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inconsistency  remained  a  significant  issue.  To
achieve  comparable  accuracy  results,  Palo  et  al.
(2023) focused on Graph Convolutional  Networks
(GCNs), demonstrating their use in fault  detection
similar  to  traditional  CNNs.  While  GCNs showed
potential,  the  feature  engineering process  revealed
limitations  that  require  further  improvements  for
better data representation. Meanwhile, an encoder-
decoder  network  was  proposed  by  Alfarhan  et  al.
(2020) for fault detection and salt dome identifica-
tion,  leveraging  transfer  learning  and  residual
blocks  to  overcome  the  issue  of  limited  labelled
samples.  Despite  these  advancements,  the  model
faced uncertainty  estimation  challenges,  particu-
larly  under  complex  and  uncertain  conditions,
emphasizing  the  need  for  further  enhancement  to
ensure reliability in such scenarios.

Besides,  Bi et  al.  (2021) proposed a volume-to-
volume  U-shaped  neural  network  with  attention
mechanism,  which  exhibited  highly  accurate
results  but  faced  challenges  with  low  dip-angle
thrust  faults.  Li  et  al.  (2019)  modified  a  CNN-
based  semantic  segmentation  approach  wo  work
with  relatively  small  training  sets.  However,  they
encountered  class  imbalance  issues,  which
impeded performance; this was addressed by An et
al.  (2021),  Alfarhan  et  al.  (2020)  and  Xu  et  al.
(2021)  applied  a  3D convolutional  autoencoder  to
improve  the  extraction  of  spatial  structure,  with
architecture tuning  and  hyperparameter  optimiza-
tion for better results.

Li  et  al.  (2021) focused on improving the qual-
ity of fault maps through seismic image denoising
and super-resolution using a CNN-based approach.
This  approach  aligns  with  Wu  et  al.  (2022),  who
used U-Net architecture for multi-scale fault imag-
ing,  but  found  it  computationally  impractical.  To
reduce the high training costs of 3D networks, Lin
et al. (2022) proposed a 2.5D channel attention U-
Net.  This  method  faced  overfitting  and  limited
labelled data issues, illustrating the common trade-
off between the need for large datasets and model
efficiency found in many studies.

Ma et al.  (2023) developed a multimodule elas-
tic  wave  inversion  model  that  performs  well  in
noisy  conditions,  emphasizing  the  importance  of
model adaptability to different environments.  This
theme  was  further  explored  by  Vu  and  Jardani
(2022a and 2022b), who focused on fracture map-
ping  and  transmissivity/storativity  assessments  in
heterogeneous aquifers.  Their  multitask CNN mo-
del  demonstrated  the  benefits  of  shared  learning
mechanisms,  but  it  also  highlighted  the  need  for
further  exploration  into  how  variations  in  aquifer
conditions  can  affect  performance. Table  3 sum-

marizes  some  of  the  DL  methods  used  in  seismic
data  fault  detection,  including  GCN,  DCNN,  U-
Net, and Encoder-Decoder. 

1.4 Review of fault detection from seis-
mic data  using  adaptive  learning  algo-
rithms

A  significant  amount  of  research  has  focused  on
the  use  of  adaptive  learning  algorithms  for  fault
detection  in  seismic  data.  These  approaches  often
emphasize  methodologies  like  transfer  learning
and  the  utilization  of  synthetic  data,  addressing
both their potential and limitations.

Zini  et  al.  (2019)  introduced  SeisNet,  a  CNN
featuring  a  unique  "butterfly"  architecture,  desig-
ned  to  address  the  issue  of  limited  seismic  data.
While  the  architecture  demonstrated  potential,  it
underscored  the  need  for  enhanced  seismic  data
processing  techniques.  Similarly,  Zhou  et  al.
(2021) utilized transfer learning to adapt CNNs for
seismic data analysis, leveraging pre-trained classi-
fiers.  Their  method  achieved  high  accuracy  on
synthetic  North  Sea  datasets  but  struggled  with
achieving fine resolution of fault discontinuities in
three-dimensional space.  This  limitation  high-
lighted  a  recurring  theme  in  fault  detection:  The
gap  between  synthetic  performance  and  practical
applicability.

Cunha  et  al.  (2020)  explored  key  challenges
associated  with  synthetic  seismic  data,  such  as
noise disturbance  and  mismatches  between  seis-
mic signal frequencies and fault distribution. They
proposed a transfer learning approach to bridge the
gap  between  synthetic  and  real  seismic  data,
aiming  to  improve  fault  detection  without  relying
heavily on labelled datasets. However, this method
did  not  fully  address  noise  challenges  frequencies
encountered in real-world seismic applications.

Ao et al. (2021) contributed to the debate with a
seismic  dip  estimation  transfer  learning  method
that  employs knowledge-driven sample augmenta-
tion. However, concerns remain regarding the reli-
ability  of  traditional  results  compared  to  network
predictions.  Dou  et  al.  (2024)  introduced  a  Tiny
Self-Attention mechanism inside  an  HRNet  archi-
tecture to enhance seismic data representation and
fault  detection  capabilities,  though  issues  with
sparse  distance  matching  problems  were  reported.
To  address  this,  Zhou  et  al.  (2021)  proposed  a
progressive  learning  architecture  that  reduced
some  limitations  of  traditional  deep  learning
models.  However,  the  need  for  updates  with
changing  datasets,  which  can  introduce  bias,
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underscores the necessity for more robust method-
ologies.

Wei  et  al.  (2022)  improved  CNNs  trained  on
imbalanced  datasets  using  transfer  learning  but
overlooked the importance of fine-tuning focal loss
parameters.  Similarly,  Li et  al.  (2024) employed a
multi-attribute fusion method to enhance detection
process,  yet  faced  challenges  related  to  high
computational  overhead  and  inefficiency.  Mustafa
et al.  (2024) focused on visual analysis of seismic
fault annotations through an attention-guided train-
ing framework,  improving prediction accuracy for
both  labelled  and  unlabelled  faults.  This  aligns
with broader trends in the literature, which increas-
ingly emphasize incorporating cognitive processes
into model training.

To  address  imbalanced  seismic  amplitude  data,
Zeng et al. (2024) proposed a 3D-UNet-based dual
attention fault  detection model,  but  its  reliance  on
shallow  features  resulted  in  unsatisfactory  out-
comes. Zhang et al. (2022) introduced a two-stage
deep transfer learning approach for hydraulic frac-
ture  imaging,  enabling  rapid  data  generation  and
accurate reconstructions, albeit with some approxi-
mation  errors.  Titos  et  al.  (2023)  applied  transfer
learning  to  volcano-tectonic earthquake  monitor-
ing, demonstrating the adaptability of their models
to  diverse  seismic  characteristics.  However,  they
cautioned  that  the  quality  of  the  master  dataset
heavily influences performance.

Table  4 summarizes the  adaptive  learning algo-
rithms used in seismic data fault detection, includ-
ing transfer learning, SeisNet, U-Net-based domain-
adversarial neural networks, DANN, self-attention,
Fault-Attri-Attention, and 3D-UNet. 

1.5 Review of enhanced fault  detection
models from seismic data

Recent studies on fault detection from seismic data
have  introduced  numerous  techniques,  each  with
unique  strengths  and  challenges.  Enhanced  hybrid
and  optimized  methods  have  proven  particularly
effective  in  fault  identification.  Yan  et  al.  (2019)
proposed  a  forward  and  backward  diffusion
scheme  based  on  PCA-planarity,  which  leverages
fault image characteristics while suppressing irrel-
evant  noise.  However,  it  highlighted  the  need  for
more advanced algorithms tailored to geologically
diverse  environments.  Similarly,  Mousavi  et  al.
(2022)  employed  morphological  algorithms,  such
as  erosion  and  edge  detection,  to  minimize  noise
disturbances without compormising image quality.
This  approach  successfully  defined  faults  with
high  precision  in  3D  marine  seismic  reflection
data.

Lyu et al. (2019) combined spectral decomposi-
tion with structure-oriented filtering to improve the
signal-to-noise  ratio  and  coherence,  though  it

 

Table 3 Review of fault detection from seismic data using DL algorithms

Reference Techniques used Significance Limitations
An et al.(2021) DCNN Efficient fault recognition methodology

outperforms state-of-the-art methods,
anticipates small errors

Mitigating label discrepancies, reli-
able model training

Palo et al.(2023) Graph Convolutional
Network (GCN)

Interpreting faults in seismic data, good
accuracy

Lacks feature engineering strategies

Alfarhan et al.
(2020)

Encoder-decoder deep
neural network

Good detection accuracy, robustness to
labelled data scarcity

Lack of uncertainty estimation
methods

Bi et al.(2021) Volume-to-volume
neural network

High prediction accuracy, low computing
costs

Ineffective for low dip-angle thrust
faults

Li et al.(2019) U-Net Efficient fault detection with small training
sets, increased interpretation efficiency

Class imbalance leads to less accu-
rate fault detection

Xu et al. (2021) 3D convolutional
autoencoder

Handling seismic data directly, with good
accuracy

Needs optimization of architecture
and hyperparameters

Li et al. (2021) Deep CNN Enhanced perceived quality, better fault
detection

Artifacts, slight overfitting

Wu et al. (2022) Modified U-Net with
dilated convolutions

Improved capacity for multi-scale informa-
tion, better fault identification

Requires further computational opti-
mization

Lin et al. (2022) 2.5D CAU-net with
channel attention
mechanism

Efficient utilization of correlation between
seismic slices, enhanced fault detection

Model overfitting with a larger
cropping approach

Ma et al. (2023) U-Net and CNN Accurate multiparameter elastic wave
inversion, strong generalizability

Physical limitations, noisy data
sensitivity

Vu and Jardani
(2022a)

SegNet Accurately map fracture networks in
heterogeneous aquifers using hydraulic
tomography data

Not fully capture the complexities
of real-world fracture geometries
and hydrological conditions

Vu and Jardani
(2022b)

HT-XNET Simultaneously reconstruct transmissivity
and storability with improved accuracy

Need in-depth considering limits
under variance of the method on
aquifer conditions and data

Journal of Groundwater Science and Engineering    13(2025) 193−205

http://gwse.iheg.org.cn 199

http://www.gwse.iheg.org.cn


tended  to  oversimplify  complex  fault  networks.
Yan et al. (2021) used transfer learning to fine-tune
the  pre-trained  networks  on  real  seismic  data,
enhancing fault  classification  accuracy  but  under-
scoring  the  need  for  improved  models  to  achieve
their  full  potential.  Meanwhile,  Lauden  et  al.
(2021)  integrated  supervised  deep  learning  with
unsupervised  multi-attribute  classification  to
enhance  fault  interpretation.  While  this  approach
improved feature  extraction,  it  struggled  to  main-
tain feature invariance in noisy environments.

Yuan et al.  (2019) introduced an adaptive spec-
trum  decomposition  methodology  combined  with
super-resolution  deep  learning  to  enhance  frequ-
ency  resolution  in  fault  detection.  Similarly,
Otchere  et  al.  (2022)  applied  pre-trained  deep
residual  U-net  CNNs  for  fault  identification,
achieving  notable  success  in  complex  sub-salt
formations.  Zhang  et  al.  (2024)  proposed  a  3D
Transformer-based  network-based  self-supervised

learning methodology for feature extraction in fault
recognition, which  significantly  enhanced  accu-
racy with  unlabelled  data  but  still  requires  refine-
ment to address the diverse nature of faults.

Mahadik  et  al.  (2021)  combined  multispectral
coherence with wavelet  transforms to improve the
detection  of  faults  and  stratigraphic  structures,
achieving  promising  results  on  real  field  seismic
data.  However,  they  noted  the  challenges  of
achieving  full  automation.  Isaac  et  al.  (2023)
applied  dip-steered filters  to  improve  fault  resolu-
tion  but  struggled  to  effectively  differentiate
between useful  and noisy signals,  highlighting the
need  for  more  advanced  filtering  techniques.
Sheng et al. (2022) presented a high-quality earth-
quake  catalog,  emphasizing  the  role  of  hydraulic
fracturing as a source of seismicity. However, their
approach was limited by the absence of long-term
observational  data,  pointing  to  the  necessity  of
advanced modelling techniques.

 

Table 4 Review of fault detection from seismic data using adaptive learning algorithms

Reference
Techniques
used

Significance Limitations

Zini et al.
(2019)

SeisNet Achieved high F1 score on bright spot
recognition, quantifying bright spots,
and predicting volume

Further research is needed for process-
ing seismic data, waveform predic-
tion, and performance on larger
datasets

Zhou et al.
(2021)

Transfer learning with
convolutional neural
networks

Quick training, produced satisfactory
results despite the class imbalance

Inaccuracy in detecting fault disconti-
nuities in 3D space

Cunha et al.
(2020)

U-net based on DANN
(Domain Adversarial
Neural Network)

Improved fault detection accuracy,
addressed challenges of real geologi-
cal situations, noise disturbance, and
seismic signal frequency

challenge in finishing fault detection
on seismic data with various
frequencies

Ao et al.
(2021)

Transfer learning Improved seismic dip estimation accu-
racy, applicability in real-world
scenarios

Difficulty in assessing the reliability of
network predictions

Dou et al.
(2024)

Tiny Self-Attention and
HRNet, contrastive
learning

Enhanced representation learning,
improved fault detection tasks,
addressed memory overflow issues

Challenges in sparse distance match-
ing in 3D high-resolution data

Zhou et al.
(2021)

Progressive transfer
learning

Enhanced fault detection using real seis-
mic data, improved fault continuity

Difficulty in updating training dataset
without introducing biases

Wei et al.
(2022)

CNN and transfer learn-
ing

Robust fault feature representation
learning, effective fault detection

Challenges in tuning focal loss param-
eters and ensuring effectiveness
across different datasets

Li et al.
(2024)

Fault-Attri-Attention Improved fault detection with enhanced
accuracy

Reduced efficiency and increased
computational overhead due to
managing multiple attributes

Mustafa et al.
(2024)

3D CNN and Attention-
guided training
Framework

Enhanced fault prediction with better
performance

Lack of deep understanding in
modelling and incorporating human
visual attention

Zeng et al.
(2024)

3D-UNet Enhanced feature extraction and fault
detection, improved accuracy and
continuity

Struggles in characterizing low-order
faults and fault continuity

Zhang et al.
(2022)

Deep Transfer Learning Significantly accelerates hydraulic frac-
ture imaging through deep transfer
learning

Reliance on simplified models that
introduce approximation errors

Titos et al.
(2023)

Transfer Learning Enhances real-time volcano tectonic
earthquake monitoring through trans-
fer learning

The quality and completeness of the
master dataset introduce biases
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To  assess  the  risks  of  active  faults  associated
with Enhanced Geothermal System activities, Feng
et al. (2022) analyzed the stress fields in Tangshan
under increased pore pressure. Although their find-
ings  contributed  to  seismic  risk  evaluation,  their
models struggled with pressure complexities, indi-
cating the need for further refinement.

Table  5 presents  the  various  advanced  seismic
data  fault  detection  models,  including  Forward
and Backward Diffusion, Structure-Oriented Filter-
ing,  Erosion  Algorithm,  Sobel  and  Laplacian  of
Gaussian, Gradient Structure Tensor-Based Coher-
ence,  Dip-Steered  Diffusion  Filter,  Differential
Structure  Method,  and  Feature  Enhancement
Filtering. 

2  Comparison of performance of vari-
ous  Machine  Learning  and  Deep
Learning techniques  for  fault   detec-
tion from seismic data

The  comparative  analysis  of  various  algorithms
discussed in this work for fault detection from seis-
mic data is presented in this section.

Fig.  2 presents  the  comparative  accuracy  of
existing fault  detection techniques  under  both ML
and DL methodologies. The graph highlighted that
FCN (Noori et  al.  2019) achieves and accuracy of
95%,  MTL-CNN (Ren et  al.  2023)  achieves  97%,
VGG  19  (Hu  et  al.  2020)  achieves  99%,  ResNet
(Xu et al. 2021) reaches 95%, and Modified U-Net
(Bi et  al.  2021) achieves 96%. Among these tech-
niques,  VGG  19  exhibits  the  highest  accuracy,
indicating  its  superior  performance  and  reliability
in fault detection tasks. This suggests that VGG 19
excels  in  generalizing  to  unseen  data,  effectively
distinguishing  faults  while  minimizing  errors,  and
ensuring consistent performance across diverse test
datasets.

Fig.3 presents a comparative analysis of the loss
metrics  for  existing  fault  detection  techniques
using ML and DL methods. The graph shows that
FCN (Noori et al.  2019) converges to 0.01, MTL-

 

Table 5 Review of enhanced fault detection models from seismic data

Reference
Techniques
used

Significance Limitations

Yan et al.
(2019)

Forward and backward
diffusion

Enhancing fault features while
suppressing noise, improving fault-
tracking accuracy

Struggles in differentiating actual
faults and stratigraphic features in
complex geological structures

Mousavi et al.
(2022)

Erosion algorithm, Sobel
and Laplacian of Gaus-
sian

Potential alternative to conventional
fault enhancement methods

Artificial enhancements or suppres-
sions near boundaries affect over-
all image quality

Lyu et al.
(2019)

Structure-oriented filter-
ing

Improved fault identification through
coherence enhancement

Introduction of spurious features or
oversimplification of complex fault
networks

Yan et al.
(2021)

Transfer learning Enhanced fault detection accuracy,
particularly for complex fault types

Difficulty in accurately identifying
complex fault types such as thrust
and listric faults

Laudon et al.
(2021)

CNN-SOM Better outcomes compared to using
single ML techniques

Lack of feature design invariant to
variations such as noise, resolution,
or acquisition parameters

Yuan et al.
(2019)

Adaptive spectrum
decomposition and
super-resolution DL
with CNN

Improved fault-detection system with
adjustable scale highlighting and high-
resolution

Bridging the gap between domains
and fostering collaboration

Otchere et al.
(2022)

Deep Residual U-net Respectable fault prediction result,
enhanced seismic imaging

Struggles to understand uncertainty
inherent in predictions

Zhang et al.
(2024)

FaultSeg Swin-UNet
Transformer

Improved feature representations,
increased recognition accuracy

Adaptability challenges with narrow,
elongated, and unevenly
distributed fault annotations

Mahadik et al.
(2021)

Gradient structure tensor-
based coherence

Clearer fault lines with less noise, future
goal of creating automated defect
detection system

Future integration of DL and ML is
needed for complete automation

Isaac et al.
(2023)

Dip-steered diffusion
filter, DSMF and FEF

Revealing small-scale faults and strati-
graphic heterogeneity

Need for improvement in noise
suppression while preserving
useful signal information

Sheng et al.
(2022)

REST and hypoDD Mechanisms of induced seismicity
through fluid diffusion and fault reac-
tivation

Limited by the lack of long-term
observational data and potential
variability

Feng et al.
(2022)

Enhanced Geothermal
System (EGS)

Offers a quantitative framework for
assessing fault slip potential during
geothermal operations

Limited by uncertainties in stress
field parameters
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CNN  (Ren  et  al.  2023) converges  to  0.09,  Modi-
fied U-Net (Bi et al. 2021) converges to 0.01, and
CNN (Hu et al. 2020) converges to 0.02. This anal-
ysis reveals that FCN and Modified U-Net exhibit
lower loss  values,  indicating  their  superior  effec-
tiveness in fault  detection.  However,  despite these
promising  results,  challenges  remain,  particularly
in  addressing  complex  geological  features,  which
still  pose  difficulties  in  the  application  of  these
techiniques.

Fig.  4 presents  a  comparative  analysis  of  the

precision metrics  for  existing  fault  detection  tech-
niques  using  ML  and  DL  methods.  The  graph
shows  that  Gaussian  process  regression  (Martín-
Martín  et  al.  2023)  achieves  a  precision  of  0.55,
VGG19  (Hu  et  al.  2020)  achieves  0.41,  ResNet
(Xu  et  al.  2021)  achieves  0.55  and  U-Net  (Liu  et
al.  2020)  achieves  0.82.  This  analysis  reveals  that
U-Net outperforms the other techniques in terms of
precision,  demonstrating  its  superior  ability  to
accurately identify faults. Its higher precision indi-
cates that U-Net is a highly reliable model for fault
detection  tasks,  ensuring  more  accurate  results  in
fault identification.

Fig.  5 presents  a  comparative  analysis  of  the  f-
measure  for  existing  fault  detection  techniques
using ML and DL methods. The graph shows that f-
measure  for  Gaussian  process  regression  (Martín-
Martín  et  al.  2023)  is  0.43,  VGG19  (Hu  et  al.
2020) is 0.17, ResNet (Li et al. 2019) is 0.15 and U-
Net  (Liu  et  al.  2020) is  0.50.  This  analysis  high-
lights that U-Net is highly effective in fault detec-
tion, demonstrating the highest f-measure. A high f-
measure indicates a strong balance between preci-
sion and recall, meaning U-Net not only identifies
faults accurately but also minimizes false positives
and  false  negatives.  This  makes  U-Net  a  highly
reliable  model  for  fault  detection,  offering  both
sensitivity and specificity in complex tasks.
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Fig. 5 Comparative analysis of F-measure of existing
fault detection techniques
 

Fig. 6 presents the comparative analysis of recall
metrics  for  existing  fault  detection  techniques
using ML and DL methods. The graph shows that
the recall for Gaussian process regression (Martín-
Martín  et  al.  2023)  accomplishes  0.36,  VGG19
(Hu et  al.  2020) accomplishes 0.15,  ResNet (Li  et
al.  2019)  accomplishes  0.11 and U-Net  (Liu et  al.
2020) accomplishes 0.38. This analysis thus eluci-
dates  that  U-Net is  highly effective in fault  detec-
tion,  demonstrating  the  highest  recall.  A  higher
recall indicates that U-Net is more capable of iden-
tifying  faults,  minimizing  the  number  of  false
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Fig. 2 Comparative analysis of the accuracy of exist-
ing fault detection techniques
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Fig. 3 Comparative  analysis  of  loss  of  existing  fault
detection techniques
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Fig. 4 Comparative  analysis  of  precision  of  existing
fault detection techniques
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negatives.  This  makes U-Net  particularly  valuable
in  scenarios  where  it  is  crucial  to  detect  as  many
faults  as  possible,  ensuring  a  higher  sensitivity  to
potential issues.
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Fig. 6 Comparative  analysis  of  Recall  of  existing
fault detection techniques
 

Fig.  7 presents  the  comparative  analysis  of
sensitivity  for  existing  fault  detection  techniques,
such as Cunha's, UNet, DeepLab9 and HED (An et
al. 2021), using ML and DL approaches. From the
graph, it is evident that the sensitivity performance
for  Cunha's  technique  achieves  30.9%,  U-Net
achieves  19.6%,  DeepLab9  achieves  22.1%,  and
HED achieves 42%. This analysis shows that HED
is the most effective in fault detection, demonstrat-
ing  the  highest  sensitivity.  A  higher  sensitivity
indicates  that  HED  is  more  capable  of  correctly
identifying faults, minimizing false negatives. This
makes HED  particularly  valuable  in  fault  detec-
tion tasks where it is crucial to detect as many true
faults as possible.
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Fig. 7 Comparative analysis of sensitivity of existing
fault detection techniques
 

Fig.  8 presents  the  comparative  analysis  of
specificity  for  existing  fault  detection  techniques,
such as Cunha's, U-Net, DeepLab9, and HED (An
et  al.  2021)  using  ML  and  DL  approaches.  From
the graph,  it  is  evident  that  the  specificity  perfor-
mance  for  Cunha's  technique  achieves  98.9%,  U-
Net  achieves −0.5%,  DeepLab9  achieves −0.6%,
and  HED  achieves −14%.  This  analysis  reveals

that Cunha's technique is the most effective in fault
detection,  demonstrating the highest  specificity.  A
higher  specificity  indicates  that  Cunha's  technique
is more proficient at correctly identifying non-fault
areas,  minimizing  false  positives.  This  makes
Cunha's  technique  particularly  valuable  in  fault
detection  tasks  where  it  is  crucial  to  accurately
classify non-fault regions.
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Fig. 8 Comparative analysis of specificity of existing
fault detection techniques
 

Fig.  9 presents  the  comparative  analysis  of
AUROC  for  existing  fault  detection  techniques
such as Cunha's, U-Net, DeepLab9, and HED (An
et  al.  2021)  under  ML  and  DL  for  AUROC
metrics.  From  the  graph,  it  is  evident  that  the
AUROC  performance  for  Cunha's  technique
achieves  88%,  U-Net  achieves −0.5%,  DeepLab9
achieves  2.6%,  and  HED  achieves −2.3%.  This
analysis reveals that Cunha's technique is the most
effective in fault detection, demonstrating the high-
est  AUROC.  A  higher  AUROC  indicates  that
Cunha's  technique  is  better  at  distinguishing
between  fault  and  non-fault  regions,  minimizing
classification errors.  This  makes  Cunha's  tech-
nique particularly  valuable  in  fault  detection tasks
where  it  is  crucial  to  have  a  model  with  strong
discriminatory power.

The  overall  comparison  of  existing  techniques
such  as  Gaussian  process  regression,  VGG,
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Fig. 9 Comparative  analysis  of  AUROC  of  existing
fault detection techniques
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ResNet, and U-Net revealed that, in terms of preci-
sion, U-Net performs better than other techniques.
Similarly,  for  the  F-measure,  U-Net  outperforms
Gaussian  process  regression,  VGG,  and  ResNet.
The  recall  metric  also  demonstrates  improved
performance  with  U-Net  compared  to  the  other
techniques. When comparing the training and vali-
dation accuracy of FCN, MTL-CNN, Modified U-
Net,  and  CNN,  VGG proves  to  be  more  effective
in fault  detection than the  other  techniques.  Addi-
tionally,  FCN  and  Modified  U-Net  show  greater
effectiveness in  fault  detection,  with  lower  train-
ing and validation loss compared to the other tech-
niques. 

3  Conclusion and future scope

This  work  reviews  the  techniques  used  for  fault
detection  from  seismic  data,  discussing  various
approaches such as fault segmentation, fault detec-
tion using  Machine  Learning  (ML),  Deep  Learn-
ing (DL), Adaptive Learning and Enhanced Learn-
ing  techniques.  The  effectiveness  and  limitations
of each technique are examined.

In fault  segmentation, techniques such as Fault-
Seg Net, CNN, FCN, and DNFS are compared. For
fault  dection  in  seismic  data,  ML  algorithms  like
SVM,  CNN,  KNN,  RF,  FCN,  and  Gaussian
process  regression  have  been  shown  to  achieve
effective detection accuracy. However, these meth-
ods suffer  from  limitations,  including  ineffective-
ness in dealing with non-stationary noise patterns,
an inability to incorporate physical  and geological
constraints,  and  difficulty  in  capturing  temporal
fault patterns.

Similarly,  when  DL  techniques  such  as  GCN,
DCNN,  U-Net,  and  Encoder-Decoder  deep  neural
networks  are  employed  for  fault  detection,  they
yield  significant  results  but  face  challenges  like
label  discrepancies,  computational  optimization
issues, model overfitting, and class imbalance.

Adaptive  learning  techniques,  such  as  SeisNet,
U-Net-based  DANN,  Self-attention,  Fault-Attri-
Attention,  and  3D-UNet,  also  face  challenges,
including inaccuracy in detecting fault  discontinu-
ity,  reliability  concerns,  dataset  bias  during
updates,  and  difficulties  in  characterizing  low-
order faults and fault continuity.

Enhanced  learning  techniques,  including
Forward  and  backward  diffusion,  Structure-
oriented  filtering,  Erosion  algorithm,  Sobel  and
Laplacian  of  Gaussian,  Gradient  structure  tensor-
based  coherence,  Dip-steered  diffusion  filter,
DSMF, and FEF, present challenges such as diffi-

culty in distinguishing faults from other features in
complex  geological  structures,  uncertainty  in
predictions,  lack  of  feature  invariance,  and  noise
suppression issues.

Despite the high potential of ML and DL in seis-
mic  fault  detection,  several  critical  challenges
remain.  These  include  high  computational  costs
due  to  the  model  complexity,  the  integration  of
geological  constraints,  handling  of  non-stationary
noise  patterns,  and  label  inconsistencies,  which
often  lead  to  model  overfitting.  Addressing  these
challenges  will  require  the  design  of  application-
specific  architectures  and  optimization  techniques
that  lessen  the  computational  burden,  incorporate
domain  knowledge,  and  effectively  handle  noise
patterns,  thereby  enhancing  the  robustness  and
accuracy of fault detection systems in seismic data
analysis.

Some  of  the  critical  areas  that  future  research
should focus  on  include  the  development  of  effi-
cient model  architectures  and  optimization  meth-
ods  to  reduce  computational  overhead.  Advanced
algorithms  are  needed  to  incorporate  geological
constraints  effectively.  Semi-supervised  learning
techniques,  along  with  methods  for  synthetic  data
generation,  can  help  address  problems  related  to
label  discrepancies and overfitting.  Ensemble,  and
active  learning approaches  could also  enhance the
reliability and adaptability of models. Additionally,
implementing  advanced  attention  mechanisms
within  neural  networks,  integrated  with  deep
geological context, holds great promise for signifi-
cantly improving  fault  detection  accuracy,  espe-
cially in complex geologic settings.
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