• 113 •

川南典型硫铁矿区土壤污染调查方法

代力,邓杰

(中国地质科学院矿产综合利用研究所,四川 成都 610041)

摘要:针对川南典型硫铁矿区特殊的景观地球化学条件和土壤特征,在矿区污染评价中开展土壤调查方 法实验。运用多元统计分析、显著性检验、污染负荷指数计算等多种方法,并结合元素地球化学性质综合对比 研究元素在不同层位、不同粒级土壤中的富集和分布特征。研究表明,不同层位之间元素富集特征具有显著差 异性,采样层位是影响元素总体富集程度的重要因素,表层土壤具有更高的元素总体富集程度,反映矿区污染 特征的亲硫元素组合在粗粒级土壤中具有更明显的分布倾向性。建议优选区域适宜性较高采样层位为表层土 (0~10 cm),样品制备粒级为-2.00 mm。

关键词:土壤污染; 硫铁矿; 方法; 粒级

doi:10.3969/j.issn.1000-6532.2022.03.020

中图分类号: TD989;P632+.1 文献标志码: A 文章编号: 1000-6532(2022)03-0113-08

川南硫铁矿区是我国重要的硫铁矿产区之 一,但受限于特殊历史时期落后的生产技术条 件,土法炼磺产生的"三废"对矿区及其周边水土 环境造成了极其严重的破坏,至今还尚未完全恢 复^[1-2]。随着生态文明建设大力推进,川南硫铁矿 区生态修复治理势在必行。

客观准确的土壤污染调查评价结果是生态修 复和污染治理的重要前提,高质量的评价成果对 生态修复治理工程实施具有指示性作用^[3-4]。现有 类似矿区土壤污染调查研究中大多侧重于对评价 结果的解释分析,往往忽略和淡化了对调查方法 适用性与合理性的前期研判^[5-6]。景观地球化学条 件差异可能会导致土壤的成壤厚度、土壤粒度等 特征不尽相同;人类活动引起的表生地球化学条 件改变、矿业开发所导致的外源污染混入,都在 一定程度上造成了元素在土壤不同层位、不同粒 级之间的差异性分配。因此,按照现有经验性做 法进行样品采集和制备可能会影响解释评价的准 确性,因地制宜、量体裁衣地开展针对性调查方 法实验研究是避免产生系统性误差的重要原则。

川南地区属喀斯特地貌景观区,土壤主要以 灰岩风化形成的石灰土为主,土层较浅薄。土壤 结构主要为大团聚体。针对该地区土壤"土层薄、 粗粒化、受污染"等特点,选择典型硫铁矿区开展 土壤污染调查方法实验研究,重点分析元素在不 同土壤采样层位和样品制备粒级之间的富集特 征、分布差异,通过对比研究优选出区域适宜性 较高的采样层位和样品制备粒级,提高矿区土壤 污染识别的准确性,并为该地区其他类似研究提 供参考建议。

1 研究区概况

川南地区硫铁矿主要集中于四川宜宾、泸州 一带的兴文、叙永、石屏石宝三个富集区内,其 中,兴文富集区是规模最大,而周家硫铁矿区是 兴文富集区内规模较大、土壤污染较为严重的代 表性区域,该地区曾存在过多家矿山和选冶企 业,采煤、采矿、土法炼磺历史悠久。因此,本 次研究选择宜宾兴文县周家硫铁矿区作为典型研 究区。

研究区地处四川盆地南部边缘向云贵高原过 渡地带,属于亚热带季风湿润喀斯特地貌景观 区,山脉走向总体上近东西向展布,总体地势为

收稿日期: 2021-07-27

作者简介:代力(1988-),男,硕士,工程师,从事应用地球化学与矿山地质环境调查研究。

南高北低。区内主要出露奥陶系(O)至第四系 (Q)地层,缺失泥盆系、石炭系(图1)。区内 矿体主要产于上二叠统宣威组(P₂x)煤层之下, 下二叠统茅口组(P₁m)灰岩侵蚀面之上,在空间 上严格受沉积岩相和底板侵蚀面起伏的控制,属 于火山碎屑与风化残余型沉积矿床。

 1-第四系: 2-三叠系上统须家河组: 3-三叠系中统雷口坡组: 4-三叠系下统嘉陵江组三加四段: 5-三叠系下统嘉陵江组一加二段: 6-三叠系下统 飞仙关组三加四段: 7-三叠系下统飞仙关组一加二段: 8-二叠系上统宣威组: 9-二叠系上统袁家洞组: 10-二叠系下统茅口组: 11-下二叠统梁 山组加栖霞组: 12-中志留统回星哨组: 13-中志留统秀山组: 14-下志留统韩家店组: 15-下志留统石牛栏组: 16-下志留统龙马溪组二段: 17-下志留统龙马溪组一段: 18-中奥陶统观音组: 19-实测性质不明断层: 20-实测逆断层: 21-城镇: 22-土壤采样点

图 1 研究区地质背景与采样点位 Fig.1 Geological background and sampling point map

研究区内土壤主要以灰岩风化形成的石灰土 为主,水土流失和土地石漠化现象较为突出,主 要土地利用类型为农业用地,多种植玉米、烟 叶、蔬菜等。石灰土成土母岩碳酸盐岩抗风化能 力较强,母岩造壤能力差,成土过程缓慢,土层 浅薄,厚度仅为10~40 cm^[7];土壤结构主要为大 团聚体,土壤质地以砂粒(2~0.02 mm)为主, 整体粒度呈现"粗粒化"^[8]。

2 实验方法与样品分析

国内针对矿区土壤污染调查评价的多数研究 中,土壤样品的采集和样品制备筛分方法大多遵 从多目标地球化学、土地质量地球化学、土壤环 境监测技术规程等相关规范中的建议,即采集 0~20 cm的B层土壤,样品制备过筛孔径为0.85 mm。然而,上述规范建议大多针对区域性土壤质 量调查研究,对工矿区等局部性环境污染调查研 究的适用性存在一定疑问。对比国外同类型研究,其土壤取样深度和筛分粒级与国内有较大差异^[9-11]。在取样深度上,各个国家不同研究无统一标准,但多都集中于 0~10 cm 的表层土;在筛分粒级上,均使用了一致的样品制备粒级,即干燥土壤样品过 2.00 mm 孔径筛。

针对研究区土壤土层薄、粒度粗的特点,同 时参考国外研究,设计实验方法为:同一点位上 分别采集不同层位土壤样品,同一层位样品分别 运用不同粒级进行筛分。单一采样点土壤按深度 分为表层土和亚表层土,表层土取样深度参照国 外研究中常用深度 0~10 cm 进行采集,国内相关 规范 0~20 cm 的采样要求已经包括上述表层土, 因而为突出对比度和样品代表性,亚表层土采集 20 cm 以下土壤;筛分粒级上,每一件样品干燥后 分别过 2.00 mm 和 0.85 mm 孔径筛,每个样品原 始重量大于 2000 g。本次实验开展采样面积 11 km², 设计点位 109 点,共采集筛分出 436 件土壤样。 实验样品结果经简单统计后分别编号,例如 TS10、SS20,分别表示表层土过 2.00 mm 孔径筛 样品统计结果、亚表层土过 0.85 mm 孔径筛样品 统计结果,以此类推。

测试指标包括 As、Cd、Hg、Pb、Cu、Zn、 Cr、Ni、Mo、Mn、Se、F、V、Sb 共 15 项,其 中 S、Mn、Cu、Pb、Zn、Cr、V采用 X 射线荧光 法光谱法测定,Ni、Cd、Mo 采用等离子质谱仪法 测定,As、Sb、Hg、Se 采用原子荧光光谱法测 定,F采用离子选择性电极法测定,分析测试工作 由中国地质科学院矿产综合利用研究所分析测试 中心完成。数据分析总体思路为以实验数据为依 据研究总体富集特征差异,运用污染负荷指数和 Q 型聚类研究探寻不同层位之间元素富集程度差 异,以因子得分和分布形式检验分析不同粒级之 间元素分布形式差异,并结合元素地球化学性质 提出参考建议。

3 实验结果

3.1 元素富集程度特征差异

根据分析测试数据,分别统计分析了不同层 位和粒级中各元素平均值、中位数、富集系数、 含量总和等多项参数,见表1。单元素富集系数表 明,相比于四川省A层土壤各元素背景值,所有 元素均产生一定程度的富集,部分元素产生强烈 富集。富集系数最高的元素为Cd,最大值达到 26.9;其次为Se,最大值达19.3;最低的元素是 Sb,为1.18。部分元素较高的富集系数表明研究 区土壤环境可能遭受一定程度的外源污染。

综合多项指标进行全面对比发现,不同元素 体现了不同的元素富集差异特征。在不同层位同 一粒级的对比中发现,As、Sb、Pb、Cd、Zn、 S等元素倾向于富集在表层土壤中,即上述元素在

表 1 各层位粒级土壤元素地球化学特征/(mg·kg⁻¹)

	Table I I	siement geochem	ical characterist	ics in unreferit s	ampring layers a	nu size mactions	
元素	层位粒级	最大值	最小值	中位数	平均值	含量总和	富集系数
	TS10	5470	412	1620	1640.5	178811	2.52
Ma	TS20	5480	397	1650	1678.6	182968	2.58
IVIN	SS10	5880	337	1640	1645.9	179401	2.53
	SS20	5740	355	1660	1695.6	184823	2.61
	TS10	298	16.4	103	95.78	平均值含量总和富集系数平均值含量总和富集系数1640.51788112.521678.61829682.581645.91794012.531695.61848232.6195.78104403.2295.56104163.2294.57103083.1895.52104113.2242.8546701.4844.2548241.5341.3345051.4342.3246131.46140.3152972.82140.9153612.83136.3148582.74137.0149342.75189.0205982.56182.5198952.48192.2209492.61185.0201662.5173.7380362.3772.5879112.3373.4880092.36	
Cu	TS20	304	16.5	105	95.56	10416	3.22
Cu	SS10	295	16.5	98.5	94.57	10308	3.18
	SS20	301	17.8	102	95.52	10411	3.22
	TS10	68.3	20.3	42.5	42.85	4670	1.48
DI.	TS20	93.1	23.2	43.7	44.25	4824	1.53
Pb	SS10	71.4	18.1	40.6	41.33	4505	1.43
	SS20	73.5	17.2	41.7	42.32	4613	1.46
	SS20 73.5 17.2 TS10 215 83.9 TS20 224 224	83.9	144	140.3	15297	2.82	
7.5	TS20	224	82.3	145	140.9	15361	2.83
ZII	SS10	195	83	139	136.3	14858	2.74
	SS20	197	82.1	140	137.0	14934	2.75
	TS10	389	104	183	189.0	20598	2.56
Cr	TS20	388	98.2	179	182.5	19895	2.48
CI	SS10	517	99.8	180	192.2	20949	2.61
	SS20	467	96.8	176	185.0	20166	2.51
	TS10	219	31.6	71.6	73.73	8036	2.37
Ni	TS20	223	32.1	69.0	72.58	7911	2.33
INI	SS10	212	28.8	67.3	73.48	8009	2.36
	SS20	230	31.6	68.7	73.45	8007	2.36

• 116	•
-------	----------

 元素	层位粒级	最大值	最小值	中位数	平均值	含量总和	富集系数
	TS10	20.8	0.21	1.57	2.02	220.4	26.9
Cł	TS20	19.4	0.18	1.58	1.96	214.0	26.1
Cd	SS10	21.2	0.13	1.46	1.90	206.6	25.3
	SS20	20.4	0.17	1.36	1.90	207.2	25.3
	TS10	9.13	0.85	2.53	2.99	325.8	4.98
Ма	TS20	8.24	0.81	2.47	2.97	324.0	4.95
IVIO	SS10	9.33	0.71	2.47	2.98	324.8	4.97
	SS20	10.8	0.82	2.44	3.03	330.4	5.05
	TS10	27.8	2.66	12.6	13.56	1478	1.46
A a	TS20	29.3	3.09	12.6	13.38	1459	1.44
AS	SS10	29.9	2.33	11.9	13.40	1460	1.44
	SS20	29.7	2.46	12.5	13.11	1428	1.41
	TS10	3.33	0.32	1.33	1.33	145.1	1.18
Sh	TS20	3.59	0.36	1.35	1.33	144.7	1.18
30	SS10	3.59	0.33	1.32	1.35	147.3	1.19
	SS20	3.49	0.29	1.32	1.33	145	1.18
	TS10	0.48	0.04	0.19	0.20	21.5	5.06
Ца	TS20	0.52	0.02	0.2	0.20	22	5.06
пg	SS10	0.55	0.03	0.19	0.21	22.5	5.32
	SS20	0.51	0.02	0.2	0.20	22.3	5.06
	TS10	615	138	288	298.3	32517	3.22
V	TS20	600	134	281	294.7	32126	3.18
v	SS10	818	137	281	301.1	32822	3.25
	SS20	772	142	278	299.3	32620	3.23
	TS10	3.43	0.55	1.44	1.55	168.7	19.0
Sa	TS20	4.53	0.56	1.46	1.57	171.6	19.3
36	SS10	3.86	0.41	1.33	1.44	157.1	17.7
	SS20	4.08	0.45	1.45	1.53	167	18.8
	TS10	5740	291	559	814.3	88753	3.19
Б	TS20	5730	239	554	797.3	86909	3.13
1'	SS10	6250	276	559	810.0	88287	3.18
	SS20	5980	272	570	772.6	84214	3.03
	TS10	2600	110	540	607.8	66249	4.05
ç	TS20	3700	160	550	647.0	70519	4.31
3	SS10	2800	97	530	589.2	64225	3.93
	SS20	3100	81	532	579.5	63165	3.86

背景值为《中国土壤元素背景值》中四川省A层土壤各元素背景值

表层土壤-2.00 mm 和-0.85 mm 中的平均值、富集 系数、含量总和等参数均高于亚表层相应粒级的 土壤;而 Cu、V、Cr、Ni、Mn、Zn等元素则倾向 于富集在亚表层土壤中。在不同粒级同一层位对 比中发现,Cu、Mn、Pb、Zn、Cd、Mo等元素倾 向于富集-0.85 mm 土壤中,即上述元素在表层土 壤和亚表层土壤中-0.85 mm 的平均值、富集系 数、含量总和等参数均高于-2.00 mm 土壤中相应 指标, As、Sb、Cr、Ni、V等元素则倾向于富集 -2.00 mm 土壤中。

3.2 不同层位之间元素富集程度差异

3.2.1 污染负荷指数计算

单一或几个元素的富集含量特征并不能完 全代表特定层位、粒级的整体特征,为定量研 究元素在各层位、粒级的相对富集程度,应用 Tomlinson等人在从事重金属污染水平分级研究中 提出的污染负荷指数法 (Pollution Load Index)^[12], 将每一采样点元素含量进行均一化,合并计算为 一个无量纲的污染负荷指数,以污染负荷指数的 大小进行富集程度对比研究。污染负荷指数的计 算公式为:

$$CF_i = \frac{C_i}{C_{0i}} \tag{1}$$

$$PLI = \sqrt[n]{CF_1 \times CF_2 \times CF_3 \cdots CF_n}$$
(2)

$$PLI_{z} = \sqrt[k]{PLI_{1} \times PLI_{2} \times PLI_{3} \cdots PLI_{k}}$$
(3)

式(1)中,*CF_i*为元素*i*的最高污染系数,*C_i*为元素*i*的实测含量,*C_{0i}*为元素*i*的背景值;式 (2)中,*PLI*为某一点的污染负荷指数,*n*为评价元素个数;式(3)中,*PLI_z*为某一层位粒级的总体污染负荷指数,*k*为评价样点数。根据上述方法对各层位、粒级的分析数据进行综合计算,计算所采用的背景值与计算富集系数相同,分别得到各层位、粒级土壤总体污染负荷指数(见表 2)。

表 2 各层位粒级土壤总体污染负荷指数 Table 2 Pollution Load Index from different sampling layers

and size mactions									
层位、粒级	TS10	TS20	SS10	SS20					
PLIz	3.16	3.17	3.09	3.10					

结果显示,无论粒级是否相同,表层土的整体污染负荷指数均显著高于亚表层土,表明表层 土具有更高的元素总体富集程度,更能准确反映 外源污染叠加程度;而在相同层位下,不同粒级 的土壤污染负荷指数较为接近,-0.85 mm 土壤略 高于-2.00 mm 土壤。

3.2.2 Q型聚类分析

以土壤元素地球化学特征为基础,进行相似 性水平为评价,对四类型样品数据进行Q型聚类 分析,探究各类型样品数据之间的相互关系。 Q型聚类结果见图2。

结果显示,TS10和TS20在较高的相似性水 平上聚集成第一类,SS10和SS20聚集成第二 类。第二类的距离系数明显高于第一类,表明表 层土壤中元素之间的相关性强于亚表层土壤中元 素相关性。而这两大类别之间的距离系数较大, 相关性并不明显,表明在同一层位中元素富集特 征相近,而不同层位之间元素富集特征存在明显

差异。

Q型聚类分析结论验证了不同层位元素富集 特征具有显著差异性,污染负荷指数计算结果则 定量说明了表层土具有更高的元素富集程度,采 样层位是影响元素总体富集程度的重要因素。

3.3 不同粒级之间元素分布形式差异

3.3.1 显著性差异检验

各元素平均值、中位数等基础统计量在不同 粒级之间较为接近,无法通过绝对数值的大小来 判定元素在不同粒级之间是否存在分布差异。因 此,为研究各元素在不同粒级之间的分布是否存 在显著性差异,以15种元素含量为检验变量,应 用两配对样品非参数检验(2 Related Samples Nonparametric Tests)方法对各层位分别进行统计 学检验,探究-2.00 mm、-0.85 mm两种样品制 备粒级对各元素分布的影响。其检验结果见 表 3、4。

两配对样品非参数检验结果显示,在表层土 壤-2.00 mm 与-0.85 mm 粒级之间,其分布形式存 在显著性差异的元素有 As、Cr、Mn、Mo、Pb、 S、V、Zn等; 亚表层土中,存在显著性差异的元 素有 Cr、Mn、Mo、Pb、Se、V等。显著性差异 研究表明,在相同采样层位下,虽然多数元素平 均值、中位数等含量参数较为相近,但其分布特 征存在显著性差异,粒级是影响元素分布差异的 主要因素。

3.3.2 因子分析与因子得分

分布形式检验表明了单元素分布的差异性, 为探究各层位粒级之间元素整体分布差异性,采 用因子分析进行研究。前文已经指出,表层土壤

2022	年
------	---

	表 3 表层土甲个同粒级各元素显者性检验结果 Table 3 Significant test between different size fractions in topsoil								
元素	As	Cd	Cr	Cu	F	Нg	Mn	Мо	
TS10与TS20	0.015*	0.538	0.000*	0.728	0.245	0.054	0.000*	0.011*	
元素	Ni	Pb	S	Sb	Se	V	Zn	-	
TS10与TS20	0.087	0.000*	0.024*	0.944	0.155	0.000*	0.033*	-	

注: 表中*在0.05水平时存在显著性差异

表 4 亚表层土中不同粒级各元素显著性检验结果

Table 4	Significant tes	t between	different	size	fractions	in su	bsoil

元素	As	Cd	Cr	Cu	F	Hg	Mn	Мо
SS10与SS20	0.835	0.365	0.000*	0.084	0.946	0.264	0.000*	1.000
元素	Ni	Pb	S	Sb	Se	V	Zn	-
SS10与SS20	0.025*	0.000*	0.733	0.107	0.000*	0.001*	0.227	-

注: 表中*在0.05水平时存在显著性差异

具有更高的元素富集特征,且存在分布差异的元 素较多,因此对表层土壤两种粒级样品分别进行 因子分析,提取主成分,以元素组合为新变量研 究不同粒级之间的元素整体分布特征差异。

两组实验数据均通过 KMO 统计量检验和

Bartlett's 球形检验,分析所得结果见表 5。基于特征值大于 1,均提取了四个主因子,两种粒级因子分析结果几乎完全相同。四个主因子中 F1、F2 因子具有最高的特征值,代表了该地区土壤的主要元素地球化学特征。

	表 5	实验数据因子分析特征
Table 5	Principal	component analysis of experiment data

粒级	因子	因子主成分	特征值	粒级	因子	因子主成分	特征值
	F1	As, Cd, Hg, Mo, Pb, Sb	5.17		F1	As, Cd, Hg, Mn, Mo, Pb, Sb	5.35
F2 Cr. Cu. Ni. V 3.52 F2	Cr, Cu, Ni, V	3.38					
1810	F3	F, Mn, Zn	1.53	1820	F3	F, Mo, Zn	1.58
	F4	S、 Se	1.28		F4	S、Se	1.36

选取主要因子 F1、F2 计算每一件样品的因子 得分,并以数据为基础绘制采样区因子得分等值 线图,探究两种粒级中不同元素组合在平面上的 分布特征,见图 3。因子得分的数值没有绝对意 义,在正载荷条件下,数值越大表明该因子的影 响越大。

F1 因子得分结果表明,TS10 和TS20 的因子 得分整体分布相似,但在异常形态、异常强度、 异常连续性等方面存在一定程度差异。相比于 TS20,TS10 在研究区南侧具有更好的异常连续 性;在研究区北侧TS10 的高值区域范围明显大于 TS20,具有更高的异常强度,表明F1 因子所代表 的元素组合在该粒级土壤中具有更高的倾向性, -2.00 mm 土壤能更准确反映其倾向性分布。F2 因 子得分分布则基本相同,仅在研究区中部低值区 域有一定差异,其原因可能是F2 因子元素组合中 Cu、Ni 在两种粒级之间的分布并没有表现出显著 性差异所致。

4 讨论

4.1 元素地球化学性质

As、Sb、Pb、Cd、Zn 是硫化物矿床的主要元 素,与硫有较强的亲和性,这些元素在表层土壤 中的富集与该地区硫铁矿的污染有关。一方面是 由于矿业开发造成污染源以机械迁移的形式进入 表层土壤,另一方面该地区上世纪大量的土法炼 磺活动带来大量的污染降尘,累计赋存于表层土 壤中。从富集层位上看,这些元素倾向于富集在 表层土壤中。V、Cr、Mn、Ni属于铁族元素,与 铁的亲和性较强。铁族元素地球化学性质相对稳 定,且倾向于集中于淋积层,然而在表生酸性环 境中容易溶解而被迁移带走。Ni可类质同象替换 硫铁矿中的Fe,因而广泛存在于该地区受污染土 壤中。土壤中的Cu含量从表层到深层逐渐增加,

Fig.3 Maps of F1&F2 factor score in different size fractions

Cu和 Mo 在酸性氧化环境中容易被淋滤,向下迁移,因而这些元素多倾向富集于亚表层土壤中。

在不同粒级的元素分布特征存在一定差异, 这可能与元素赋存矿物的抗风化能力以及元素的 地球化学性质有关。铁族元素 Cr、Ni、V 多富集 于较粗的粒级中,可能与铁族元素赋存矿物的抗 风化能力较强有关; 而 Pb、Mo、Cu、Mn、Zn、 Cd 等亲硫元素主要赋存黄铜矿、闪锌矿、方铅矿 等具有配位型结构的硫化物中,其矿物硬度不 大,容易风化,倾向于分布在较细粒土壤中。前 人研究表明,在灰岩风化表层土中,Cu、Pb、 Mn、Mo、Zn 等元素从粗粒土壤到细粒土壤含量 总体呈上升趋势^[13]。而 As、Sb 主要赋存于毒砂等 岛状复硫化物,这类矿物硬度最大,不易风化。 因而综合认为 Cu、Mn、Pb、Zn、Cd、Mo 等元素 倾向分布于-0.85 mm 相对较细的土壤中, As、 Sb、Cr、Ni、V 等元素倾向分布于-2.00 mm 相对 较粗的土壤中。

4.2 取样层位和粒级确定

研究结果表明,不同元素在不同层位、不同 粒级的土壤中富集、分布特征存在明显差异,采 样层位的确定、样品样品制备粒级的选择是进行 矿区土壤污染评价的先行步骤和重要前提,选择 的科学性关系到所获成果能否展体现较客观的评 价效果。通过元素富集程度的定性定量对比,结 合元素地球化学性质与表生物理化学条件,将更 能体现土壤元素总体富集程度特征的层位建议优 选为样品采集层位,提高样品采集的代表性。进 而对比分析元素在此层位不同粒级中的分布形式 差异,元素在某一粒级中的倾向性分布能更好地 反映该地区土壤中元素的地球化学行为,将主要 元素组合倾向分布的粒级建议优选为样品制备 粒级。

川南硫铁矿区土壤具有土层薄、粗粒化等特 点,并且受到外源污染影响明显,以致区内元素 富集特征、分布形式与其他地区有所不同。从元 素富集特征来看,研究区内表层土的元素特征更 准确地反映土壤受外源污染叠加的影响。同时, 表层土也有利于薄土地区采样工作的开展。从元 素分布特征来看,受元素地球化学性质和表生物 理化学条件的综合影响,研究区内反映污染特征 的主要元素组合更倾向分布于粗粒土壤中。

5 结 论

(1)不同层位之间元素富集特征具有显著差 异性,采样层位是影响元素总体富集程度的重要 因素,研究区内表层土壤具有更高的元素总体富 集程度,能更为准确地反映土壤受外源污染叠加 的真实特征。

(2) 样品制备粒级是影响元素分布差异的主

要因素,分布形式检验和平面特征分析均表明在 不同粒级中元素具有不同的地球化学行为,反映 矿区污染特征的亲硫元素组合在粗粒级土壤中具 有更明显的分布倾向性。

(3)为提高矿区土壤污染识别的准确性,并 为该地区其他类似研究提供参考建议,本次实验 研究建议优选区域适宜性较高采样层位为表层土 (0~10 cm),样品制备粒级为-2.00 mm。

参考文献:

[1] 高德政, 周开灿, 冯启明, 等. 川南硫铁矿开发中的环境污染与治理[J]. 矿产综合利用, 2001(4):23-27.

GAO D Z, ZHOU K C, FENG Q M, et al. Environmental pollution and harness of exploitating pyrite in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2001(4):23-27.

[2] 张渊, 洪秉信. 川南硫铁矿尾矿的工艺性质与综合利用[J]. 矿产综合利用, 2006(5):21-24.

ZHANG Y, HONG B X. Technological properties and comprehensive utilization of the pyrite tailings in South Sichan[J]. Multipurpose Utilization of Mineral Resources, 2006(5):21-24.

[3] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化 学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial combined remediation technology for typical heavy metals-contaminated soils in Panxi Mining Region[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9.

[4] 冉银华, 张志明, 李强. 滇西某尾矿回收硫铁矿物的试验 研究[J]. 矿产综合利用, 2019(1):119-122.

RAN Y H, ZHANG Z M, LI Q. Experimental study on the recovery of pyrite from tailings in Western Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(1):119-122.

[5] 李瑞娟,周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40.

LI R J, ZHOU B. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40.

[6] 李杰锋. 煤矿复垦区土壤重金属形态分布与富集污染研

究[J]. 矿产综合利用, 2022(1):116-120,163.

LI J F. Study on distribution of heavy metals in soil and concentrated pollution in coal mine reclamation area[J]. Multipurpose Utilization of Mineral Resources, 2022(1):116-120,163.

[7] 何永彬,张信宝,李豪.喀斯特白云岩坡地土壤异质性特征与土壤保育模式研究[J].地球与环境,2013,41(1):77-81.

HOU Y B, ZHANG X B, LI H. Research on soil heterogeneous characteristics and soil conservative model for Karst dolomite slope land[J]. Earth and Environment, 2013, 41(1):77-81.

[8] 张川东. 基于石灰土物理性质的喀斯特山地生态环境评价——以黔中花溪区、小河区为例 [D]. 贵州:贵州大学, 2009.

ZHANG C D. Evaluation of karst mountain ecological environment based on physical properties of lime soil[D]. Guizhou: Guizhou University, 2009.

[9] Bavec Š, Gosar M, Biester H, et al. Geochemical investigation of mercury and other elements in urban soil of Idrija (Slovenia)[J]. Journal of Geochemical Exploration, 2015, 154:213-223.

[10] Xiangdong L, Chi-sun P, Pui S L. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 2001, 16(11).

[11] Kelly J, Thornton I, Simpson P R. Urban Geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain[J]. Applied Geochemistry, 1996, 11(1):363-370.

[12] 徐争启, 倪师军, 张成江, 等. 应用污染负荷指数法评价 攀枝花地区金沙江水系沉积物中的重金属[J]. 四川环境, 2004, 23(3):64-67.

XU Z Q, NI S J, ZHANG C J, et al. Assessment on heavy metals in the sediments of Jinsha River in Panzhihua Area by pollution load index[J]. Sichuan Environment, 2004, 23(3):64-67.

[13] 刁理品, 韩润生, 方维萱. 贵州西南部普安-晴隆一带锑 金矿勘查区沟系土壤地球化学测量试验[J]. 地质通报, 2010, 29(11):1712-1720.

DIAO L P, HAN R S, FANG W X. Experiment of soil geochemical survey of valley in the Pu'an-Qinglong antimonygold exploration area, southwestern Guizhou, China[J]. Geological Bulletin of China, 2010, 29(11):1712-1720.

(下转第147页)