西北边防某部驻地地下淡水体综合物探勘查

朱庆俊 杨桂新

(中国地质科学院水文地质环境地质研究所,河北保定)

摘 要 利用综合物探技术在地处西北边陲曾被划定为"无淡水"区的边防某部驻地苏宏图玄武岩地层中勘查优 质构造裂隙地下水,为该类地区地下淡水资源勘查提供了可供借鉴的经验。 关键词 综合物探 基岩裂隙水 淡水资源

西北边防某部驻地苏宏图位于人烟稀少的荒原 戈壁,自然条件差,部队自80年代扩编以来,广大官 兵一直饮用微咸水,影响了官兵们的正常生活和身 体健康。为改善部队饮水条件,勘测地下淡水资源、 寻找可能的宜井位置已成为亟待解决的问题。

1 水文地质条件及地球物理前提

驻地苏宏图地处苏宏图-巴音戈壁盆地的中心 部位,第四系覆盖层厚度小,分布不均匀,白垩系碎 屑岩沉积厚度巨大,颗粒较细,含水层岩石泥质含量 较高、孔隙度小、连续性差,地下水的径流条件较差, 碎屑孔隙裂隙水矿化度普遍较高,不宜饮用。

苏宏图西北部地层为互层的玄武岩与碎屑岩, 由于燕山期火山喷发形成的玄武岩孔隙、裂隙发育, 加之玄武岩受构造运动影响强烈,断裂发育,形成了 良好的地下水储存场所。因而,地球物理勘查工作 的任务首先是确定玄武岩区的构造发育部位,寻找 玄武岩构造裂隙富水区段;其次,针对苏宏图地区地 下水矿化度偏高的特点,利用视电阻率值(ρ_s)进行 地下水矿化度的评价。基于此,选用了4种物探手 段,频率域电磁测深法(EH-4系统)α杯法、音频 大地电场法和激发极化法进行综合勘查工作(傅良 魁,1983;多尔特罗,1985;万明浩等,1994)。其依据 为:

(1) 玄武岩与破碎带之间电性差异明显,完整的 玄武岩其电阻率值较高;当存在破碎带时,电阻率值 降低,满足电磁法、电阻率法勘探的物理前提。

(2) 地下水矿化度是该区影响视电阻率测量的 主要因素之一,地下水矿化度越高,视电阻率值就越 小 ;反之 地下水矿化度越低 ,视电阻率值就越大 ,使 利用 EH-4 勘测结果评价地下水矿化度成为可能。

(3) 破碎带存在放射性氡气高值异常,用放射性
 α 杯法可以确定构造位置。

(4)富水段具有高极化率、高半衰时特性,用激 发极化法可以判别富水情况。

2 主要技术方法

2.1 频率域电磁测深法

测量仪器为美国 EMI 和 GEOMETRICS 公司 联合生产的 EH-4 电导率成像系统 ,属频率域电磁 测深的范畴 ,观测参数为相互正交的电场分量(E_x 、 E_y)和磁场分量(H_x 、 H_y),地层视电阻率由下式计 算出:

$$\rho_{xy} = \frac{1}{5f} \left| \frac{E_x}{H_y} \right|^2 \tag{1}$$

$$\delta \approx 503 \sqrt{\rho/f} \tag{2}$$

其中 ,f 为频率(Hz)。 趋肤深度 ∂ a" 给定 "地 层电阻率值的情况下 随频率增大而减小。

工作方式采用连续剖面测量方式,点距15m, 经数据处理分析,给出一维处理结果和EMAP拟二 维反演结果。该系统可接收的频点达60多个,具有 较高的分辨率。可用以划分电性界面、确定破碎带 位置、评价地下水矿化度。

2.2 音频大地电场法

测量仪器为原地质矿产部水文方法所生产的 YDD-B型音频大地电场仪。测量参数为测量电极 间的电压差(ΔV),其场源为天然场,是音频勘探范 围内地下地质体的综合电性反映,测量参数的幅值

本文为"九五"科技攻关项目"西北找水特别计划"部分成果。

改回日期 2001-2-5 ,责任编辑:宫月萱。

反映了地下介质电性的变化 幅值大,说明地下介质 导电性差 幅值小,说明地下介质导电性好,因而,构 造破碎带呈低值异常反映。该方法具有工作效率高 对构造位置反映准确的特点。测量采用电位观测 法,点距10m,用来进行面积性的普查工作。

2.3 α杯法

仪器为成都地质学院生产的 CD-α 杯探测仪。 α 杯法是根据氡气沿构造从深部向地表运移,在近 地表出口形成"氡气晕",在近地表出口与其围岩地 表之间产生明显的氡浓度差,据此定性确定地质构 造平面位置。因而,构造破碎带为高值异常反映。 在音频大地电场法确定的异常区进行剖面测量工 作,点距10 m,在异常段加密点距至5 m。

2.4 激发极化法

激发极化法作为电法勘探的重要分支,由于不 受地形起伏及围岩电阻率不均匀性的影响,且可充 分利用其时间特性,目前,已广泛应用于找水。破碎 含水岩石属离子导电的体极化介质,其视极化率 (η_s),表征二次场衰减速度快慢的参数——半衰时 (St)和综合参数(Sp)与岩石含水情况密切相关, 含水层对应的 η_s ,St和Sp均为高值反映。测量仪 器为北京地质仪器厂生产的微机电测仪,在确定的 构造断裂处进行测深工作,以了解其富水情况,MN 电极为不极化电极,极差稳定,工作方式为等比测 量,AB/2 最大为 170 m,可测量 ρ_s , η_s , St 及Sp,其 中:

 $Sp = 0.75 \times \eta_s \times St$

3 勘测结果及成果分析

3.1 已知孔旁 EH-4 电导率成像系统试验

已知孔位于驻地东约 400 m 处,孔深 210.32 m 岩性为玄武岩,含水层为 85.87~172.65 m,矿 化度为 8.03 g/L。

图 1 为该孔附近 EH-4 勘测剖面(钻孔位于剖 面终止端)。从剖面起端至60 m 段视电阻率在深度 $40 \sim 130 \text{ m}$ 之间较高,为 $30 \Omega \cdot \text{m}$ 左右,150 m以下 视电阻率较低,说明水质变差;剖面 70 m至终止端 视电阻率小于 $10 \Omega \cdot \text{m}$ 特别是浅部 剖面 90 m处为 一小河床,表层视电阻率小于 $3 \Omega \cdot \text{m}$,说明流经该处 的地表水水质极差,矿化度至少大于 10 g/L。勘测 结果明显反映出地层电性的变化情况,与钻孔资料 有较好的一致性。

3.2 宜井位置的勘测及成果分析 在认真 分析 资料 和实地踏勘的基础上利用前

图 1 苏宏图已知孔孔旁 EH-4 勘测剖面

Fig. 1 The result of EH-4 beside known hole

述的 4 种物探方法,于距驻地 5 km 处的北西向断沟 沟口进行了综合物探勘查工作,布置音频大地电场 剖面 3 条,在有利地段,同时开展 EH - 4 电导率成 像、 α 杯法、激发极化法 3 种物探工作(李金铭等, 1996,郭建强等,1998)。图 2 为音频大地电场 II 线 及相应位置的 α 杯测量结果。由图可见,在 120 m 左右,音频曲线呈现低值反映,同时 α 杯曲线也呈现 出明显的高峰异常,其背景约 40 脉冲/ 3min,异常 段达 140 脉冲/3min,最高达 347 脉冲/3min。推断

图 2 音频、α杯测量曲线图

Fig. 2 The result of audiofrequency and α cup

120 m 附近存在断层。

图 3 为相应部位的 EH-4 勘测剖面,从图中明 显看出,剖面的 120 m 处存在一较陡的断层,其视电 阻率值与两侧差异较大,与音频电场及 α 杯异常相 对应。剖面埋深 150 m 以上视电阻率值总体较大, 参照已知孔资料,推算该地段地下水矿化度,应小于 1.5 g/L;150 m 以深,视电阻率值变小,反映地下水 水质变差。

图4 为上述异常点处的激发极化测深结果, AB/2=2.5~30 m 处,视电阻率值整体逐渐增大, 30 m之后,视电阻率值逐渐减小,反映了深部介质 导电性增强的趋势。AB/2=28 时,视电阻率值最 大达 140 Ω·m,AB/2=170 m 时,视电阻率值最小 仍达 82.9 Ω·m,视电阻率值普遍较高,反映了该处 地下水矿化度较低,水质较好。由图可见,视极化率 和综合参数由浅至深数值逐渐增大,半衰时绝对值 普遍偏高,平均达 800 m/s,均反映地下具有良好的 富水性,参照视电阻率曲线,说明埋深 30 m 以下,富 水条件较好。

根据以上综合物探勘测结果,最终孔位选在 EH-4 勘测剖面的 120 m 处,钻探结果为:孔深 105 m,水量>500 t/d,矿化度为 0.8 g/L,勘查地下淡水 的成功,结束了驻地官兵长期以来饮用微咸水的历 史。

图 3 驻地西 5km 处 EH-4 勘测剖面

Fig. 3 The result of EH-4 5km west away from station

图 4 激发极化测深结果 Fig.4 The result of induced polarization

4 结论

(1)EH-4 电导率成像系统能提供高分辨率的 电阻率成像,可较精确地评价地下水矿化度,对寻找 苦咸水分布区内的地下淡水是行之有效的。

(2) 音场大地电场法及 α 杯法能快速、准确地确 定构造断裂的平面位置。

(3) 激电测深参数异常是判断地下某深度富水 性的重要标志。

(4)应用综合物探技术,在多年来被认定无淡水的苏宏图勘查到了优质地下淡水,结束了驻地官兵

长期饮用苦咸水的历史。

参考文献

- 郭建强 武 毅. 1998. Stratgm TmEH-4 电导率成像系统简介及应 用. 物探与化探 22(6):10~15.
- 傅良魁.1983.电法勘探教程.北京 地质出版社.
- H B 多尔特罗(苏). 1985. 岩石和矿物的物理性质. 北京 :科学出版 社.
- 李金铭,罗延钟.1996.电法勘探新进展.北京:北京地质出版社.
- 万明浩,秦顺亭.1994.岩石物理性质及其在石油勘探中的应用.北 京 地质出版社.

The Application of Integrated Geophysical Exploration to Prospecting for Freshwater for a Certain Frontier PLA Unit in Northwest China

Zhu Qingjun Yang Guixin

(Institute of Hydrogeology and Environmental Geology CAGS, Baoding, Hebei)

Abstract The integrated geophysical methods were used to find freshwater resource in Suhongtu ,which had been once delineated as a "non – freshwater area". The prospecting experience for freshwater acquired in this saltwater zone can be used for reference in future.

Key words integrated geophysical methods bedrock fracture water fresh water resource