大庆齐家水源地水文地球化学环境的模拟

张建 1^{1}) 潘 懋¹) 贾国 5^{2}) 钟佐 ³) 汤鸣皋³)

(1)北京大学,北京,100871 2)中国科学院广州地球化学研究所,广东 广州 510640;
 3)中国地质大学,北京,100083)

摘 要 大庆齐家水源地抽取地下水过程中,地下水中 CO₂和 H₂S 气体大量逸出,造成就地实测的 E_h 和 pH 等值不能代表 含水层中地下水的真实情况。本文提出用化学热力学模拟恢复水文地球化学环境的方法,在分析齐家水源地实际情况的基 础上,界定了齐家水源地的水文地球化学环境指标;pH 值、 E_h 值、游离 CO₂和 H₂S, pH 值为 6.56以下; E_h 值为 $-121 \sim -145$ mV 之间 游离 CO₂为 300 mg/L 以上;H₂S(aq)大于 64 μ g/L;HS⁻大于 17 μ g/L。指出大庆齐家水源地为偏酸性、弱还原、高 游离 CO₂, 且含 H₂S 的水文地球化学环境;为地下除铁提供了水文地球化学环境依据。 关键词 化学热力学模拟 CO₂ H₂S

Modeling of Hydrogeochemical Environment in the Qijia Water Resource Base Area , Daqing

ZHANG Jianli¹) PAN Mao¹) JIA Guodong²) ZHONG Zuoshen³) TAND Minggao³)

(1) Peking University, Beijing, 100871 2) Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640; 3) China University of Geosciences, Beijing, 100083)

Abstract CO₂ and H₂S escape in large quantities during the pumping of groundwater in the Qijia water resource base area of Daqing, and hence $E_{\rm h}$ and pH values measured near the well fail to reflect the real environment of groundwater. This paper presents a method for restoring hydrogeochemical environment by means of chemical and thermodynamic modeling. Environmental indices (pH $_{e}E_{\rm h}$ CO₂ and H₂S) are qualified. pH values are lower than 6.56 $_{e}E_{\rm h}$ values are between - 121 mV and - 145 mV CO₂ values are higher than 300 mg/L, H₂S aq) values are higher than 64 μ g/L, and HS- values are higher than 17 μ g/L. So water in the Qijia water resource base area of Daqing is weakly acid and weakly reductive with high CO₂ and certain amounts of H₂S. The method also provides guidance for disposal of underground Fe.

Key words chemical and thermodynamic modeling CO_2 H_2S

大庆齐家水源地位于大庆油田西部地区,于 1991年竣工投产,投产初期,为缓解大庆油田供水 紧张矛盾起到了重要作用。但近年来,其取水设备 出现了严重的腐蚀堵塞现象(如扬水管穿孔、泵轴叶 轮腐蚀),引起泵效率下降,出水量减少,严重影响了 该水源地的正常运行。而井管的腐蚀和堵塞与其所 处的水文地球化学环境密切相关,因此有必要深入 研究水源地的水文地球化学环境。

齐家地区主要开采第四系白土山组和第三系泰 康组含水层,含水层厚度和埋深均由东向西增大。 地下水从井管抽到地面时产生减压,使地下水中的 CO₂和 H₂S 气体大量逸出(Stuart,1988;Bacelona 等,1985)。因此,即使在井口取样,就地实测水中的 E_h 值和 pH值,其结果都不能代表含水层中地下水 的真实情况。根据天然水中碳酸平衡理论及氧化还 原平衡原理,水中 CO₂ 浓度是影响 pH 值的最敏感 因子,CO₂ 的逸出会使水的 pH 提高;而水中的 H₂S 浓度和氧浓度则是影响 E_h 值最敏感的因子,H₂S 的逸出及 O₂ 的进入会使水中 E_h 提高。因此,结合 实际情况,重新向水中加 CO₂ 和 H₂S 气体,用化学 热力学模拟来恢复水文地球化学环境。

1 化学热力学模拟模型的建立

化学热力学模拟是以水质数据为基础,利用化

本文由黑龙江省计划局重点项目(1996-60-03)资助。

改回日期:2002-3-28 责任编辑: 宮月萱。

第一作者 预建成数据,1974 年生,博士后,主要从事环境地质、地理信息系统等方面的研究,E-mail zgis@263. net。

学热力学参数,根据溶解平衡和氧化还原平衡理论, 建立模型,通过计算,求得各种离子的活度系数和活度、存在形式(单一离子和络合离子)及其含量,确定 水的酸碱环境和氧化还原水平,判断溶解-沉淀反应 等(斯塔姆等,1987)。

 1.1 计算地下水中各种离子存在形式的组成及其 含量的模型

模型按以下几个步骤建立(斯塔姆等,1987;沈 照理等,1993):

(1) 求离子强度:离子强度的计算公式为:

 $I = 1/2\Sigma Z_i^2 m_i$

式中, *I* 为离子强度, 单位为 mol/L; *Z_i*为 *i* 离子的电荷数; *m_i* 为离子的摩尔浓度, 单位为 mol/L。

(2)计算活度系数及活度:活度系数的计算公

式为:
$$\lg \gamma = -\frac{AZ^2 \sqrt{I}}{1 + Ba \sqrt{I}}$$

式中, γ 为活度系数; Z 为离子电荷数; I 为离 子浓度,单位为 mol/L; A 和 B 为取决于水的介电常 数、密度和温度的常数; a 是与离子水化半径有关的 常数。

活度的计算公式为 $:_{\alpha} = \gamma_m$,

式中,*m* 为实测浓度,单位为 mol/L; γ 为活度 系数,单位为 L/mol; α 为活度,无量纲,实际应用中 α 和*m* 单位相同,均为 mol/L。

(3) 求各单一(游离)离子和络合离子(离子对) 的浓度 地下水是一种复杂的多组分溶液系统,各组 分由单一离子(或称游离离子)和络合离子两部分组 成。络阴离子如 CO₃²⁻、HCO₃⁻、SO₄²⁻、NO₃⁻等,计 算络合离子浓度的方法是用迭代方法,直至达到所 规定的数学期望值后,运算结束。

1.2 计算饱和指数模型

饱和指数是确定水与矿物处于何种状态的参数,以"SI"表示,计算公式为: $SI = lg \frac{IAP}{K_{sp}}$

式中,*SI*为饱和指数;*IAP*为离子活度积;*K*_s, 为矿物溶度积常数。*SI*为负值时,水与该矿物处于 非饱和状态,产生溶解;*SI*等于0,处于平衡状态; *SI*为正值时,处于饱和状态,产生沉淀。利用前一 模型所算得的单一离子的活度值,便可求得相关的 *SI*值。

1.3 计算水中 H⁺浓度的模型

天然水中,H⁺来源是多方面的,黄铁矿氧化、硫 化氢的离解及弱酸(碳酸、磷酸)的解离等,都可能成 为控制水中 pH 值的反应。但是,研究区内的含水 层无黄铁矿和磷酸盐,H₂S 含量也很低,而 HCO₃ 含量平均面在处码 mg/L 以上。由此可见,碳酸离 解控制着研究区地下水的 pH 值,因此,主要考虑碳 酸平衡理论来建立计算水中 H⁺ 浓度模型。根据碳 酸平衡反应,可导出计算水中 H⁺ 浓度的公式:

$$[H^{+}] = \frac{K_{2} HCO_{3}^{-} \hat{f} \gamma_{Ca}^{2}}{2K_{c} \gamma_{HCO_{3}}}$$

式中 [H⁺ **和** HCO₃⁻]分别为 H⁺和 HCO₃⁻ 活 度 ; $\gamma_{Ca^{2+}}$ 和 $\gamma_{HCO_2^-}$ 分别为 Ca²⁺和 HCO₃⁻ 的活度系 数 ; K_2 为碳酸二级离解常数 ; K_c 为方解石溶度积常 数。

1.4 计算水中 E_h 值模型

就天然水中氧化还原平衡理论而言,控制水中 的氧化还原水平是水中各种氧化还原电对。就实际 操作而言,地下水中的 E_h 值测量十分困难,因此, 只有通过模拟计算比较准确地求得有关氧化还原电 对的浓度值,才能比较准确地求得水中的 E_h 值。 当然,只有水中的氧化还原达到平衡状态时, E_h 的 计算值才比较真实。斯塔姆等(1987)谈到,大多数 水介质对有关 N_2 的反应过程不处于平衡状态,但 其反应是惰性的,所以可以不考虑它们而把整个水 系统当作达到氧化还原状态来处理是合理的。因 此,建立水中 E_h 值的计算模型是可行的。考虑到 齐家地下水化学特征,认为控制其 E_h 值主要是以 下几个氧化还原电对的反应,下面列出其计算水中 E_h 的方程。

$$Fe^{3+} + e^{-} = Fe^{2+}$$

 $E_{h} = 0.77 + 0.05921g \frac{[Fe^{3+}]}{[Fe^{2+}]}$ (1)

 $SO_4^{2^-} + 10H^+ + 8e^- = H_2 S(aq) + H_2 O$ $E_h = 0.3006 - 0.074pH + 0.0741g \frac{[SO_4^{2^-}]}{[H_2S]}$ (2) $SO_4^{2^-} + 9H^+ + 8e^- = HS^- + 4H_2 O$

 $E_{\rm h} = 0.2489 - 0.0666 \text{pH} + 0.0741 \text{g} \frac{[\text{SO}_4^{2^-}]}{[\text{HS}^-]}$ (3)

依据以上所建立的模拟模型用美国地质调查局 (USGS)提供的 PHREEQC 软件进行 2 种模拟计算 (David ,1995),即根据平均水化学组分和具体样点 (13、32、44)的组分分别进行模拟。

2 模拟计算结果

2.1 第1种模拟

以齐家水源地地下水化学成分平均值输入模型,目的是通过模拟计算,了解该水源地 *E*_h、pH 和 游离 CO₂ 随加入不同量的 CO₂ 和 H₂S 变化及有关 矿物的沉淀-溶解的平均状况。结果列于表 1、表 2 以及图 1。

			Table 1	Modeling 1	esult while of	nly adding C	O_2 or H_2 S	5			
加 CO ₂	10 II C		F	<i>c</i> o	шо						
	ли H ₂ 5	pН	$E_{\rm h}$	CO_2	H ₂ 5	HS	CaCO ₃	FeCO ₃	FeS	F @ OH) 3	MnCO
0	0	7.500	100	0.836	0	0	0.53	0.87	-40.7	1.01	0.28
0.08	0	7.462	106	0.906	0	0	0.49	0.83	-41.2	0.99	0.25
0.56	0	7.282	133	1.37	0	0	0.31	0.66	-43.3	0.92	0.10
1.60	0	7.039	167	2.40	0	0	0.07	0.43	-46.1	0.78	-0.11
4.80	0	6.673	217	5.59	0	0	-0.30	0.07	-49.8	0.52	-0.46
8.00	0	6.476	242	8.79	0	0	-0.49	-0.13	- 51.6	0.35	-0.65
16.00	0	6.195	277	16.78	0	0	-0.77	-0.41	- 54.1	0.11	-0.93
0	0	7.500	100	0.83	0	0	0.53	0.87	-40.7	1.01	0.28
0	0.15	7.500	- 202	0.83	0.043	0.101	0.53	0.87	-0.57	-4.10	0.28
0	0.30	7.500	- 205	0.83	0.081	0.205	0.53	0.87	0.34	-4.14	0.28
0	0.90	7.500	-208	0.83	0.266	0.620	0.53	0.87	0.80	-4.20	0.28
0	1.50	7.499	-210	0.83	0.442	1.030	0.53	0.87	1.10	-4.23	0.28
0	2.40	7.499	-211	0.83	0.703	1.638	0.53	0.86	1.40	-4.26	0.28
0	6.00	7 498	-214	0.83	1 719	3 989	0.52	0.86	1 78	- 4 31	0.28

表 1 向水中只加入 CO_2 或 H_2S 时化学热力学模拟结果

注 CO_2 单位为× 10^{-3} mol/L ; H_2S 单位为× 10^{-6} mol/L ; HS^- 单位为× 10^{-6} mol/L ; E_h 单位为 mV。

				0		· ·		•				
	1 0 11 0		F	CO	ПС	110-		SI	(对数形:	式)		
	ин п25	рп	\mathcal{L}_{h}	CO_2	1125	HS	CaCO ₃	FeCO ₃	FeS	F (OH) ₃	MnCO ₃	
0	0	7.500	100	0.826	0	0	0.53	0.87	- 40.67	1.01	0.28	
0.08	0.03	7.462	- 194	0.90	0.008	0.017	0.49	0.83	-0.61	-4.06	0.25	
0.56	0.21	7.282	- 188	1.367	0.085	0.120	0.31	0.66	0.06	-4.51	0.10	
1.60	0.60	7.039	- 175	2.40	0.328	0.265	0.07	0.43	0.17	-5.00	-0.11	
3.20	1.20	6.818	- 161	3.99	0.801	0.389	-0.15	0.21	0.12	-5.43	-0.32	
4.80	1.80	6.672	- 152	5.59	1.328	0.461	-0.30	0.07	0.05	-5.71	-0.46	
6.40	2.80	6.563	- 145	7.19	1.880	0.508	-0.41	-0.04	-0.02	-5.91	-0.56	
8.00	3.00	6.476	- 140	8.79	2.447	0.540	0.49	-0.13	-0.08	-6.09	-0.65	
16.00	6.00	6.195	- 121	16.78	5.365	0.620	0.77	-0.41	-0.30	-6.62	-0.93	

表 2 向水中同时加入 CO₂ 和 H₂S 化学热力学模拟结果 Table 2 Modeling result while adding and H₂S simultaneity

注:表中各项单位同表1。

万方数据

图 1 水中分别和同时加入 CO_2 和 H_2S 时 pH 值和 E_h 值的变化 Fig. 1 Variety of pH and E_h value while adding CO_2 and H_2S simultaneity

模拟 A:向水中只加入 CO2。从表 1、表 2 和图 1-a 可以看出,随着 CO2 的加入,水文地球化学环境 产生许多变化,其中 pH、 E_h 和游离 CO₂ 变化最明 显。pH 值随 CO₂ 的加入不断降低 :当加入 4 mmol CO, 时, pH 值从原来的 7.5 降至 6.74;当加入 16 mmol CO2时,pH值可降至 6.20。游离 CO2 与 pH 值情况相反,随 CO₂的加入不断升高:当加入 4 mmol CO2 时,游离 CO2 从原来的 36 mg/L(0.83 mmol/L)升至 211 mg/L(4.79 mmol/L);当加入 16 mmol CO, 时,游离 CO, 升至 738 mg/L(16.78 mmol/L)。 E_h 值与游离 CO₂一样,随 CO₂的加入 不断升高:当加入 4 mmol CO₂ 时, E_h 值从原来的 100 mV升至 208 mV ;当加入 16 mmol CO₂ 时 ,E_h 值升至 277 mV。为什么加入 CO_2 使 E_h 升高 这是 值得讨论的问题。从模拟的条件可以看出,因为水 中 $H_2S(aq)$ 和 HS^- 含量甚微(模拟时设定为零值), 所以 影响水中氧化还原水平的主要是 Fe³⁺/Fe²⁺ 电对 据反应式(1)知 $\lg \frac{[Fe^{3+}]}{[Fe^{2+}]}$ 值升高会使 E_h 增 加。

根据模拟结果,随 CO₂ 加入量增大,_pH 值不断 降低的同时,水中的总 Fe³⁺量和总 Fe²⁺量没有变 化,但游离 Fe³⁺和游离 Fe²⁺分别在其所占总量的比 例及其绝对含量都产生变化。据计算结果,加入 CO₂从0.08 mmol/L 至 16.0 mmol/L,游离 Fe²⁺的 摩尔浓度从2.197×10⁻⁵ M 升至 2.337×10⁻⁵ M, 其活度从1.277×10⁻⁵ M 升至 1.358×10⁻⁵ M,游 离 Fe³⁺的摩尔浓度从9.396×10⁻¹⁷ M 升至 7.75× 10⁻¹⁴ M,其活度从3.44×10⁻¹⁷ M 升至 2.592× 10^{-14} M, $\lg [Fe^{3+}]$ 值从 - 11.609 升至 - 8.719。结 果说明,由于 $\lg [Fe^{3+}]$ 值升高(其负值降低),所以 按反应式方程算得的 E_h 升高。

模拟 B :向水中只加入 H_2S_{\circ} 从表 1 和图 1-a 可 以看出 随着 CO_2 的加入,水文地球化学环境也产 生变化,其中 E_h 和 Fe^{3+} 变化最明显, E_h 值随 H_2S 的加入不断降低,但一开始降低很快,随后便十分缓 慢,₀H 值和游离 CO_2 基本无变化(图 1-b);加入 H_2S 后,控制系统内氧化还原水平有 3 个氧化还原 电对,即 Fe^{3+}/Fe^{2+} 、 SO_4^{2-}/H_2S_{\circ} 和 SO_4^{2-}/HS^{-} ,从 理论上讲,利用方程(1)(2)和(3)中的任一个方程, 算得的 E_h 值都是一样的;由于 pH 值基本无变化, 所以 E_h 值只与 $lg \frac{[Fe^{3+}]}{[Fe^{2+}]} lg \frac{[SO_4^{2-}]}{[H_2S]} \pi lg \frac{[SO_4^{2-}]}{[HS^{-}]}$ 的变化有关,因为这几个离子活度比值的对数值随 H_2S 的加入变化很小,所以 E_h 在 H_2S 加入后 E_h 值 降低很缓慢。

模拟 C:同时向水中加入 CO₂ 和 H₂S。结果列 于表 2 和图 1-c。表中的数据说明,水中的 pH 值随 加入 CO₂ 和 H₂S 而降低,其数值与只加入 CO₂ 的情 况完全一样。这就说明,虽然 H₂S 的离解也会产生 H⁺[H₂S(aq)→ H⁺ + HS⁻],但是,H₂S(aq)只有 5.365×10⁻³ mmol/L 最高也反应所产生的 H⁺ 甚 微,所以水中的 pH 值完全由碳酸离解所控制。CO₂ 的加入增加了水中碳酸总量,碳酸的各级离解使水 中 H⁺增加,pH 值降低。其反应如下:

$$CO_2 + H_2O \rightarrow H_2CO_3 \tag{1}$$

$$H_2CO_3 \rightarrow H^+ + HCO_3^-$$
 (2)

$$HCO_3^- \rightarrow H^+ + CO_3^- \qquad (3)$$

 $E_{\rm h}$ 值的变化与 pH 值的变化则完全不同。表 2 的数据说明,第一次加入 CO2 0.08 M 和 H2S 0.03×10^{-3} mol/L 时, $E_{\rm h}$ 为最低值, $E_{\rm h} = -194$ mV 随后 缓慢上升,至最后一次加入 CO2 16.0× 10^{-3} mol/L和 H₂S 6.0×10⁻⁶ M时 , $E_{\rm h}$ 升至 – 121 mV 则比只加 H₂S 6.0×10⁻⁶ M 的 $E_{\rm h}$ 值(-214 mV)高很多 这与只加入 HAS 的情况相反。综合模 拟 A 和模拟 B 的结果即可得到正确的答案。只加 入 CO₄ 模拟 A)使 E_b 不断升高,而只加入 H₂S 模 拟 B)使 Eh 下降,一升一降,相互抑制,加入模拟所 规定的 CO_2 量使 E_h 升高的速率比加入模拟所规定 的 H_2S 量使 E_h 降低的速率稍大些 ,从而产生上述 $E_{
m h}$ 值变化的规律。模拟结果给出一个很有用的启 示 :含 H,S 且游离 CO, 较高(相应的 pH 值较低)的 水 由于这两种组分对 Eh 所产生的效应相反,这种 水的 $E_{\rm h}$ 值不会很低。

2.2 第2种模拟

选择有现场和实验室实测 pH 值及现场实测 E_h 值的 3 个水点(表 3)进行模拟。目的是验证现 场实测的 pH 值和 E_h 值的真实程度。模拟方法是, 输入实验室实测的 pH 值和现场实测的 E_h 值,以及 室内实测的其他组分,并加 CO₂ 和 H₂S。模拟结果 列于表 4。

3 地下水水文地球化学环境恢复的讨 论

3.1 地下水水文地球化学环境判断的定性依据 据齐家水源地的实际情况,研究区内地下水水

表 3 模拟水点的地下水化学成分

 Table 3 Chemical composition of groundwater at modeling site

水点	$\mathrm{p}\mathrm{H}_{\mathrm{l}}$	$\mathrm{p}H_2$	$E_{\rm h}$	HCO_3^-	SO_4^{2-}	Cl^{-}	Ca ²⁺	Mg^{2^+}	(Na+K) ⁺	Fe	Mn
齐13	6.30	7.30	94	610.2	269.0	106.4	114.2	35.3	230.0	2.00	0.55
齐 32	6.80	7.70	125	692.6	196.9	95.7	108.2	29.2	95.7	2.05	0.46
齐 44	6.55	7.80	119	622.4	235.4	106.4	108.2	36.5	223.0	3.00	0.55

注 : pH_1 和 E_h 为现场实测 ; pH_2 为实验室实测 ; E_h 单位为 mV :化学成分单位为 mg/L。

表 4 齐 13、32、44 水点化学热力学模拟结果 Table 4 Chemical modeling result of 13 32 A4 water site

						_						
水	加の	加 H₂S	рНа	$E_{\rm b}$	CO2	H ₂ S	HS ⁻		SI	(对数形式	式)	
点		1 1 .2.0	P	- 11	0.02	2	110	CaCO ₃	FeCO ₃	FeS	F€(OH)₃	MnCO3
齐	0	0	7.30	94	1.23	0	0	0.29	0.61	- 38.28	0.28	0.31
	5.6	2.1	6.557	-144	6.80	1.65	0.44	-0.45	-0.12	-0.12	-5.96	-0.38
13	8.0	3.0	6.426	- 136	9.20	2.50	0.49	-0.58	-0.21	-0.21	-6.21	-0.51
_	12.0	4.5	6.270	- 126	13.20	3.95	0.54	-0.74	-0.30	-0.32	-6.51	-0.66
	0	0	7.70	119	0.55	0	0	0.73	1.03	-45.01	1.86	0.58
	4.0	1.5	6.79	- 161	4.49	1.00	0.46	-0.17	0.17	0.13	-5.54	-0.19
齐	6.4	2.4	6.61	- 151	6.89	1.82	0.54	-0.35	-0.01	0.05	-5.79	-0.31
32	7.2	2.7	6.56	- 146	7.69	2.10	0.56	-0.40	-0.06	-0.01	-5.98	-0.41
	12.0	4.5	6.35	- 133	12.48	3.83	0.63	-0.61	-0.26	-0.17	-6.38	-0.61
	16.0	6.0	6.23	- 125	16.48	5.30	0.66	-0.73	-0.38	0.27	-6.61	-0.73
	0	0	7.80	125	0.39	0	0	0.78	1.25	- 49.36	2.43	1.25
**	3.2	1.2	6.85	- 164	3.52	0.72	0.37	-0.16	0.36	0.28	-5.23	-0.009
齐 44	7.2	2.7	6.52	- 143	7.51	2.08	0.51	-0.49	0.04	0.09	-5.86	-0.40
	8.0	3.0	6.48	- 140	8.31	2.36	0.52	-0.53	-0.01	0.05	-5.90	-0.46
	12.0	4.5	6.31	- 129	12.31	3.81	0.57	-0.70	-0.18	-0.08	-6.27	-0.61

注 CO_2 单位为× 10^{-3} mol/L ; H_2S 单位为× 10^{-6} mol/L ; HS^- 单位为× 10^{-6} mol/L ; E_h 单位为 mV。

文地球化学环境应有如下标志:

(1)地下水偏酸性:根据现场井口实测 pH 值证 明,其 pH 值范围是 6.2~6.9。

(2)地下水应有比较高的游离 CO₂ 据室内测定 数据,不少井游离 CO₂ 超过 100 mg/L,最高达 118 mg/L。室内测定往往不能及时,再加井内及井孔 CO₂ 的逸出。以此判断,实际的游离 CO₂ 应远高于 室内测定值。从碳酸平衡理论来判断,当 pH 达到 6.5 时 CO₂ 的摩尔百分数应达总碳酸的 41%;研究 区内 HCO₃⁻ 平均含量高达 654 mg/L,因此,游离 CO₂ 应是较高的。

(3)研究区内地下水与含水层中的矿物处于平 衡或非饱和状态:从含水层物质组成判断,没有发现 CaCO₃、FeCO₃、FeS、Fe(OH)₃、MnCO₃ 沉淀现象。

(4) 地下水处于弱还原状态:井孔常可闻到 H₂S 味,从硫体系的据_h-pH 稳定场判断,当 pH 为 6.5~ 7.0 时,含有较高的 H_2S , E_h 一般应在约 – 200 mV 以下,取水设备检修停泵时,如果停泵时间较长,井 筒水变黑,这是由于地下水具承压性,井内静止水位 大大高于花管滤网位置,因此停泵时,滤网段地下水 流动,而滤网以上的井筒水基本停滞,地下水不断流 过滤网段,地下水通过井筒时减压, H_2S 也就不断逸 到停滞的井筒水内,使其含量不断增加,其还原水平 也高于含水层地下水,从而产生 FeS 的沉淀而使水 变黑。上述的一些迹象都说明含水层中地下水应处 于弱还原的状态, E_h 应为负值。

当然,上述的一些现象只能作为判断区内含水 层地下水真实水文地球化学环境的定性依据,定量 的指标将通过化学热力学模拟结果的讨论予以界 定。

3.2 研究区内水文地球化学环境指标的定量界定

为了紧密结合齐家水源地取水设备堵塞和腐蚀

的研究,选择了 4 个水文地球化学环境指标 一酸碱环 境指标 $_{p}$ H 值;氧化还原环境指标 $_{E_{h}}$ 值;气体环境 指标,游离 CO₂ 和 H₂S。用 2 种模拟计算结果的讨 论。

3.2.1 平均组分模拟 表 1 是以齐家地下水组分 平均含量为基础的模拟结果。从表中可看出,如果 按原始的分析数据,pH为7.50, E_h 为100,其模拟 计算结果是 除 FeS外,所有其他4个*SI*值均为正 值,最大的为 Fe(OH)₃的*SI*,其值为1.01,即离子 活度积为溶度积的10倍;FeCO₃的*SI*值为0.87, 其离子活度积为溶度积的7倍,处于过饱和状态,显 然,其 E_h 和 pH值并不代表地下水真实的环境状 态。当水 pH值为6.56~6.20, E_h 为-145~-121 mV时表中所列的矿物的*SI*均为负值,并与水处 于近乎溶解平衡或溶解状态。因此,将其环境指标 界定于表5。从该表模拟计算结果看,齐家地下水 的环境指标定量界定为:pH值低,应低于6.56; E_h 值为负值,在-121~-145 mV范围内;游离 CO₂ 高,一般应在316 mg/L以上; H_2 S和HS⁻为微量。

表 5 齐家地下水组分平均含量的 水文地球化学指标

 Table 5
 Hydrochemical index according to groundwater composition in Qijia

pН	$E_{\rm h}$	游离 CO ₂	H_2S	HS ⁻
	/mV	$/\text{mg} \cdot L^{-1}$	$/\mu { m g} \cdot { m L}^{-1}$	$/\mu g \cdot L^{-1}$
6.61	- 148	281	55	16
6.56	- 145	316	64	17
6.52	-142	352	74	17
6.48	-140	387	83	18
6.31	- 129	562	133	20
6.20	- 121	738	183	21

3.2.2 具体样点模拟 表 4 为具体几个水点的模 拟计算结果。从该表的数据可得出以下几点认识:

(1) pH 在 6.56 以下时,齐 13 和齐 32 两个水点5 种矿物的 SI 值均为负值,水与5 种矿物处于近 乎溶解平衡或溶解状态。

(2) $_{\rm pH}$ 为 6.56~6.30时相应的 $E_{\rm h}$ 值均为负值 症 -126~ -146 mV间 且都低于 $E_{\rm h}$ 的现场实测值(表 6)说明现场实测 $E_{\rm h}$ 值很难代表地下真实情况。

(3)齐32和齐44现场实测 pH分别为6.8和 6.55 此时的 FeCO₃和 FeS 与水处于饱和状态,说 明该两水点现场实测的 pH 值不准确,偏高,实际上 其 pH 值 应 分 鹅 6.56和6.31 更合适(表6);齐13 现场实测 pH 值为 6.3 ,但模拟计算结果表明 ,在 pH 为 6.56 时 ,所有 5 种矿物已与水处于饱和状态。上 述情况说明 ,只能把 pH 等于 6.56 定为环境指标上 限 ,实际上可能有不少水点 pH 低于此值。

据上述分析,将齐13、齐32和齐44的水文地 球化学指标界定于表6中。

表 6 某些水点的水文地球化学环境指标

* 5		E /mV	游离 CO ₂	H_2S	HS^-	
小点	рп	L _h , mv	$/\text{mg} \cdot L^{-1}$	$/\mu g \cdot L^{-1}$	$/\mu { m g} \cdot { m L}^{-1}$	
齐13	6.27	- 126	581	135	18	
齐 32	6.56	- 146	338	72	19	
齐 44	6.31	- 129	565	130	19	

4 结论

综上所述,齐家水源地水文地球化学指标界定 如下:

pH 值为 6.56 以下 ;*E*_h 值为 – 121~ – 145 mV 之间 游离 CO₂ 为 300 mg/L 以上 ;H₂S(aq)为大于 64 μg/L ;HS⁻ 为大于 17 μg/L。

区内地下水应是偏酸性、较还原、高游离 CO₂, 且含 H₂S 的水文地球化学环境 ;环境中游离 CO₂ 含 量高 ,且含 H₂S ,由于与 CO₂ 和 H₂S 反应的有关电 对 E_h 的效应相反 ,其对水中 E_h 相互抑制 ,所以区 内地下水不会形成强还原环境。

参考文献

沈照理,朱宛华,钟佐 .1993.水文地球化学基础.北京:地质出版社.

斯塔姆 W ,摩尔根 J J , 汤鸿霄译. 1987. 水化学. 北京 科学出版社.

References

- Bacelona M J ,Gibb J A. 1985. Practical guide for ground water sampling. Ilinois State Water Survey , Champaign , IL.
- David L. Parkhurst. 1995. User 's Guide to Phreeqc—A computer program for speciation. Reaction-path , Advective-Transport , and Inverse Geochemical Calculations , Water-Resources Investigations Report 95~4227.
- Stumm W ,Morgan J J. Tang Hongxiao (translated). 1987. Aquatic chemistry. Beijing Science Prest in Chinese).
- Shen Zhaoli, Zhu Yuanhua, Zhong Zuoshen. 1993. Basis of hydrogeochemistry. Beijing Geological Publishing House in Chinese).
- Stuart Garner P E. 1988. Making the most of field-measurable ground water quality parameters. Ground Water Mornitoring Review , Summer $50 \sim 66$.