含盐前陆充填变形前缘盐上层构造样式

陈书平¹²) 汤良杰¹²) 贾承造³)

1 /石油大学石油天然气成藏机理教育部重点实验室,北京,102249;2 /石油大学盆地与油藏研究中心, 北京,102249;3 /中国石油天然气股份有限公司,100011

摘要 本文从盐层及盐上层碎屑岩厚度出发,讨论了在盐(蒸发岩)参入变形条件下,前陆区变形前缘盐上层构造样式。盐层 及盐上层相对厚度决定着盐上层基本变形样式——褶皱或断裂。当盐上层背斜虚脱空间面积小于或等于变形前相应长度盐 层所对应的盐面积时,盐上层形成完整背斜;反之,盐上层发生断裂。在发生断裂条件下,相背断层的交切情况决定着盐上层 的构造样式:当交切点在盐上层下部外面时,形成突起构造;当交切点在盐上层内部时,则形成上部突起构造与下部三角带相 叠加的情况或形成鱼尾构造;当交切点在盐上层外面时,则形成三角带构造。交切点的位置主要决定于岩上层的厚度。 关键词 蒸发盐 前陆 变形前缘 构造样式

Structural Styles in the Deformation Leading Edge of Evaporite-bearing Foreland Basin Fill

CHEN Shuping^{1,2,)} TANG Liangjie^{1,2,)} JIA Chengzao^{3,)}

Key Laboratory for Hydrocarbon Accumulation of Education Ministry in Petroleum University, Beijing, 102249;
Basin and Reservoir Research Center, Petroleum University, Beijing, 102249;
PetroChina Company Ltd., Beijing, 100011

Abstract Structural styles and their relationships in the deformation leading edge of the evaporite-bearing foreland basin fill are discussed based on the thickness of the evaporite layer and its overburden. The basic structural styles of the overburden, i. e., fold or fault, are determined by the relative thickness between the overburden and the evaporite layer. Where the area in core of a detachment fold is smaller than or equal to the area of evaporite available to supply core of the fold, an anticline will form. Where the area in core of a detachment fold is larger than the area of the evaporite available to supply core of the fold, faults will form. As for the later, the structural styles are controlled by the intersection position of two back thrust faults. Where two back thrust faults intersect within or under the evaporite layer, a pop-up will form. Where two back thrust faults intersection and a triangle with partial overburden sequence will form under the intersection. Where two back thrust faults intersection is determined by the thickness of the overburden.

Key words evaporite foreland leading edge of deformation structural style

前陆构造和盐构造一直是构造地质学和大地构 造学研究的热点和前沿问题。从造山带向盆地方向 可将前陆区变形划分为变形后缘、变形过渡带和变 形前缘3个带。变形后缘变形复杂,断层具有优选 倒向,即倒向盆地方向;过渡带变形相对简单,往往 呈宽缓向斜;变形前缘断层往往不具优选倒向,倒向 前陆和倒向腹陆的断层同等发育。盐参入变形时, 盐层起滑脱面的作用,变形前缘盐上盐下发生不协 调变形,盐上变形复杂,盐下简单。盐上常见的构造 组合有完整背斜、突起构造、三角带构造和鱼尾构造 等(Letouzey 等, 1995; Sans 等, 1995; Harrison, 1995)。

前人对盐参入变形的前陆区变形前缘盐上层构 造样式作过总结,但都不全面或过于复杂,也没有讨

改回日期:2002-12-24 责任编辑: 宮月萱。

本文由国家自然科学基金项目(编号:40172076)和国家重点基础研究发展规划项目(编号 G19990433)资助。

第一作者 病方酸霜,1965 年生 副教授 博士 主要从事构造地质学和盆地构造研究。

论它们之间的成因联系。本文从前陆区实际地质条 件和盐层及盐上层的厚度出发,对这些构造样式系 统化分析,试图找出其之间的成因联系。

1 构造模式

盐层及盐上层的相对厚度决定了盐上层的基本 构造样式——褶皱或断裂。据 Stewart(1996)研究, 当盐上层形成的背斜剖面所夹空间的面积(A_c ;图 1-a)小于相应长度盐层面积(A_v)时,或盐上层原始 主波长(λ_d)与盐层原始厚度(t_v)之比小于 10 时,盐 上层形成完整背斜(图 1-b)。当缩短量达到一定程 度时,如缩短率达到 36%时(理论和实验证明,褶皱 所能承受的最大缩短量为 36%),进一步的缩短只 能依靠断裂作用(俞鸿年等,1998),此时可形成突发 构造(图 2-a)。

(据 Stewart ,1996 简化)

Fig. 1 Geometric parameters describing a detachment fold simplified from Stewart ,1996)

 λ_{d} -原始主波长; λ_{f} -现今波长; t_{c} -盖层厚度; t_{w} -拆离层厚度; A_{c} -滑脱褶皱核面积; A_{u} -可充填褶皱核的流动性滑脱面面积

 λ_d -original dominant wave length ; λ_f -present wave length ; t_c -thickness of cover layer ; t_v -thickness of detachment ; A_c -core area of detachment fold ; A_v -area of flowing detachment available to fill the fold core

当盐上层所形成的背斜剖面所夹空间面积 (A_v)大于相应长度盐面积(A_v)时,或盐上层原始主 波长(λ_d)与盐层原始厚度(t_v)之比大于 10 时,盐上 层就发生断裂。在前陆盆地的前隆部位,产生的断 层往往是两个倒向的,即倒向前陆的和倒向腹陆的。

图 2 盐参入变形的前陆区变形前缘构造样式

Fig. 2 Structural styles of the leading edge of deformation in a foreland where salt is involved in Deformation A_c -滑脱褶皱核部面积; A_v -原始主波长对应的盐面积; 1-盐层 2-碎屑岩

 A_c -area of the core of a detachment fold A_v -salt area with an original length equal to a dominant wave length 1-salt layer 2-clastic rock

倒向前陆的断层与来自造山带方向的挤压力有关, 而倒向腹陆的断层则可能与前隆的反冲作用有关。 两个倒向断层的交切情况决定着盐上层的构造样 式:当交切点位于盐上层下部外面时,盐上层形成突 起构造(图 2-b₁)。当交切点位于盐上层内部时,则 在交切点上部形成突发构造,在交切点下部形成三 角带构造,三角带构造内层序不全(图 2-b₂);当两相 交断层各一枝不发育时,将形成"鱼尾"构造(图 2b₂)。当交切点位于盐上层外面时,则形成三角带构 造,三角带内层序完整,包含盐上全部层序(图 2b₃)。

2 决定断层交切点位置的因素

2.1 关于反冲断层

实例研究(Harrison, 1995; Letouzy 等,1995; Sans 等,1995)和模拟实验[●]证明,反冲断层的位置 与前隆位置有密切关系,可以说前隆的位置决定了 反冲断层的位置。对于某一特定的前陆盆地来说, 前隆的位置是确定的,反冲断层的位置也就是确定 的。在这种条件下,交切点的位置仅决定于前冲断 层的位置。

2.2 关于前冲断层

研究中要考察前冲断层的位置,就必须从前陆

区实际构造环境出发。前冲断层的位置与两个因素 有关 岩层的厚度和与之受力边界的距离。可以假 定 ,背斜的前翼是容易发生冲断层的地方。根据褶 皱主波长理论 ,岩层褶皱主波长与岩层厚度成线性 正比关系。因此 ,一旦确定了岩层厚度 ,褶皱主波长 就确定了。如果此时知道受力边界的位置 ,那么前 缘冲断层的位置也就确定了。

考虑一个主波长的褶皱情况。当岩层厚度一定 时,受力体越长,前冲断层与后冲断层的距离越大, 相交点可能就在盐上层外面,受力体越短,二者距离 越小,相交点就可能在盐上层内部或在盐上层下部 外面。假如夹持在前隆和受力边界(造山楔)之间的 受力体宽度相同,则岩层越厚,褶皱波长越大,反冲 断层与前冲断层的距离越大,相交点可能就在盐上 层外面 ;厚度越小 2 条冲断层的距离越大 ,相交点 就可能在盐上层内部 ,或在盐上层下部外面。

3 实例

上述建立的构造模型可很好地用来解释库车凹 陷西段秋立塔格构造带(变形前缘)盐构造的形成机 理。

库车坳陷是中新生代发育起来的前陆盆地,沉 积充填以碎屑岩为主,下第三系下部库姆格列木群 是一套盐膏层,厚200~3000m。地面地质调查和 地震剖面精细解释结果显示,库车前陆区变形前缘 的秋立塔格构造带盐上层构造样式自西而东呈有规 律地变化,即完整背斜—突起构造—三角带和楔冲 三角带(图3)。

图 3 秋立塔克构造带盐构造样式(a-b-c-d为自西而东)

Fig. 3 Structural styles of the Qiulitage tectonic zon(a-b-c-d west to east) a-完整背斜(BC99-112 局部),b-盐上突起构造(BC99-126 局部),c-三角带构造(QL99-207 局部),d-楔冲三角带构造(BC99-227 局部) a-a complete anticline(part of BC99-112),b-an overburden pop-up(part of BC99-126); c-a" triangle (part of QL99-207),d-a wedge-thrusting" triangle "

从盐层厚度看(图4),盐层最厚的地方在西部, 正对应完整背斜,随着盐层向东变薄,则逐渐过渡形 成断层。图4中盐层厚度是现今厚度,考虑到线状 构造区却亚要难与构造线相垂直的剖面内流动 (Hossack,1995),因此现今厚度分布情况可大致反映盐层的原始厚度。从突起构造向三角带构造的转变,反映了2条相背断层之间距离的增大,即褶皱波长的减小,在岩层厚度上表现为由厚到薄的变化(图

图 4 库车坳陷西段 EW 向盐层、盐上层厚度剖面

Fig. 4 West-east section showing the thickness of the salt layer and the overburden of the western Kuche depression

4)。

致谢 本文研究过程中,得到张一伟教授和马 宗晋院士的指导,在此表示衷心的感谢。

参考文献

俞鸿年,卢华复.1998.构造地质学原理.南京:南京大学出版社,

 $136 \sim 150$.

References

- Harrison J C. 1995. Tectonics and kinematics of a foreland folded belt influenced by salt, Arctic Canada. In Jackson M. P. A., Roberts D. G. and Snelson S. (eds). Salt Tectonics : A Global Perspective. AAPG Memoir 65 379~412.
- Hossack J. 1995. Geometric rules of section balancing for salt structures. In Jackson M. P. A. , Roberts D. G. and Snelson S. (eds). Salt Tectonics : A Global Perspective. AAPG Memoir 65 29~40.
- Letouzey J , Colletta B , Vially R et al. 1995. Evolution of salt related structures in compressional setting. In Jackson M P A , Roberts D G. , and Snelson S(eds). Salt Tectonics : A Global Perspective. AAPG Memoir 65 :41~60.
- Sans M, Verges J. 1995. Fold development related to contractional salt tectonics, Southeastern Pyrenean Thrust Front, Spain. In Jackson M P A, Roberts D G., and Snelson S(eds). Salt Tectonics: A Global Perspective. AAPG Memoir 65 369~378.
- Stewart S A. 1996. Influence of detachment layer thickness on style of thin – skinned shortening. Journal of Structural Geology , 1& 10): 1271~1274.
- Yu Hongnian , Lu Huafu. 1998. Principle of structural geology. Nanjing : Nanjing University Publishing House , $136\!\sim\!150$ (in Chinese with English abstract).

《地球学报》特设鼓励资助的通知

《地球学报》是中国地质科学院主办的地球科学综合学术期刊,是全国中文核心期刊、美国《CA》收录期刊、中国科学引文来源期刊、中国学术期刊综合评价数据库来源期刊。在 2002 年《中国科技期刊引证报告 ——地球科学类》中排名第 14 名。现已成为全国地学界具有重要影响的期刊之一。

自 2001 年改版以来 蒙广大作、读者的厚爱 ,投稿量不断增加 ,出版质量和出版水平不断提高。《地球学报》对广大作、读者的大力支持表示诚挚的感谢 !

为尽快地推出我国地学界一流的研究水平,使具有创新性、先进性的论文更快地面世《地球学报》特设 鼓励资助:

1. 对具有重大发现、重要研究成果、新方法的论文免收版面费。

2. 对具有重大发现、重要研究成果的论文免收彩色图版(2个)的版面费2000元(限每期2版)。 欢迎广大从事地质科学研究、地质调查研究的科研人员和地质院校的广大师生踊跃投稿。