新型钼捕收剂浮选某钨矿伴生钼的试验研究

叶雪均,王李鹏,邬东,金婷婷 (江西理工大学资源与环境工程学院,江西 赣州 341000)

摘要:针对某钨矿伴生钼矿进行钼的综合回收试验研究,通过新型钼捕收剂 MB 系列与煤油对比,选取 MB -4 为钼的捕收剂,实验室小型闭路试验获得钼精矿含钼 47.42%、铜 0.28%,钼回收率 89.50%。实现了钨伴生钼矿资源的综合回收。

关键词:钨伴生钼矿: 选钼捕收剂; 综合利用

中图分类号:TD952 文献标识码:A 文章编号:1000-6532(2011)01-0021-05

辉钼矿是钨矿伴生硫化矿中最常见的矿物,同时也是天然可浮性很好的矿物。国内外许多研究都将辉钼矿的有效回收放在捕收剂上,"¹⁻⁴],煤油因其具有良好的选择捕收性能,且价格低廉,而被广泛应用,但也存在着诸多缺点,如化学活性低,难溶于水,在矿浆中不易分散,有消泡作用,起泡剂用量随其用量增大而增大,从而导致精选作业因精矿油分高,而难以正常操作^[5]。寻求新型钼捕收剂是提高钼选别指标的一项重要课题。本文主要介绍采用 MB 系列药剂代替煤油作为钼捕收剂的试验结果。

1 矿石性质

1.1 矿石多元素分析

试样为赣南某矿区深部细粒浸染型矿体云英岩 钨矿石,试样化学多元素分析见表1。

多元素分析结果表明,矿石中 WO3 是主要回收组分,伴生元素中仅 Mo 达到回收要求¹⁶¹。其他伴生 Bi、Cu、Zn 等元素均偏低,不考虑对其进行回收。

1.2 矿物组成

试样中主要矿物及其含量见表 2。

WO ₃	Мо	Bi	Cu	Pb	Zn	S	As	Li *	Rb*	Cs •
0.347	0.058	0.012	0.011	0.009	0.012	0.58	0.355	1892	1268	67.8
CaCO ₃	CaF ₂	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	Na ₂ O	Fe ₂ O ₃	Sn	P ₂ O ₅	MnO
0.63	1.18	1.61	10.85	53.85	1.95	2.78	4.25	0.02	0.02	0.8

表1 试样化学多元素分析结果/%

* 单位为 g/t。

表 2 主要矿物及其含量

矿物名称	黑钨矿	锡石	辉钼矿	闪锌矿*	黄铜矿*	辉铋矿*	毒砂	黄铁矿*
含量/%	0.438	0.06	0.11	178	578	591	微量	95
矿物名称	独居石	锆石	石英	长石	锂白云母	黄玉	石榴石	萤石、电气石
含量/%	偶见	偶见	64	5.8	27.3	1.1	0.04	微量

* 单位为 g/t。

分析结果表明,金属矿物以黑钨矿、辉钼矿为 主,其次有少量辉铋矿、闪锌矿、黄铁矿等硫化矿物, 脉石主要有石英、锂白云母,其次有少量的长石和黄 玉及微量萤石、电气石。

1.3 主要矿物嵌布特征

黑钨矿呈柱状、板柱状晶体,主要穿插于石英脉中,少数分布于铁锂白云母片间,与锡石呈不规则状连生。一些颗粒中被黄铜矿、磁黄铁矿、自然铋、银

收稿日期:2010-07-02; 改回日期:2010-08-18

作者简介:叶雪均(1951-),男,江西理工大学资源与环境工程学院,教授。

卡辉铅铋矿交代,从中心向边缘交代,硫化矿物呈不规则状分布于黑钨矿中。从黑钨矿单体解离情况看,大于0.246mm 的单体只有15%,小于0.154mm 单体约占80%,属细粒嵌布。

辉钼矿多数在石英脉脉壁附近生长,充填于铁锂白云母片间,辉钼矿片状解理发育受应力作用发生弯曲,被银卡辉铅铋矿、自然铋、黄铜矿、硫锡铜矿充填交代。黄铜矿多沿辉钼矿片间充填。辉钼矿呈鳞片状和星点状嵌布附着在石英脉脉壁附近,充填于铁锂白云母片间。

脉石矿物嵌布比较简单,以团块状、脉状为主,与金属矿物嵌布特征也较简单,少数呈脉状,网脉状嵌布,多数以规则或不规则连生。

2 试验内容

2.1 工艺流程的确定

在钨矿伴生硫化矿综合回收中,常采用重 - 浮 联合工艺流程^[7-9],但从该试样工艺矿物学可知,黑 钨矿呈细粒嵌布而辉钼矿呈粗粒嵌布,采用重选 -浮选联合流程时,辉钼矿由于疏水性好,在摇床分选 时,容易分散在各产品中,使流程结构复杂化,且钼 的回收率偏低。所以本文采用浮 - 重流程,即采用 棒磨机在粗磨的条件下先浮选回收伴生硫化矿,浮 选尾矿再经摇床回收黑钨矿。本文主要研究钨矿伴 生钼的回收。

2.2 磨矿细度试验

黑钨矿性脆易过磨,在确保钼矿物单体解离的同时,又不使黑钨过粉碎是本试验磨矿的关键。另因现场重选黑钨棒磨细度为 - 0.154mm60% ~65%。所以按图 1 流程和条件进行棒磨细度试验,试验结果见图 2。当 - 0.154mm 含量大于 65%时,钼回收率变化不大,但品位下降。综合考虑,在不影响黑钨矿回收的前提下,尽可能确保钼矿物的回收,所以确定钼粗选磨矿细度为 - 0.154mm 占 65%。

2.3 钼捕收剂种类试验

按图 1 流程,固定磨矿细度为 - 0.154mm65%, 2 号油用量为 15g/t, MB 系列药剂用量为 20g/t,煤油用量为 40g/t,在此条件下进行钼捕收剂种类试验,试验结果见表 3。

表 3 结果表明, 在钼的同系列新型捕收剂 MB -4、5、6 中 MB -4 药剂的捕收效果较好。与煤油相比, 它的选择性更好, 且价格与煤油相近, 用量为

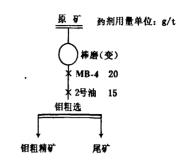


图 | 钼粗选磨矿细度试验流程及条件

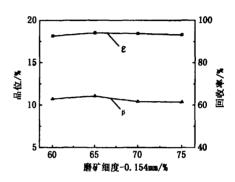


图 2 钼粗选磨矿细度试验结果

煤油的一半,故选用 MB-4 为钼的捕收剂。

2.4 钼捕收剂用量试验

按图 1 流程,固定磨矿细度为 -0.154mm 65%,2 号油用量为 15g/t,考察 MB-4 用量对钼粗选的影响,试验结果见图 3。

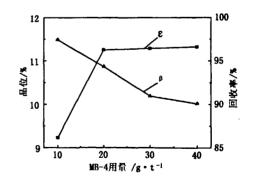


图 3 MB-4 用量试验结果

由图 3 可知,随着 MB - 4 用量的增加,钼粗精矿回收率上升但品位下降,当 MB - 4 用量超过 20g/t时,钼粗精矿回收率变化较小,但品位下降较大。综合考虑,选择 MB - 4 用量为 20g/t 较佳。

2.5 钼精选硫化钠用量试验

从前期试验结果来看,钼粗选时有部分可浮性 较好的铋、铜与少量硫上浮,影响钼的浮选效果及钼 精矿产品质量,另因辉钼矿天然可浮性好,不受硫化 钠抑制^[10],而其他硫化矿都不同程度的受到硫化钠 的抑制,所以在钼精选作业中考虑添加硫化钠抑制 其他硫化矿。按以上试验所确定的钼粗选试验条 件,考察硫化钠的用量对钼精选的影响,试验结果见 表 4。

捕收剂用量	kt II:	产率		品位/%			回收率/%	
/g · t - 1	名称	/%	Mo	Bi	Cu	Mo	Bi	Cu
	钼精矿	0.50	10.68	0.88	1.01	92.11	36.78	45.83
煤油 40	尾矿	99.50	0.0046	0.0076	0.0060	7.89	63.22	54.17
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00
	钼精矿	0.51	10.67	0.64	0.74	93.82	27. 16	34.19
MB - 4 20	尾矿	99.49	0.0036	0.0088	0.0073	6.18	72.84	65.81
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00
	钼精矿	0.52	10.34	0.71	0.78	92.63	30.64	36.81
MB ~ 5 20	尾矿	99.48	0.0043	0.0084	0.0070	7.37	69.36	63.19
20	原矿	100,00	0.0580	0.0120	0.0110	100.00	100.00	100.00
	钼精矿	0.50	10.45	0.86	0.89	90.05	35.95	40.39
MB - 6 20	尾矿	99.50	0.0058	0.0077	0.0066	9.95	64.05	59.61
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00

表 3 钼的捕收剂种类试验结果

表 4 硫化钠用量试验结果

捕收剂用量	h rt	————— 产率		品位/%	·····		回收率/%	
/g · t -1	名称	1%	Мо	Bi	Cu	Мо	Bi	Cu
	钼精矿	0.109	45.01	0.62	1.02	84.53	5.63	10.10
50	钼中矿	0.433	1.27	0.64	0.54	9.47	23.09	21.24
30	尾矿	99.458	0.0035	0.0086	0.0076	6.00	71.28	68.66
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00
	钼精矿	0.107	45.98	0.41	0.64	84.82	3.66	6.25
100	钼中矿	0.434	1.25	0.62	0.67	9.35	22.46	26.55
100	尾矿	99.459	0.0034	0.0089	0.0074	5.83	73.88	67.20
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00
	钼精矿	1.102	45.21	0.39	0.58	79.54	3.33	5.36
150	钼中矿	0.440	1.95	0.66	0.68	14.80	24.29	27.09
150	尾矿	99.458	0.0033	0.0087	0.0075	5.66	72.38	67.55
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00
	钼精矿	0.097	45.18	0.39	0.56	75.58	3.15	4.92
200	钼中矿	0.443	2.41	0.67	0.71	18.41	24.74	28.47
200	尾矿	99.460	0.0035	0.0087	0.0074	6.01	72.11	66.61
	原矿	100.00	0.0580	0.0120	0.0110	100.00	100.00	100.00

由表 4 可知, 当 Na_2S 用量由 50g/t 增加到 100g/t 时, 钼的品位和回收率均有所上升;继续增加 Na_2S 用量, 钼的品位和回收率有所下降。铜、铋的品位和回收率均随着 Na_2S 用量的增加而下降, 综合 考虑, 选取 Na_2S 用量为 100g/t。

2.6 小型闭路试验

在综合条件的开路试验基础上,进行了闭路试验。试验流程见图4,试验结果见表5。

由表 5 可知,使用新型钼捕收剂 MB~4,经两次粗选两次精选一次扫选,可获得 Mo 品位为 47. 42%、回收率为 89.50% 的钼精矿。

对闭路试验尾矿筛分分析,结果见表6。由表6

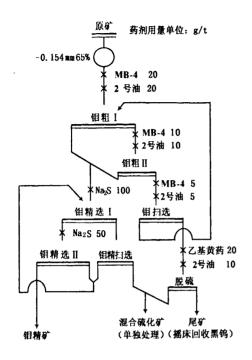


图 4 闭路试验流程图

可知, -0.246 + 0.037mm 粒级中 WO₃ 分布率达 92.91%, -0.037mm 粒级中 WO₃ 分布率仅 3.85%,在确保黑钨矿回收的前提下,实现了伴生钼资源的回收。

表 6 闭路试验尾矿筛析结果

粒级/mm	产率/%	WO, 品位/%	WO, 分布率/%
+0.246	5.34	0.213	3.24
-0.246 +0.154	29.87	0.271	23.08
-0.154+0.037	57.21	0.428	69.83
-0.037	7.58	0.178	3.85
小 计	100.00	0.351	100.00

3 结 语

1. 工艺矿物学研究表明,矿石组成复杂,主要伴生硫化矿物相互关系复杂多变,黑钨矿呈细粒嵌布 而辉钼矿呈粗粒嵌布。针对矿石特性,确定采用浮一重联合流程,在棒磨细度为-0.154mm65%时,确保了钼矿物的单体解离,同时又不使黑钨过粉碎,实现了钨矿伴生钼矿物的综合回收。

2. 通过新型钼捕收剂与煤油的对比试验研究,

产品	产率		品位	1/%		回收率/%			
, bh	/%	WO_3	Mo	Bi	Cu	WO3	Mo	Bi	Cu
钼精矿	0.11	0. 287	47.42	0.29	0.28	0.09	89.50	2.74	2.75
混合硫化矿	0.721	0.312	0.78	1.28	1.14	0.64	6.65	79.35	73.35
尾矿	99. 169	0.351	0.0005	0.0021	0.0027	99.27	0.85	17.91	23.90
原矿	100.00	0.3506	0.0583	0.0116	0.0112	100.00	100.00	100.00	100.00

表 5 实验室小型闭路试验结果

证明钼的新型捕收剂 MB-4 较煤油选择性好。在 钼粗精矿品位相近时,铜、铋矿物上浮量少,有利于 钼精选,且价格与其相近,用量仅为其 1/2 左右。

3. 实验室小型闭路试验结果为: 钼精矿含钼 47.42%、铜0.28%, 钼回收率89.50%, 尾矿中-0.246+0.037mm 粒级中 WO3 分布率达92.91%, 在确保黑钨矿回收的前提下,实现了伴生钼资源的回收。

参考文献:

- [1] Heinrich Hesse, Collecter for moniran metal sulphid prepration [P], US0099836, 2004.
- [2]张文钲. 辉钼矿捕收剂寻觅[J]. 中国钼业,2006,(4):3-6.
- [3]邱丽娜,戴惠新,张旭. 从某钼矿老尾矿中回收钼的试验

研究[J]. 中国钼业,2009,(3):14-17.

- [4] 胡熙庚, 黄和慰, 毛钜凡. 浮选理论与工艺[M]. 北京: 冶金工业出版社, 1991.
- [5]张美鸽、张学武、俞国庆、等. 新型補收剂 TBC 选钼试验 研究[J]. 有色金属(选矿部分),2005,(2),42-44.
- [6]孙传尧,赵涌泉,赵万来. 矿产资源综合回收利用手册 [M]. 冶金出版社,2000.
- [7] 易贤荣. 铁山垅钨矿提高伴生金属回收率的技术改造与 实践[J]. 中国钨业,1999,(11):123-125.
- [8] 陈文熙. 江西某钨钼铜矿石选矿试验研究[J]. 中国钨 业,2008,(8):19-23.
- [9]邓芳超. 钨矿石中伴生金属的综合回收[J]. 江西有色金属,1998,(3):16-23.
- [10]朱玉霜,朱建光. 浮选药剂的化学原理[M]. 长沙:中南 工业大学出版社,1987.

含铜难处理铁矿的硫酸浸出试验研究

郑永兴,文书明,郑海雷,邓久帅,刘建 (昆明理工大学,云南 昆明 650093)

摘要:研究了国外某含铜铁矿的酸法浸出,考察了硫酸用量、浸出时间、液固比、转速、浸出温度等因素对浸出率的影响。试验结果表明:在硫酸用量140kg/t,浸出时间60min,液固比为3:1,转速300r/min,温度80℃的条件下,铜的浸出率达73%,浸渣含铜0.24%。浸渣通过适当配矿后,同时还得到了含铜0.2%左右的铁精矿,实现了铜铁资源的高效利用。

关键词:含铜铁矿: 酸法浸出; 氧化铜: XRD

中图分类号: TD925.5 文献标识码: A 文章编号: 1000-6532(2011)01-0025-04

浮选和湿法冶金是处理氧化铜矿常见的方法。 氧化铜矿的浮选方法有直接浮选法、硫化浮选法、螯 合剂 - 中性油浮选法、胺类浮选法、离析浮选法、选 冶联合法以及其它方法等。但是对于难选氧化 铜矿,它们往往具有含铜低、嵌布细、难解离、难 统 化、结构与组成复杂等特点,常规的浮选方法很难将 它们回收,而采用湿法冶金的方法有望取得理想的 指标。国外某含铜铁矿中的铜矿物主要是氧化铜且 含有大量结合铜,前期的试验结果表明,常规浮选难 以回收这部分铜矿物,而铜存留于铁矿中,将造成铁 矿质量不合格,铜铁资源都不能得到有效利用,所以 有效分离该铁矿中的铜矿物和铁矿物,综合利用该 铜铁矿资源才成为可能。本文通过国外某含铜铁矿的可浸性试验研究,得出最佳工艺参数和技术指标,为该铜铁矿资源的高效利用提供依据。

1 工艺矿物学特性

1.1 化学多元素分析

矿样来自国外某地,筛析结果为-200 目占80%,矿样多元素分析见表1。

从表 1 可以看出, 矿样中除了铜含量超标外, S、P、As、Pb、Zn 等有害元素都不超标, 属较高品位铁矿石。通过适当的方法除去其中的铜后, 就可以直接作为炼铁原料。

Experimental Research on Separating Associated Molybdenum from a Tungsten Ore by Using New - type Collector

YE Xue-jun, WANG Li-peng, WU Dong, JING Ting-ting (Jiangxi University of Science and Technology Resources and Environmental Engineering College, Ganzhou, Jiangxi, China)

Abstract: Experimental research on the comprehensive recovery of molybdenum from the associated molybdenum of a tungsten ore was conducted. Through comparison between the new type of collectors MB sequence and kerosene the collector MB -4 is adopted. The bench - scale closed - circuit test results are as follows: the molybdenum concentrate of 47.42% Mn and 0.28% Cu with the molybdenum recovery of 89.65% is obtained. Comprehensive recovery of the associated molybdenum of the tungsten ore is realized.

Key words: Associated molybdenum of a tungsten ore; Collector for separating molybdenum; Comprehensive utilization

收稿日期:2010-09-25; 改回日期:2010-10-09

作者简介:郑永兴(1986 -),男,硕士研究生,研究方向为资源综合利用。