直升机 TEM 系统关键技术指标与探测深度分析

王卫平

中国国土资源航空物探遥感中心 北京,100083

摘 要 直升机 TEM系统在国际上正处于开发实验阶段,还需 2~3 年时间才可投入商业应用。该系统即灵活、又有一定的 勘探深度,在国外已经取得了一定的勘查效果,因此,它是今后航空电磁测量技术的发展趋势。直升机 TEM系统的灵活性符 合中国多山的勘查条件,而它的勘探深度有多大是急需弄清的另一个关键的问题。本文利用水平层状大地模型计算出的瞬 变响应,分析了装置类型、磁矩、噪声与探测深度的关系,并得出了直升机 TEM系统,在中国几种典型水文地电模型条件下的 最大勘探深度,这对于论证我国是否发展直升机 TEM系统提供了理论依据。

关键字 直升机 TEM 系统 水平层状大地模型 关键技术指标 瞬变响应 探测深度

An Analysis of Pivotal Technique Specification of the Helicopter TEM System and Its Detection Depth

WANG Weiping

China Aero Geophysical Survey and Remote Sensing Center for Land and Resources , Beijing , 100083

Abstract The Helicopter TEM system remains in the stage of development and experimentation in the world, and is likely to be used in commercial exploration in about two or three years. With its flexibility and a certain detection depth, this system has got some good prospecting results. It has therefore become the development trend of the air-borne electromagnetic survey technique in future. Is this system suitable to the concrete situation of China ? It is the air-borne electromagnetic technicians who can answer this question. The flexibility of the helicopter TEM system make it suitable to mountainous conditions of China, but its detection depth remains a key question which needs to be solved. Based on the horizontal sandwich earth model, the authors calculated transient electromagnetic response and analyzed the relation of the installation, moment and noise to the detection depth. As a result, the maximum detection depths of the helicopter TEM system are obtained under the condition of several typical geoelectric models of China, and the theoretical basis for the development of the helicopter TEM system in China is provided.

Key words Helicopter TEM System horizontal sandwich earth model pivotal technique specification transient electromagnetic response detection depth

直升机 TEM 系统是利用直升机作为运载工具 的时间域电磁测量系统,由于时间域电磁系统是在 一次场断开时,测量瞬变二次场的衰减过程,受一次 场的影响较小,因此相对于频率域电磁系统具有较 大的探测深度。该系统具有多种装置类型,发射与 接收线圈均放在吊舱中,系统较为灵活,适合在地形 复杂的地区进行矿产和勘查工作。为了了解直升机 TEM 系统的勘探深度,对在水平层状大地上方,常 用的各种直升机 TEM 系统的瞬变电磁响应进行了 正演模拟计算,结合其关键技术指标,得出了该系统 在我国典型地电条件下的理论最大探测深度。

1 层状大地模型数学算法

根据目前直升机 TEM 系统的装置类型,将其 归纳为以下数学装置模型(图1)。

时间域航空电磁法的一维正演,要求计算水平 层状大地上空,水平和/或垂直磁偶极源在其断开 后,于空中水平和/或垂直线圈内生成的感应电动势 随时间的衰变过程。设大地为n 层水平层,各层电 阻率和厚度分别为(ρ_1 , h_1 , ρ_2 , h_2, ρ_n 和 $h_n \rightarrow \infty$ 。发射线圈(磁偶极源)TX 位于地面上空,高度为 h;接收线圈RX的高度为z,与TX的水平距离

本文由地质调查项目"直升机航空 TEM 方法预研究 "项目(编号 200120120080)资助。

改回日期 2003-2-13 责任编辑 : 2月萱。

第一作者 ;西<u>沪酸期</u>,1963 年生 ,高级工作师 ,长期从事航空物探成果勘探和方法研究。E-mail argswwpi@163bj.com。

图 1 水平层状大地上方磁偶极源场的计算模型

Fig. 1 Calculation model of magnetic dipole field above horizontal layered earth

图中发射线圈为离地高度 h 的垂直或水平偶极子 接收线圈为离 地高度 z 的水平和垂直线圈 ,收发线圈距离为 r

Transmit coil is vertical or horizontal dipole and it's altitude to the earth is h, receive coil is vertical or horizontal dipole and it's altitude to the earth is z, interval between transmit and receive coil is r

为 r。设圆柱坐标系原点 O 于 TX 正下方地面上 ,Z 坐标轴垂直地面向上。

垂直发射磁偶极子 在拉氏变换(s)域中接收线 圈处的径向(水平)磁场分量 H_r^z 和垂直磁场分量 H_z^z 的表达式(Knight 等, 1982)。

$$H_{r}^{z}(s) = \frac{m}{4\pi s} \int_{0}^{\infty} \left[e^{u(z-h)} r_{TE} e^{-u(z+h)} \right]$$
$$\lambda^{2} J_{1}(\lambda r) d\lambda \qquad (1)$$
$$H_{z}^{z}(s) = \frac{m}{4\pi s} \int_{0}^{\infty} \left[e^{u(z-h)} + r_{TE} e^{-u(z+h)} \right] \frac{\lambda^{3}}{u_{0}}$$
$$J_{0}(\lambda r) d\lambda \qquad (2)$$

水平发射磁偶极子,在拉氏变换(s)域中的径向 (水平)磁场分量 H^r_r和垂直磁场分量 H^r_Z的表达式 (Knight 等,1982)。

$$H_r^r(s) = \frac{-m}{4\pi s} \int_0^\infty \left[e^{u(z-h)} - r_{TE} e^{-u(z+h)} \right]$$
$$\left[\lambda^2 J_0(\lambda r) - \frac{\lambda}{J_1(\lambda r)} d\lambda \right] \qquad (3)$$

$$H_{z}^{r}(s) = \frac{m}{4\pi s} \int_{0}^{\infty} \left[e^{u(z-h)} + r_{TE} e^{-u(z+h)} \right] \lambda^{2} J_{1}$$

$$(\lambda r) d\lambda \qquad (4)$$

式中 ,*m* 为*I*(S_{TX}为发射磁偶极矩(Am²),S_{TX}为发 射线圈有效面积(m²),*I* 为发射线圈中的供电电流 强度(A)。J⁰ 和 J¹ 为零阶和一阶贝塞尔函数 ,*r*_{TE}为 反射系数 ,由递推公式得出(Nabighian 等 ,1988)。

野外实测的感应电动势 V 与磁场分量 H 对时间 t 的一阶导数成正比

$$V = -S_{\rm RX} \frac{\mathrm{d}B}{\mathrm{d}t} = -S_{\rm RX} \mu_0 \frac{\mathrm{d}H}{\mathrm{d}t} \qquad (5)$$

式中, S_{RX} 为接收线圈的有效面积(m^2); $\mu_o = 4\pi \times$

10⁻⁷(H/m)是空气的磁导率。

把 5)和(1)至(4)式结合,计算感应电动势 V_{\circ} 首先采用一种纯实数运算、计算速度较快的算法 1 即 Gaver-Stehfest 概率变换算法(简称 G-S 变换) (Knight 等,1982)对 r_{TE} 做逆拉氏变换,对给定的 时间 t 感应电动势的瞬变响应值 V(t)可按(6)式,

由拉氏变换域中变量 $s_m = \frac{\ln 2}{t}m(m = 1, 2, \dots, 16)$ 的感应电动势值 $V(s_m)$ 算出:

$$V(t) = \frac{\ln 2}{t} \sum_{m=1}^{n} k_m \cdot V(\frac{\ln 2}{t} \cdot m)$$
(6)

式中 k_m 是 G-S 变换系数。

用 Anderson (1979)和昌彦君等(1995)的数值 滤波算法计算其中的零阶和一阶贝赛尔函数的无限 积分(汉克尔变换)。从而算得接收线圈内感应电动 势的瞬变响应 V(t)。最后按下式计算占空比为1 的正负方波的瞬变响应 V^{2P}(t):

 $V^{\text{ZE}}(t) = \sum_{i=1}^{8} (-1)^{lnt[0.5(i+3)+0.55]} V[t+(i-1)t_d]$ 式中 , t_d 为正负方波的脉宽 ;Int 为取整函数。

对发射磁矩为 1(Am²)和接收线圈等效面积为 $1(m^2)$,计算归一化感应电动势的瞬变响应,即接收 线圈有效灵敏度 dB/dt (nT/s);计算时供电波形是 占空比为1的正负方波;供电方波脉宽取为3~10 ms;方波的断电延迟时间为零;采样时间按等比序列 分布于 0.013 ms 至脉宽(3 ms 或 10 ms)之间 共 14 个 观测装置包括以下 4 种类型。第一种装置 (NARRAY=1):水平线圈发射,水平线圈接收;第 二种装置(NARRAY=2):垂直线圈发射,垂直线圈 接收;第三种装置(NARRAY=3):水平线圈发射, 垂直线圈接收;第四种装置(NARRAY=4):垂直线 圈发射 水平线圈接收 发射线圈高度和接收线圈高 度取为 30~50 m;发射线圈与接收线圈的水平距离 取为 $0.1 \sim 50$ mf 0.1 m 收发距用于近似表示收发同 心装置)。据有关资料 西部和东部的典型水文地电 模型的参数选择见表 1。

表 1 典型水文地电模型一览表

Table 1 The table of geoelectric model of typical hydrology

P	西部典型	业地区	东部非盐渍化			
层	电阻率/Ω·m	厚度/m	电阻率/Ω·m	厚度/m		
第一日	2 5 7 10	30,100,150,	50 1	00,200,300,		
까 ഥ	10, 1, 0, 0	250 ,300	50	400 500 600		
第二层	20	300	20	300		
第三层	3	—	50	_		

注:第一层覆盖层的选取仅是为了分析系统的探测深度。

2 电磁响应特征与装置类型

以西部找水地电模型为例,对不同装置类型的

直升机 TEM 系统的电磁响应特征、系统吊舱高度、 0. 收发距,以及大地导电性对瞬变响应的影响进行了 相

计算,并对计算结果进行了分析。 2.1 感应电动势随时间的衰变态势

虽然不同装置测得的感应电动势(或磁感应强 度对时间的变化率 dB/dt)在数值上各不相同,但它 们随时间变化的基本性态是一致的,即都随时间增 大而衰减(图2)。垂直线圈发射和垂直线圈接收装 置衰减最慢,而水平线圈发射、垂直线圈接收和垂直 线圈发射、水平线圈接收装置衰减最快。特别要指 出的是,第三和第四种装置的感应电动势瞬变响应 曲线完全相同,即第三和第四种装置是完全等效的 (统称为正交装置)。

2.2 吊仓高度对瞬变响应的影响

由瞬变响应的计算公式可知,在计算瞬变响应时,只需计算公式中积分号内的第二项,而该项只与发射线圈高度及接收线圈高度之和 *h* + *z* 或*H* + *Z* 有关。这就是说,在一维条件下,航空瞬变电磁法的响应只决定于发射线圈高度与接收线圈高度之和,而与两个高度的分别取值无关。

2.3 收发距对瞬变响应的影响

分别对 r 为 50 m 30 m 15 m 8 m 5 m 1 m 和

Fig. 2 Transient electromagnetic response curve about unitary induced electromotive force theory of four kind of installation above geoelectric section of three strata

TD-10 ms ,TRMP-0;

Geoelectric section parameter : ρ_1 -3 $\Omega \cdot m$, ρ_2 -20 $\Omega \cdot m$, ρ_3 -3 $\Omega \cdot m$; $h_1 = 100 \text{ m}$, $h_2 = 300 \text{ m}$

Installation parameter :
$$H_{\rm TX}$$
-30 m $Z_{\rm RX}$ -30 m ,TRDIST-2.5 m , TD-10 ms ,TRMP-0

Curve:1- NARRAY=1 2- NARRAY=2 3- NARRAY=3; 万方数据 4- NARRAY=4 0.1 m 等 7 种收发距的电磁响应进行计算,并作出 相应的理论曲线(图3)。通过分析可知,当收发距 很大时 瞬变曲线变得比较复杂 随着收发距的减 小 感应电动势和异常都变大 而当收发距 r 大干等 于 15 m 时,已接近于 r 趋近于 0 时的渐近值。通过 分析其他装置的计算数据可知,第一种装置瞬变响 应随收发距 r 的变化性态 与第二种装置的相似 ;且 在 r 趋近于 0 时的渐近情况下,第一种装置比第二 种装置的响应值和绝对异常值都大一倍,而两种装 置的相对异常值相同。第三种装置为正交装置的瞬 变响应随收发距 r 的变化性态 ,与第一和第二种装 置(统称平行装置)的完全不同;特别是在收发距 r 大于等于 15 m 时,正交装置的感应电动势和绝对异 常值与 r 成正比减小(因而相对异常值保持不变), 且当 r 趋近于 0 时正交装置的响应值和异常值都趋 干零。可见,平行装置适于采用小收发距,甚至采用 同心装置。而正交装置适于采用较大的收发距,不 宜采用同心装置。

2.4 供电脉冲宽度对地电模型瞬变响应的影响

通过对 3.0 ms 和 10.0 ms 两种供电脉冲宽度 的计算结果对比可知,在寻找良导覆盖层(如上层电 阻率 3 Ω·m)下较大埋藏深度的高阻层或寻找较大 埋藏深度的良导异常体(如3Ω·m的良导体)时,

Fig. 3 Transient electromagnetic response curve about unitary induced electromotive force theory of different

interval between transmit and receive coils above geoelectric section of three strata

曲线:1-r = 50 m, 2-r = 30 m, 3-r = 15 m, 4-r = 8 m, 5-r = 5 m, 6-r = 2.5 m, 7-r = 0.1 m

曲线 1 左支(虚线)为负值 ;NARRAY= ((采用第二种装置),其余 装置参数和地电断面参数同图 2

Curve : 1-r = 50 m, 2-r = 30 m, 3-r = 15 m, 4-r = 8 m,

5-r=5 m, 6-r=2.5 m, 7-r=0.1 m

Left part of curve(dashed line) is negative. NARRAY = 2

(the second installation) other installation parameter and geoelectric sectionparameter is same as fig. 2

3.0 ms的供电脉冲宽度均难于发现。可见对于一般的地电条件,10.0 ms的供电脉冲宽度是必要的。

3 系统磁矩、噪声与探测深度

96

为了了解直升机 TEM 系统的探测深度,对于 水平同心装置,磁矩为40×10⁴ Am²(其他参数:脉冲 宽度10 ms,线圈离地高度30 m)的直升机 TEM 系 统,在我国典型的水文层状大地模型的条件下,进行 了电磁响应特征、系统磁矩、噪声与探测深度的分 析。根据目前国外直升机 TEM 系统的技术现状及 发展趋势,系统的噪声水平选取10 pt,25 pt、50 pt、 100 pt 四个级别。地电模型选择了西部找水地电模 型和东部非盐渍化找水地电模型。

3.1 系统探测深度的评价方法

利用层状大地模型与均匀半空间模型的时间域 电磁响应之差,分析电磁响应特征随时间的衰减关 系。通过分析可以看出(图4-a),不同埋深的地质体 的瞬变电磁响应,在某一时间段均存在一个峰值区, 认为该峰值区即为时间域电磁响应的最佳接收时间 道。当某一电磁响应峰值区低于系统的噪声水平 时,说明该系统已无法分辨有用的地质信息,将此电 磁响应峰值区对应的模型体埋深,确定为该种系统 的最大勘探深度。同理,通过瞬变电磁响应峰值随 不同地质体埋深的衰减曲线特征(图4-b),可以更清 楚地分析最大穿透深度,即当衰减曲线与系统噪声 水平相交时,其交点所对应的地质体埋深,即为该系

统的最大勘探深度。

3.2 西部水文地电模型

对于西部找水地电模型,在瞬变响应与时间的 关系曲线图中(图 4-a),随着目标物埋藏深度的增 大 瞬变响应峰值的强度逐渐降低 这从瞬变响应峰 值随目标物埋藏深度的关系图中(图 4-b),可以更清 楚地看到这一特征。根据瞬变响应峰值与噪声水平 的关系 确定了不同导电覆盖层、不同噪声水平与系 统 磁矩取 40×10⁴ Am²)探测深度的关系,并根据瞬 变响应与磁矩的线性关系 从瞬变响应峰值随目标 物埋藏深度的关系图中估算出系统磁矩与探测深度 的关系,估算结果见表 2。当系统噪声水平从 10 pt 增加到 100 pt 时 探测深度从 204 m 降低到 132 m, 由此可见系统噪声水平对探测深度影响较大,说明 对于同类电磁系统 降低噪声水平是增大系统探测 深度的主要因素。目前,国外直升机航空 TEM 系 统的系统噪声水平可以达到 25 pt 若按此噪声水平 计算,对于西部找水地电模型,覆盖层电阻率从3 $\Omega \cdot m$ 变化到 10 $\Omega \cdot m$ 时,探测深度从 170 m 增加到 191 m。从仪器原理的角度分析,磁矩较大的系统, 相对噪声水平反而减少,所以,磁矩与探测深度也有 一定的关系。当系统磁矩从 10×10^4 Am² 增加到 10×10⁴ Am² 探测深度从 133 m 增加到203 m。即磁 矩的增大对探测深度的影响是有限的,对于 $3 \Omega \cdot m$ 的导电覆盖层 系统磁矩增大 2 倍时 探测深度仅增 大 14 m 左右, 当系统磁矩为 10×10^4 Am² 探测深度

图 4 西部找水地电模型电磁响应特征与探测深度分析图

Fig. 4 Analysis figure between transient electromagnetic response character and prospecting depth for geoelectric model of western hydrology

地电模型 第一层电阻率 ρ₁ = 3 Ω·m 第二层电阻率 ρ₂ = 20 Ω·m 第三层电阻率 ρ₃ = 3 Ω·m 第一层厚度见图例中的标值 第二层厚度 h₂ = 300 m。a-瞬变电磁响应(层状大地模型与均匀半空间模型的时间域电磁响应之差)随时间的变化曲线 水平虚线为噪声水平 医虚线为电磁 响应的极值点(数值为峰值)位置 b-瞬变电磁响应随第一层厚度的变化曲线 水平虚线为噪声水平 , 竖虚线为某种噪声水平对应的探测深度

Geoelectric model : the first layer resistivity : $\rho_1 = 3 \ \Omega \cdot m$, the second layer resistivity : $\rho_1 = 20 \ \Omega \cdot m$, the third layer resistivity : $\rho_1 = 3 \ \Omega \cdot m$, please see sign value in legend for the first layer thickess, the second layer thickess $h_2 = 300 \ m$; a is transient electromagnetic response curve(the difference of transient electromagnetic response between layed earth model and uniformity half space model) changing with time. Horizontal dashed denote noise level erect dashed denote extremum point data value denote peak value); b is variety curve of transient electromagnetic response

changing with the first layer thickness Horizontal dashed denote point hard, but dashed denote prospecting depth in some noise level 万力数据

表	2	系	统	噪声、	磁矩	与探	测测	罙度	的)	ŧ系·	一览	表
	Tał	ole	2	The	table	abou	ıt re	elati	ons	betw	een	
	SVS	sten	n r	oise .	mom	ent a	and	pros	spec	t dei	oth	

_	sjötem norse / moment and prospect depti						
	噪声水平	探测深度	系统磁矩	探测深度			
	/pt	/m	$/Am^2$	/m			
	10	204	100000	133			
	25	175	200000	147			
	50	147	400000	175			
	100	132	1000000	203			
3	计算条件 第 3 Ω·m ;系统磁纳	一层电阻率 臣 :400000 Am ²	计算条件 :第一层电阻率 3 Ω·m ;系统噪声 25 pt				
3	计算条件 第 βΩ·m 深统磁射	一层电阻率 至 400000 Am ²	计算条件 :第一层电阻率 3 Ω·m :系统噪声 25 pt				

才能达到 200 m 左右。目前,直升机 TEM 系统的最 大磁矩可达 40×10^4 Am²,即当覆盖层电阻率为 3 $\Omega \cdot m$,系统的最大探测深度为 175 m,而当覆盖层 电阻率增大到 10 $\Omega \cdot m$ 时,系统的最大探测深度为 191 m。综合以上分析结果,认为直升机 TEM 系统 对于西部找水地电模型的理论最大探测深度为 192 m左右。

3.3 东部水文地电模型

对于东部非盐渍化找水地电模型,由图 5 可以 看出,当覆盖层厚度为 297 m 时,瞬变响应已经降到 25 pt 以下,将 297 m 作为直升机 TEM 系统在非盐 渍化区典型水文地电模型的理论最大勘探深度。

图 5 东部非盐渍化找水地电模型电磁响应特征与探测 深度分析图

Fig. 5 Analysis figure between transient electromagnetic response character and prospecting depth for geoelectric

model of eastern unpickled hydrology 地电模型 第一层电阻率 $\rho_1 = 50 \ \Omega \cdot m$,第二层电阻率 $\rho_2 = 20 \ \Omega \cdot m$ m,第三层电阻率 $\rho_3 = 50 \ \Omega \cdot m$,第二层厚度 $h_2 = 300 \ m$ 本图为瞬 变电磁响应随第一层厚度的变化曲线,水平虚线为噪声水平, 竖虚线为某种噪声水平对应的探测深度

Geoelectric model : the first layer resistivity : $\rho_1 = 50 \ \Omega \cdot m$, the second layer resistivity : $\rho_1 = 20 \ \Omega \cdot m$, the third layer resistivity : $\rho_1 = 50 \Omega \cdot m$, the second layer thickess h = 300 m, this figure is variety curve of transient electromagnetic response changing with the first layer thickness horizontal dashed denote noise level erect dashed

denote prospecting depth in some noise level

4 结论

(1)航空瞬变电磁法的第一种装置与第二种装置(统称平行装置),适于采用小收发距,甚至采用同 心装置。第三种装置与第四种装置(统称为正交装置)在一维条件下是等效的,并且适于采用较大的收 发距。在一维条件下,航空瞬变电磁法的响应只决 定于发射线圈高度与接收线圈高度之和,而与两个 高度的分别取值无关。值得说明的是,对探测 300~600 m深度的异常体来说,3 ms的供电和测量 脉宽(Td)显得太窄,Td为10 ms的脉宽是必要的。

(2)利用层状大地模型与均匀半空间模型的时间域电磁响应之差,分析电磁响应特征随时间的衰减关系,并总结出了电磁响应特征、系统收发距、噪声、磁矩与探测深度的关系。认为系统噪声对穿透深度影响最大、而系统磁矩由于受重量和能量的限制,对穿透深度的影响是有限的,在西部咸水良导覆盖层的条件下,覆盖层电祖率的变化对系统探测深度影响不大。即降低系统噪声水平是增加穿透深度的关键因素。

(3)对于西部各沙漠盆地,直升机 TEM 系统基本可以解决 200 m 以内咸水层中寻找淡水的需要, 在东部非盐渍化地区可以解决 300 m 以内淡水资源的分布状况。由此可见,直升机 TEM 系统在我国的水资源及矿产勘查中具有很大的需求,因此在条件成熟时,在我国发展直升机 TEM 系统意义重大。

参考文献

昌彦君,张桂青.1995.电磁场从频率域转换到时间域的几种算法 比较:物探化探计算技术,17:25~29.

References

- Anderson W L. 1979. Computer program numerical integration of related Hankel transform of order 0 and 1 by adaptive digital filte-ring. Geophysics , 44(7):1287~1305.
- Cang YanJun ,Zhang Guiqing. 1995. Several arithmetic compare of electromagnetic field from frequency domain transform to time domain. Calculation Technology of Geophysical and Geochemistry Exploration , $17:25 \sim 29$ in Chinese with English abstract).
- Knight J H, Raich A P. 1982. Transient electro magnetic calculations using the Gaver-Stehfest inverse Laplace transform method. Geophysics, 47(1):47~50.
- Nabighian M N(Editor in chief). 1988. Electromagnetic methods in applied geophysics. Theory , Society of Exploration Geophysicists , Tulsa , $108 \sim 112$.