厦门火烧屿裸露岩石的铀放射系不平衡

刘广山 徐茂泉 黄奕普 P58 A

(厦门大学海洋系,亚热带海洋研究所,福建 厦门,361005)

摘 要 用HPGey 谱方法测定了厦门火烧屿裸露岩石天然放射性核素⁴⁰K、²²⁸Ra、²²⁸Th、²³⁸U、²²⁶Ra和²¹⁰Pb含量,对其轴系 不平衡关系进行了讨论,发现钍系核素²²⁸Ra和²²⁸Th基本上是平衡的,而大部分样品²²⁶Ra相对于²³⁸U、²¹⁰Pb相对于²²⁶Ra亏 损。由此推论,水体作用下岸边岩石中²²⁶Ra直接进入水体,可以是海水中²²⁶Ra的一个来源;岸边岩石中²²²Rn逸出后,衰变 为²¹⁰Pb再进入水体,可以是海水中²¹⁰Pb的一个来源。 关键词 谱分析 裸露岩石 铀系不平衡 火烧屿

Uranium Series Disequilibrium in Naked Rocks from Huoshaoyu Island, Xiamen

LIU Guangshan XU Maoquan HUANG Yipu

(Department of Oceanography/Institute of Subtropical Oceanography, Xiamen University, Xiamen, Fujian, 361005)

Abstract The natural radionuclides in naked rocks from Huoshaoyu island of Xiamen were measured by means of HPGe (spectroscopy, and the ⁴⁰K, ²²⁸Ra, ²²⁸Th, ²³⁸U, ²²⁶Ra and ²¹⁰Pb were detected. Based on a discussion on the disequilibrium of uranium series, it is found that in most samples ²²⁶Ra relative to ²³⁸U and ²¹⁰Pb relative to ²²⁶Ra are deficient. It can thus be concluded that the migration of ²²⁶Ra from the coastal rocks into seawater by water leaching is a source of ²²⁶Ra in seawater and that the ²¹⁰Pb formed by the decaying of ²²²Rn escaped from rocks is a source of ²¹⁰Pb in seawater.

Key words γ spectrum analysis naked rock uranium series disequilibrium Huoshaoyu island

地球科学研究中,测定岩石、沉积物等的放射性 核素含量,研究其中的天然放射系不平衡关系可以 揭示其形成演变规律和环境的历史变迁。

铀系不平衡方法已广泛应用于地球科学研究中 (Bourdon 等, 1994; Chabaux 等, 1994; Gascoyne 等, 2002; Ivanovich 等, 1992; Iwamori, 1994; 罗兴章等, 1998; 夏明, 1989)。岩石中铀系不平衡研究主要应 用于年轻火山岩和水-岩相互作用体系两方面 (Bourdon 等, 1994; Chabaux 等, 1994; Gascoyne 等, 2002; Ivanovich 等, 1992; Iwamori, 1994; 罗兴章等, 1998)。通过²³⁸U-²³⁰Th-²²⁶Ra 之间的不平衡进行火 山岩测年和岩石受水体作用的地球化学研究, 其时 间尺度为 10⁴~10⁶ a。

人们大多用质谱方法或 α 谱方法测定岩石样 品。也有用 γ 谱方法测定岩石中放射性核素的报 道、但研究目的往往在岩石中的放射性水平,而不是 进行地球科学研究(Ajayi 等,2001; Khater 等, 2001)。本文用 γ 谱方法测定了厦门火烧屿裸露岩 石中的放射性核素含量,讨论了其铀系不平衡和相 关的问题。

1 样品采集与测定

1.1 火烧屿

火烧屿位于中国福建省厦门西海域,四面环海, 地理坐标为 E118°04′, N24°30′。该岛呈 NE-WS 向延伸,长约 1 km,宽约 0.2~0.5 km,面积约为 0.3 km²,最高海拔 25 m。岛上部分植被覆盖,出露 地层为下侏罗统梨山组,主要由褐黄色、灰白色中-中细-细砂岩、长石石英砂岩夹薄层-中厚层状泥岩 及片理化流纹岩、流纹质晶屑凝灰熔岩、流纹质凝灰 岩组成。为一层湖相细碎屑岩夹陆相火山岩建造 (福建省地质矿产局区域地质调查队,1988)。在该 地层内可见发育的透镜状层理、微细水平层理,局部

本文由国家自然科学基金项目(40076024)资助。

责任编辑:宫月萱。

第一作者:刘广山、男、1959年生,研究员,从事同位素海洋学研究; E-mail: lgshan@public.xm.fj.en。

尽管火烧屿面积不大,但其上有典型的地质剖面,丰富的地质现象,奇特的海蚀地貌,被称为厦门的地质博物馆。裸露岩石主要分布在周边潮间带和山脚下,受海水和雨水冲刷、侵蚀较为严重。

1.2 样品的采集与处理

所有样品在岩石裸露区域采取或从岩层上敲击 得到。山脚或海边样品于低潮时间采集。样品 2-1 和样品 2-2 是采自同一地点而外观不同的 2 种岩 石,其余样品均为在大块或大堆岩石上采集的有代 表性的样品。样品外观特征如表 1 所列。采集到的 样品用塑料袋封装,回实验室晾干后磨细、混匀、80 目过筛,然后用直径 75 mm,高度 50 mm,圆柱体的 聚乙烯塑料盒封装。

Table 1 The characteristics of the samples										
样品编号	名称	采样位置	外观特征	粉碎后色别						
i	铁锰质岩脉	东部潮间带	为沿裂隙允填的铁锰质岩脉,表面附着少量生物壳体,呈暗黄褐 色	黄色						
2-1	含铁锰质石英岩脉	西部山脚	原岩为泥质粉砂岩,呈淡褐色/灰白色,其间裂隙为含铁锰质石英 岩脉充填	浅粉红色						
2.2	泥质粉砂岩	西部山脚	为泥质粉砂岩,呈淡褐色/灰白色,含有火山凝灰物质	浅粉红色						
3	含白云母的铁锰 质石英岩 脉	西部山顶	铁锰质石英岩脉,中间夹白云母层, 表面为暗灰色,新断面为黄褐 色	黄色						
4	黄褐色铁质板岩	西部山顶	黄褐色,颗粒细小,为泥质、铁质板岩,隐晶质结构,板状构造	黄色						
5	灰白色粉砂岩	东部海边海蚀崖	砂状结构,块状构造,一侧为石英脉壁,内见细小石荚脉穿插其中	灰白色						
6	暗褐色铁锰质岩脉	西部山腰	铁锰质脉,呈暗褐色,含少量石英脉,石英脉穿插其中	黄色						
7	暗褐色含铁锰质 石英岩脉	东部山坡	粉砂状结构,块状构造,沿裂隙允填呈球状壳体,其内充填灰白色 /诙黄色砂页岩	黄色						
8	铁质板岩	东部山脚	暗红褐色,内含大量赤铁矿,板状构造,鳞片粒状变晶结构	铁红色						
9	砂页岩	东北部海蚀崖	灰白色,含凝灰质,页理、层理清晰可见,风化作用很强,其强烈高 岭土化	白色						

表 1 样品外观特征

1.3 样品的γ谱分析

用 HPGe 探测器 y 谱仪(美国 Canberra 公司) 测量样品。探测器为 GX3020 型,晶体直径为 60 mm,高度为 54 mm,可测量(射线能量范围为 4~ 1 000 keV;在 25 cm 源距,对⁶⁰Co 点源 1 332 keV, y 射线峰分辨率为 1.91 keV,相对效率为 37.3%,峰 康比为 60:1。系统使用 Canberra747 铅室,Accuspec 多道板与微机组成的计算机多道,ADC 变换增益和 多道存储容量最大为 8 192 道。用 Genie-2000 诸分 析软件分析谱数据。

将装好的样品气密封 20 d 后直接放置在探测 器端帽上方收集谱数据,谱数据收集过程中观察感 兴趣 y 射线峰面积,要求其相对误差小于 5%,谱数 据收集最长时间限制在 86 400 s 以内。 全部样品中可探测到的放射性核素为成系天然 放射系核素和⁴⁰K。测量⁴⁰K用1460.5 keV(分支 比10.67%)γ射线;测量²¹⁰Pb用46.5 keV(4.0%) γ射线;测量²²⁶Ra用²¹⁴Pb的351.9 keV(37.09%) 和²¹⁴Bi的609.3 keV(46.1%)、1120.3 keV (15.0%)γ射线;测量²²⁸Ra用²²⁸Ac的338.7 keV (11.9%)、911.2 keV(27%)和968.8 keV(16.3%) γ射线;测量²²⁸Th用²¹²Pb的238.6 keV(43.6%)和 ²⁰⁸Th的583.1 keV(30.96%)γ射线;测量²³⁸U用 ²³⁴Th的63.2 keV(分支比3.826%)和92.6 keV (5.41%)γ射线。

用 GBW 04124 铀矿渣标准物质掺入模拟基质, 混匀、制成源物质,模拟基质由 SiO₂(71.2%)、Al₂O₃ (20.5%)和 Fe₂O₃(8.3%)分析纯化学试剂混合、磨 细、120目过筛制成。制好的源物质与 KCl 试剂分 别装入 75 mm×50 mm 的聚乙烯塑料样品盒,制成 与样品几何条件完全相同的刻度源。用源物质制作 的刻度源密度为 1.25 g/cm³, KCl 试剂制作的刻度 源密度为 1.13 g/cm³。

在与测量样品完全一致的几何条件下收集刻度 源γ谱、空白基质本底γ谱和样品容器本底γ谱,测 量实验效率值,由实验效率值用双对数多项式拟合 得到效率曲线方程。 样品与刻度源密度基本一致,所以不进行自吸 收校正。

2 结果与讨论

2.1 火烧屿岩石中的放射性核素含量

全部样品用 γ 谱方法探测到的核素为⁴⁰ K、 ²²⁸Ra、²²⁸Th、²³⁸U、²²⁶Ra和²¹⁰Pb,测定结果如表 2 所 列。表中的²²⁸Th/²²⁸Ra、²²⁶Ra/²³⁸U和²¹⁰Pb/²²⁶Ra分 別表示两种核素的活度比。

Table 2 The radionuclides contents in naked rocks of Huoshaoyu island										
样品编号	⁴⁰ K	²²⁸ Ra	²²⁸ .I.h	²²⁸ Th/ ²²⁸ Ra	238U	²²⁶ Ra	²²⁶ Ra / ²³⁸ U	²¹⁰ Pb	²¹⁰ Pb/ ²²⁶ Ra	
1	107 ± 9	25.5±2.2	23.9 ± 2.6	0.94	68.7±7.1	68.4±5.8	1.00	31.7±3.9	0.46	
2-1	1070 ± 88	59.2±5.0	56.3±5.9	0.95	60 ± 12	39.7±3.6	0.66	33.2±6.6	0.84	
2-2	1168 ± 97	48.4 ± 4.5	$\textbf{45.4} \pm \textbf{4.9}$	0.94	56±11	27.6±2.5	0.49	64 ± 10	2.32	
3	264 ± 21	16.1±1.5	15.5 ± 1.6	0.96	40.7±5.1	46.8 ± 3.8	1.15	25.3±3.8	0.54	
4	785 ± 63	42.3±3.6	38.1±3.9	0.90	52.2±5.8	47.6 ± 3.8	0.91	22.9 ± 3.6	0.48	
5	30.5 ± 3.1	28.3±2.4	25.1±2 6	0.89	32.3±4.6	15.1±1.4	0.47	11.0±2.3	0.73	
6	641 ± 52	7.7 ± 4.0	34.2±3.6	0.91	50.2±5.9	55.1±.8	1.10	3.5 ± 5.0	0.68	
7	508 ± 41	33.5 ± 3.8	30.8 ± 3.1	0.92	26.9 ± 5.0	24.1±2.2	0.90	16.4±4.0	0.68	
8	754 ± 65	73.0 ± 6.8	76.5 ± 7.8	1.05	82.0±9.6	42.8±4.0	0.52	82.4±8.5	1.92	
9	896 ± 72	74.5 ± 7.5	70.3 ± 6.8	0.94	42.4±6.7	29.6±2.5	0.70	21.9 ± 4.8	0.74	
平均	622	43.9	41.6	0.94	51.2	39.7	0.77	35.6	0.98	
范围	30.5~1168	16.1~74.5	15.5~76.5	0.89~1.05	26 9~82 0	15 1~68 4	0.47~1.15	11.0~82.4	$0.46 \sim 2.68$	

表 2 火烧屿裸露岩石放射性核素含量

由表 2 中数据可以看出,不同样品中⁴⁰K 含量 相差较大,以 5 号样品⁴⁰K 含量为最低,仅 30.5 Bq/ kg;2-1 和 2-2 号样品的⁴⁰K 含量在同一水平,且为 全部样品最高含量,其中 2-2 号样品含量达 1 168 Bq/kg。1 号和 3 号样品中的⁴⁰K 较 5 号样品含量稍 高,但仍属偏低水平。全部样品⁴⁰K 平均含量为 622 Bq/kg。

不同样品中的²²⁸ Ra 和²²⁸ Th 含量有较大的差 异,其中 3 号样品含量为最低,分别为 16.1 和 15.5 Bq/kg,最高含量的 9 号样品分别为 74.5 Bq/kg 和 70.3 Bq/kg,全部样品²²⁸ Ra 和²²⁸ Th 平均含量为 43.9 Bq/kg 和 41.6 Bq/kg。

全部样品中的²³⁸U在 26.9~82.0 Bq/kg 范围 内,平均为 51.2 Bq/kg;²²⁶Ra 含量为 15.1~68.4 Bq/kg,平均为 39.7 Bq/kg;²¹⁰Pb 含量为 11.0~ 82.4 Bq/kg,平均为 35.6 Bq/kg。

样品中⁴⁰K 和²³⁸U 含量平均值与福建省土壤天 然放射性水平平均值为 609 Bq/kg 和 55.5 Bq/kg 接近, 稍高于全国土壤⁴⁰K和²³⁸U含量平均值 580 Bq/kg和 39.5 Bq/kg(全国环境天然放射性水平调 查总结报告编写小组, 1992)。

2.2 铀系不平衡及其相关问题

2.2.1 ²²⁸Ra 和²²⁸Th 全部样品中²²⁸Th 和²²⁸Ra 的 活度比为 0.89~1.05,在实验误差范围内²²⁸Ra 和²²⁸Th 的含量水平一致。在钍放射系中,除母 体²³²Th 外,只有²²⁸Ra 和²²⁸Th 半衰期较长,分别为 5.75 a 和 1.91 a,其他核素半衰期较短,就地球科学 意义而言,可以将钍系看作是由²³²Th 和²²⁸Ra 和 ²²⁸Th构成的三级衰变链;岩石中²²⁸Ra 和²²⁸Th 含量 水平一致,说明所测样品中钍放射系是衰变平衡的。 2.2.2 ²³⁸U、²²⁶Ra 和²¹⁰Pb ²³⁸U、²²⁶Ra 和²¹⁰Pb 均 为铀放射系核素,通常,人们把铀系分为 5 个子系, 各个子系的第一个核素分别为²³⁸U、²³⁰Th、²²⁶Ra、 ²²²Rn和²¹⁰Pb,半衰期分别为 4.468×10⁹a、7.7×10⁴ a、1.6×10³a、3.82 d 和 22.26 a。很多情况下不能 用γ谱方法测定²³⁰Th;²²²Rn 是惰性气体,半衰期又 短,从采样到测量经历的时间较长时,所测的²²²Rn 已不是采样时的活度;γ谱方法能测定的铀系核素 为²³⁸U、²²⁶Ra和²¹⁰Pb。

由表 2 数据可看出,所测样品铀系²³⁸U、²²⁶ Ra 和²¹⁰ Pb 衰变不平衡。²²⁶ Ra 和²³⁸U 的活度比在 0.47~1.15之间,1、3、4、6、7 样品中的²³⁸U 和²²⁶ Ra 在实验误差范围内是衰变平衡的,其余样品²²⁶ Ra 和 对于²³⁸U 亏损。一般认为,由²³⁸U 经级联衰变的 ²²⁶ Ra比²³⁸U 更易从矿物晶格逃逸,所以在海水与雨 水冲刷侵蚀下,岩石中更可能出现²²⁶ Ra 相对于²³⁸U 亏损。1、3、4、6 和 7 号样品²²⁶ Ra 与²³⁸U 在同一水 平,一个很明显的特点是 1、3、6、7 号样品均为铁锰 质岩脉,4 号样品为铁质板岩,可能是其中的铁锰氧 化物对镭的吸附作用阻滞了雨水或海水冲刷时镭的 溶出。

大部分样品²¹⁰ Pb 相对于²²⁶Ra亏损,由于²²⁶Ra 通过中间隋性气体衰变为²¹⁰ Pb,所采集样品为裸露 岩石,²²² Rn 易从其中逃逸,从而形成²¹⁰ Pb 相对于 ²²⁶Ra亏损。2-2 和 8 号样品²¹⁰ Pb 相对于²²⁶Ra 过剩, 但并不明显相对于²³⁸ U 过剩,所以可以认为是近 期²²⁶Ra 的丢失造成的。

2.3 与海洋学相关的问题

(1)长期以来,人们一直认为海洋中过剩的 ²¹⁰Pb来自陆地土壤中²²⁶Ra衰变产生并释放进人大 气的²²²Rn,经大气输运到海洋上空衰变产生的。从 以上结果可知,沿岸表层岩石中的²²⁶Ra衰变产生的 ²²²Rn也可以释出到大气中并衰变产生²¹⁰Pb,对海洋 中过剩的²¹⁰Pb产生贡献。

(2)海底沉积物是²²⁶Ra的主要来源。另外,河 流中的颗粒物在河水与海水的混合区解析出²²⁶Ra 是海水中²²⁶Ra的另一个来源。由于岩石中的²²⁶Ra 相对于²³⁸U亏损,所以海水的冲刷可以使沿岸岩石 中的²²⁶Ra 释出到海水中,对海水中的²²⁶Ra含量产 生贡献。

参考文献

福建省地质矿产局区域地质调查队,1988.厦门地质图(1:50000)说 明书,北京:地质出版社,

罗兴章, 闵茂中. 1998. 水. 岩反应的铀系不平衡判别. 地球科学—— 中国地质大学学报, 23(5):537~541.

- 全国环境天然放射性水平调查总结报告编写小组。1992.全国上集中 天然放射性核素含量调查研究。辐射防护。12(2):122~[41.
- 王非, 陈文奇. 1997. 年青火山岩铀系不平衡研究的发展及其意义. 地震地质, 19(3): 269-276.
- 夏明等编著.1989.铀系年代学方法及实验技术. 兰州;兰州大学出版社.161.

Reference

- Ajayi I R, Kuforiji. 2001. Natural radioactivity measurements in rock samples of Ondo and Ekiti states in Nigeria. Radiation measurements, 33; 13~16.
- Bourdon B, Zindler A, Wörner G. 1994. Evolution of the Laacher See magma chamber: Evidence from SIMS and TIMS measurement of U-Th disequilibriua in minerals and glasses. Earth and Planetary Science Letters, 126:75~90.
- Chabaux F, Allègre C J. 1994.²³⁸ U-²³⁰ Th-²²⁶ Ra disequilibriua in volcanics: A new insight into melting conditions. Earth and Planetary Science Letters, 126:61~74.
- Fujian Bureau of Geology and Mineral Resources. 1988. Directions for Xiamen geological maps (1:50000). Beijing: Geological Publishing House (in Chinese).
- Gascoyne M, Miller N H, Neymark. 2002. Uranium-series disequilibriam in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years. Applied Geochemistry, 17: 781 ~792.
- Ivanovich M, Harmon R S. 1992. Uranium series disequilibrium; application earth, manne and environmental sciences. Second Edition. Oxford Clarendon Press, 909.
- Iwamori H. 1994. ²³⁸ U-²³⁰ Th-²²⁶ Ra and ²³⁵ U-²³¹ Pa disequilibriua produced by mantle melting with porcus and channel flows. Earth and Planetary Science Letters, 125:1~16.
- Khater A E M, Higgy R H, Pimpl M. 2001. Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits, Egypt. Journal of Environmental Radioactivity. 55:255~267.
- Luo Xingzhang, Min Maozhong. 1998. Judgment on water rock interaction in crystalline rocks using uranium series disequilibrium. Earth Science-Journal of Chinese University of Geosciences, 23(5): 537~541 (in Chinese with English abstract).
- The Writing Group of the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China. 1992. Survey of natural radionuclides contents in soil in China (1983~1990). Radiation Protection, 12(2):122~141(in Chinese).
- Wang Fei, Chen Wenji. 1997. Development and importance of U-series disequilibrium investigation on young volcanic rocks. Seismology and Geology, 19(3):269~276 (in Chinese with English abstract).
- Xia Min et al. 1989. Uranium series Chronology and experiment technology. Lanzhou: Lanzhou University Press, 161 (in Chinese).