# 热改性粉煤灰对水中铜的动态吸附研究

骆欣1.2, 刘瑞森3, 徐东耀1, 叶锦莎3

# (1. 中国矿业大学(北京)化学与环境工程学院,北京 100083; 2. 华北科技学院化学 与环境工程学院,北京 101601; 3. 华北科技学院安全工程学院,北京 101601)

摘要:以热改性粉煤灰作为吸附剂,采用固定床吸附装置,探究了床层高度、流量、初始浓度等因素对 Cu<sup>2+</sup>动态吸附曲线的影响。在此基础上进行了动态吸附模型的研究,分别研究了 Thomas、Yoon-Nelson 和 Adams-Bohart 三种吸附模型。同时也探讨了双组分污染物体系中 MFA 对 Cu<sup>2+</sup>的动态吸附效果。结果表明, Cu<sup>2+</sup>的穿透时间随初始离子浓度和流量的增加而缩短,随床层高度的增加而延长。MFA 吸附 Cu<sup>2+</sup>的动态行为符 合 Thomas 和 Yoon-Nelson 模型。降低床层高度、增加初始浓度和流量可以提高 Cu<sup>2+</sup>的吸附速率。根据 MFA 吸 附 Cu<sup>2+</sup>前后的表征,吸附主要机理包括含氧官能团与 Cu<sup>2+</sup>的络合和 Na<sup>+</sup>等阳离子与 Cu<sup>2+</sup>的离子交换。在双组分 污染物体系中,溶液中的 Zn<sup>2+</sup>、Pb<sup>2+</sup>对 MFA 的 Cu<sup>2+</sup>吸附均产生抑制作用,其影响大小为 Pb<sup>2+</sup>>Zn<sup>2+</sup>。

关键词: 热改性粉煤灰; 动态吸附; Cu<sup>2+</sup>; 吸附模型

doi:10.3969/j.issn.1000-6532.2022.03.024

中图分类号: TD989;X703 文献标志码: A 文章编号: 1000-6532(2022)03-0137-06

我国是煤炭资源大国,煤炭是我国的主体能 源。粉煤灰是燃煤产生的固体废弃物,排放量大 且逐年递增,是我国最大的单一固体污染源[1]。粉 煤灰的资源化利用成为当今的主要问题。作为一 种低成本的吸附剂,粉煤灰被广泛应用于水处理 领域<sup>[2-3]</sup>。原粉煤灰(FA)的吸附能力较低,因此 常采用物理、化学等方法对粉煤灰进行改性,以 增强其吸附能力,如微波/碱FA、碱FA、酸 FA 和盐 FA<sup>[4]</sup>。不同类型的改性粉煤灰吸附剂已被 用于去除废水中的重金属离子[5-6]。铜是水体中常 见的重金属污染物,具有来源广、毒性大、易累 积、难生物降解等特点[7]。在前期的研究中,将粉 煤灰进行热改性,并用于静态吸附水中的铜<sup>[8]</sup>。与 其他工业固废吸附剂和粉煤灰改性吸附剂相比, 热改性粉煤灰显示了对 Cu2+良好的吸附效果。此 外,热改性操作简单,改性剂价格低廉<sup>9</sup>,又避免 了酸、碱等改性方法可能带来的二次污染,因此 具有良好的工业应用前景。在工业化应用中,吸 附过程一般属于连续流动性操作。为了模拟实际 工程应用,本文采用固定床吸附实验,研究不同 条件下出水 Cu<sup>2+</sup>浓度随时间的变化,并结合三种 动态吸附模型对吸附数据进行拟合,用于评估热 改性粉煤灰对 Cu<sup>2+</sup>的动态吸附行为。

## 1 实 验

#### 1.1 材料和仪器

粉煤灰产自唐山某燃煤电厂,化学药品碳酸 钠、硝酸铜、硝酸铅、硝酸锌均为分析纯,实验 用水为去离子水。

马弗炉,XL-1型;原子吸收分光光度计,GGX-600型,;X-射线衍射仪,D8 ADVANCE型。

# 1.2 实验方法

(1)粉煤灰的热改性。将粉煤灰过 0.25 mm 筛,用去离子水清洗、烘干。取 12g 预处理后的 粉煤灰(FA)与4g 无水 Na<sub>2</sub>CO<sub>3</sub> 充分混合,置于 马弗炉中,在 800℃ 下活化 2h。冷却、研磨后过

收稿日期: 2021-07-12

**基金项目**:国家自然科学基金项目(61472137);河北省科技计划项目(18273619);中央高校基本科研业务费项目(3142014017)

作者简介: 骆欣(1979-), 女, 副教授, 主要从事污染控制理论与技术的研究。

0.18 mm 筛,即得所需的改性粉煤灰(MFA)。

(2) 动态吸附实验。在直径 1.1 cm、高 20 cm 的吸附柱中加入一定量的 MFA。吸附柱的上端填 充 1 cm 高的 0.43~0.85 mm 石英砂,使溶液分布 均匀。吸附柱的下端同样填充石英砂作为承托 层。采用蠕动泵控制 Cu<sup>2+</sup>溶液自上而下流经吸附 床的速度。每隔一段时间测定出水中 Cu<sup>2+</sup>的质量 浓度。定义出水浓度( $c_i$ ) 达到进水浓度( $c_0$ ) 0.1 的时间为穿透时间( $t_b$ ),  $c_i/c_0$  为 0.9 对应的时 间为耗竭时间( $t_e$ )。

#### 1.3 分析方法

 $Cu^{2+}$ 质量浓度由火焰原子吸收法测定,波长为 324.7 nm。 $Cu^{2+}$ 的动态吸附容量( $q_e$ , mg/g)和吸附率( $\eta$ ,%)分别用式(1)、(2)计算。

$$q_e = \frac{Q}{1000m} \int_0^{t_e} (c_0 - c_t) dt$$
 (1)

$$\eta = \frac{mq_e}{c_0 Q t_e} \times 100\% \tag{2}$$

式中,  $c_0$ 和  $c_t$  (mg/L)为 t (min)时 Cu<sup>2+</sup>进、出

口浓度, Q (mL/min) 为流量, m (g) 是 MFA 的 质量,  $t_{\rho}$  (min) 为耗竭时间。

# 2 结果与讨论

#### 2.1 动态吸附的影响因素

2.1.1 床层高度

表 1 为 MFA 动态吸附 Cu<sup>2+</sup>的参数。图 1 为不 同床层高度下的吸附穿透曲线。由图 1 可知,随 着床层高度由 5 cm 增加至 9 cm, Cu<sup>2+</sup>的穿透时间 由 33 min 延长至 133 min,吸附容量由 1.84 mg/g 增至 2.04 mg/g。随着床层高度的增加, Cu<sup>2+</sup>与 MFA 的接触时间增加,柱内液体分布增强,溶 质在吸附剂之间的扩散度越高,吸附过程越充 分<sup>[10]</sup>。床层高度越大,MFA 质量相应增加,Cu<sup>2+</sup> 的吸附位点增多,因此吸附效率也越高。由表 1 可知,当床层高度为9 cm 时,吸附效率增至 67.45%。 此外,穿透曲线的斜率与床层高度呈负相关,表 明突破是渐进的。

| $Q/(\mathrm{mL}\cdot\mathrm{min}^{-1})$ | $C_0/({\rm mg}\cdot{\rm L}^{-1})$ | <i>H</i> /m | $q_{e,exp}/(\mathrm{mg}\cdot\mathrm{g}^{-1})$ | t <sub>b</sub> /min | <i>t</i> <sub>0.5</sub> /min | t <sub>e</sub> /min | η/%   |
|-----------------------------------------|-----------------------------------|-------------|-----------------------------------------------|---------------------|------------------------------|---------------------|-------|
| 2                                       | 20                                | 5           | 1.84                                          | 33                  | 97                           | 170                 | 61.69 |
| 2                                       | 20                                | 7           | 1.91                                          | 100                 | 138                          | 240                 | 63.47 |
| 2                                       | 20                                | 9           | 2.04                                          | 133                 | 184                          | 310                 | 67.45 |
| 3                                       | 20                                | 9           | 1.71                                          | 35                  | 100                          | 180                 | 64.92 |
| 4                                       | 20                                | 9           | 1.27                                          | 26                  | 59                           | 102                 | 63.81 |
| 2                                       | 10                                | 9           | 1.42                                          | 224                 | 278                          | 410                 | 71.06 |
| 2                                       | 30                                | 9           | 2.14                                          | 67                  | 125                          | 230                 | 62.03 |

表 1 MFA 对  $Cu^{2+}$ 的动态吸附参数



图 1 不同层高下 Cu<sup>2+</sup>的穿透曲线 Fig.1 Breakthrough curves of Cu<sup>2+</sup> under different bed heights

2.1.2 流量

图 2显示了不同流量对 MFA 吸附 Cu<sup>2+</sup>的影

响。穿透时间随着流量的增加而显著减小。当流 量增加到4mL/min时,吸附床很快被穿透,穿透 时间缩短至26min。低流量下,穿透曲线更加平 缓,传质范围变宽,有利于Cu<sup>2+</sup>的吸附去除<sup>[11]</sup>。 在较高的流量下,溶液在吸附床中的停留时间减 小,Cu<sup>2+</sup>与MFA的接触时间缩短,导致Cu<sup>2+</sup>的吸 附容量和吸附效率均有所下降。当流量为4mL/min 时,Cu<sup>2+</sup>的吸附容量和吸附率分别降至1.27mg/g 和63.81%。

#### 2.1.3 溶液初始浓度

Cu<sup>2+</sup>的初始浓度为 10、20 和 30 mg/L 对应的 穿透曲线见图 3。由图 3 可知,随着 Cu<sup>2+</sup>初始浓度 的增加,吸附剂被更多的 Cu<sup>2+</sup>包围,MFA 表面的 吸附位点被更快地占据,吸附床很快饱和,因而 穿透时间变短,穿透曲线逐渐向左偏移。由于吸附位点的数量有限,当 Cu<sup>2+</sup>浓度由 10 mg/L 增加 到 30 mg/L 时,吸附效率降低了 9.03%。然而,随着初始浓度的升高,Cu<sup>2+</sup>在溶液和吸附剂之间的浓度梯度增加,吸附驱动力增大<sup>[12]</sup>,吸附量 q<sub>e</sub>值相应增加了 0.5 倍。









图 3 不同初始浓度下 Cu<sup>2+</sup>的穿透曲线 Fig.3 Breakthrough curves of Cu<sup>2+</sup> under different initial concentrations

#### 2.2 动态吸附的模型拟合

#### 2.2.1 Thomas 模型

Thomas 模型假设吸附平衡符合 Langmuir 等温 线和二级反应动力学<sup>[13]</sup>,数学形式如下:

$$\ln(c_0/c_t - 1) = k_T q_e m/Q - k_T c_0 t$$
(3)

式中, $k_T$  (mL/(min·mg))为速率常数, $q_e$  (mg/g) 为吸附容量。

采用 Thomas 模型对动态吸附过程进行拟合, 拟合参数见表 2。由表 2 可知,在不同的实验条件 下,Thomas 模型的相关系数( $R^2$ )在 0.92~0.98 之间,模型预测的吸附容量( $q_e$ )与穿透曲线 的计算值( $q_{e,exp}$ )接近,表明 Thomas 模型可以较 好地描述 Cu<sup>2+</sup>在 MFA 上的动态吸附。当床层高 度由 5 cm 增加到 9 cm 时,速率常数 ( $k_T$ ) 由 1.97 mL/(min·mg) 降至 1.15 mL/(min·mg),表明轴向分 散和质量传输阻力有所增加<sup>[14]</sup>。在高流量下,吸 附质的流动性增强,传质阻力降低, $k_T$ 值增大。 当流量增至 4 mL/min 时, $k_T$ 值增加到 3.69 mL/(min·mg)。随着 Cu<sup>2+</sup>初始浓度的增加, $k_T$ 值减小 至 0.86 mL/(min·mg),这是由于较高的吸附质浓度 会引起传质系数有所减小<sup>[13]</sup>。

表 2 Thomas 模型的拟合参数 Table 2 Parameters of Thomas model under different

| conditions            |                     |   |                                                             |                                         |       |  |  |
|-----------------------|---------------------|---|-------------------------------------------------------------|-----------------------------------------|-------|--|--|
| <i>Q</i> /            | $Q/c_0/$            |   | Thomas模型参数                                                  |                                         |       |  |  |
| $(mL \cdot min^{-1})$ | $(mg \cdot L^{-1})$ | m | $k_T / (\text{mL} \cdot (\text{min} \cdot \text{mg})^{-1})$ | $q_e/(\mathrm{mg}\cdot\mathrm{g}^{-1})$ | $R^2$ |  |  |
| 2                     | 20                  | 5 | 1.97                                                        | 1.75                                    | 0.922 |  |  |
| 2                     | 20                  | 7 | 1.47                                                        | 1.85                                    | 0.935 |  |  |
| 2                     | 20                  | 9 | 1.15                                                        | 1.93                                    | 0.947 |  |  |
| 3                     | 20                  | 9 | 1.66                                                        | 1.51                                    | 0.973 |  |  |
| 4                     | 20                  | 9 | 3.69                                                        | 1.18                                    | 0.935 |  |  |
| 2                     | 10                  | 9 | 2.24                                                        | 1.43                                    | 0.932 |  |  |
| 2                     | 30                  | 9 | 0.86                                                        | 1.99                                    | 0.920 |  |  |

### 2.2.2 Yoon-Nelson 模型

Yoon-Nelson 模型形式简单,不需要吸附质和 吸附剂的详细资料,可用于预测表示吸附速率的 τ 值<sup>[15]</sup>,表达式为:

$$\ln\left(\frac{c_t}{c_0 - c_t}\right) = k_{YN}t - \tau k_{YN} \tag{4}$$

式中,  $k_{YN}$  (1/min)为Yoon-Nelson 速率常数,  $\tau$  (min)为  $c/c_0$ 为 0.5 时需要的时间。

表 3 Yoon-Nelson 模型的拟合参数

 Table 3
 Parameters of Yoon-Nelson model under different conditions

| conditions          |                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| c./                 | Η/                                                                                                       | Yoon-Nelson模型参数                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |  |  |  |  |
| $(mg \cdot L^{-1})$ | m                                                                                                        | $k_{YN}/(\min^{-1})$                                                                                                                                          | τ/min                                                                                                                                                                                                                                                                                                                                       | $R^2$                                                                                                                           |  |  |  |  |
| 20                  | 5                                                                                                        | 0.039                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                         | 0.922                                                                                                                           |  |  |  |  |
| 20                  | 7                                                                                                        | 0.029                                                                                                                                                         | 147                                                                                                                                                                                                                                                                                                                                         | 0.935                                                                                                                           |  |  |  |  |
| 20                  | 9                                                                                                        | 0.023                                                                                                                                                         | 198                                                                                                                                                                                                                                                                                                                                         | 0.947                                                                                                                           |  |  |  |  |
| 20                  | 9                                                                                                        | 0.033                                                                                                                                                         | 104                                                                                                                                                                                                                                                                                                                                         | 0.973                                                                                                                           |  |  |  |  |
| 20                  | 9                                                                                                        | 0.074                                                                                                                                                         | 62                                                                                                                                                                                                                                                                                                                                          | 0.935                                                                                                                           |  |  |  |  |
| 10                  | 9                                                                                                        | 0.022                                                                                                                                                         | 292                                                                                                                                                                                                                                                                                                                                         | 0.932                                                                                                                           |  |  |  |  |
| 30                  | 9                                                                                                        | 0.026                                                                                                                                                         | 125                                                                                                                                                                                                                                                                                                                                         | 0.920                                                                                                                           |  |  |  |  |
|                     | $ \begin{array}{c} c_{0} \\ (mg \cdot L^{-1}) \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 10 \\ 30 \\ \end{array} $ | $\begin{array}{c} c_{0} / & H / \\ (\text{mg·L}^{-1}) & \text{m} \\ \hline 20 & 5 \\ 20 & 7 \\ 20 & 9 \\ 20 & 9 \\ 20 & 9 \\ 10 & 9 \\ 30 & 9 \\ \end{array}$ | $c_{0'}$ $H/$ Yoon-N           (mg·L <sup>-1</sup> )         m $k_{YN}/(min^{-1})$ 20         5         0.039           20         7         0.029           20         9         0.033           20         9         0.033           20         9         0.074           10         9         0.022           30         9         0.026 | $c_{0'}$ $H/$ Yoon-Nelson模型<br>$k_{YN}/(min^{-1})$ 2050.0391002070.0291472090.0231982090.0331042090.074621090.0222923090.026125 |  |  |  |  |

Yoon-Nelson 模型与 Thomas 模型在数学上是 等价的,因此  $R^2$  值也在  $0.92 \sim 0.98$  之间。由表 3 可以看出,该模型得到的  $\tau$  与实验数据吻合较好, 表明 Yoon-Nelson 模型可以预测动态吸附曲线。速 率常数  $K_{YN}$  随床层高度的增加而减小,随流量和  $Cu^{2+}$ 初始浓度的增加而增大。床层高度的增加会导 致传质阻力增大,传质速率降低,因而  $K_{YN}$ 减 小。提高流量有利于传质性能的改善,增高  $Cu^{2+}$ 初始浓度使得传质推动力增强,传质速率均会增 加,  $K_{YN}$ 值增大。

# 2.2.3 Adams-Bohart 模型

基于表面反应理论的 Adams-Bohart 模型假设 平衡不是瞬时的,吸附速率与吸附剂的剩余吸附 容量及吸附质浓度成正比<sup>[10]</sup>,见式(5)。

$$\ln\left(\frac{c_t}{c_0}\right) = k_{AB}c_0t - k_{AB}N_0\frac{Z}{F}$$
(5)

式中, $N_0$ 为单位体积的饱和吸附量(mg/L),  $k_{AB}$ 为Adams-Bohart 速率常数(L/(mg·min)), Z 为床层高度(cm),F为空床速度(cm/min)。

穿透曲线的  $N_0$ 、  $k_{AB}$  以及  $R^2$  见表 4。Adams-Bohart 模型的  $R^2$  值在 0.70~0.83 之间,表明拟合 效果比 Thomas 和 Yoon-Nelson 模型差。由表 4 可 知, Bohart-Adam 速率系数 ( $k_{AB}$ )随床层高度和 Cu<sup>2+</sup>初始浓度的增加而减小,随进水流量的增加而 增大。这归因于  $k_{AB}$  的变化取决于表面扩散系数的 变化<sup>[16]</sup>。 $N_0$  代表体积饱和吸附量,与 Thomas 模 型参数  $q_e$  类似,随着初始浓度的升高和进水流量 的下降,呈现出相似的变化趋势。然而  $N_0$  值随着 床层高度的增加变化不显著,可见 Cu<sup>2+</sup>的动态吸 附过程主要发生在 MFA 固定床的上层<sup>[17]</sup>。

表 4 Adams-Bohart 模型的拟合参数 Table 4 Parameters of Adams-Bohart model under different

| conditions                        |                     |            |                                                                     |                                     |       |  |  |
|-----------------------------------|---------------------|------------|---------------------------------------------------------------------|-------------------------------------|-------|--|--|
| 0/                                | a /                 | <b>ப</b> / | Adams-Bohart模型参数                                                    |                                     |       |  |  |
| $(\text{mL}\cdot\text{min}^{-1})$ | $(mg \cdot L^{-1})$ | m          | $k_{AB}/(10^{-3} \mathrm{L}\cdot\mathrm{mg}^{-1}\mathrm{min}^{-1})$ | $N_0/({\rm mg} \cdot {\rm L}^{-1})$ | $R^2$ |  |  |
| 2                                 | 20                  | 5          | 0.79                                                                | 1238.22                             | 0.726 |  |  |
| 2                                 | 20                  | 7          | 0.63                                                                | 1242.01                             | 0.746 |  |  |
| 2                                 | 20                  | 9          | 0.48                                                                | 1274.54                             | 0.755 |  |  |
| 3                                 | 20                  | 9          | 0.64                                                                | 1155.98                             | 0.826 |  |  |
| 4                                 | 20                  | 9          | 1.35                                                                | 874.59                              | 0.724 |  |  |
| 2                                 | 10                  | 9          | 0.82                                                                | 856.67                              | 0.774 |  |  |
| 2                                 | 30                  | 9          | 0.33                                                                | 1441.67                             | 0.702 |  |  |

## 2.3 XRD 分析

为进一步了解 MFA 吸附 Cu<sup>2+</sup>的机理,在前 期 FTIR 分析的基础上<sup>[8]</sup>,对 FA、吸附 Cu<sup>2+</sup>前后 的 MFA 进行了 XRD 测定,见图 4。根据 Jade6.0 软件分析, FA 的主要矿物相为硅线石 (Silimanite, Al<sub>2</sub>(SiO<sub>4</sub>)O)、石英 (Quartz, SiO<sub>2</sub>)和赤铁矿 (Hematite, Fe<sub>2</sub>O<sub>3</sub>)等结构。FA 经热处理后,原有的玻璃 网格结构被破坏,生成了钠霞石 (Nepheline, NaAlSiO<sub>4</sub>)、针铁矿 (Goethite, FeO(OH))、白云石 (Dolomite, MgCa(CO<sub>3</sub>)<sub>2</sub>)等新物质。吸附 Cu<sup>2+</sup>后, NaAlSiO<sub>4</sub>、FeO(OH)、MgCa(CO<sub>3</sub>)<sub>2</sub>晶体的衍射峰 的位置未见偏移,但峰的强度有所增强,表明溶 液中 Cu<sup>2+</sup>与钠、铁或钙镁晶体之间存在离子交换 作用<sup>[17]</sup>。结合 MFA 吸附前后的 FTIR<sup>[8]</sup>,可知 MFA 吸附 Cu<sup>2+</sup>的机制主要包括 O—H 等含氧官能 团与 Cu<sup>2+</sup>的络合反应、Cu<sup>2+</sup>与 Na<sup>+</sup>等阳离子发生的 离子交换。



图 4 FA 和 MFA 吸附 Cu<sup>2+</sup>的 XRD Fig.4 XRD spectra of FA and Cu<sup>2+</sup> adsorbed on MFA

## 2.4 Zn<sup>2+</sup>、Pb<sup>2+</sup>的竞争吸附

在吸附床高度9cm、流量2mL/min、Cu<sup>2+</sup>初 始浓度 20 mg/L 的条件下,考察了 Zn<sup>2+</sup>和 Pb<sup>2+</sup>对 Cu<sup>2+</sup>吸附性能的影响,见图 5。对穿透曲线进行三 种动态吸附模型的拟合,发现 Adams-Bohart 模型不能预测双组分混合物中 Cu<sup>2+</sup>的吸附 (R<sup>2</sup>< 0.8), 而 Thomas 模型和 Yoon-Nelson 模型可以较 好地拟合双组分体系中  $Cu^{2+}$ 的穿透曲线 ( $R^2$ :  $0.92 \sim 0.94$ )。Thomas 模型预测的吸附容量( $q_a$ ) 与穿透曲线计算的吸附容量接近。与单组分溶液 相比,双组分体系中 Cu<sup>2+</sup>的吸附耗竭时间和吸附 容量均减小,反映了金属离子间的吸附竞争。 Pb<sup>2+</sup>比 Zn<sup>2+</sup>呈现出更强的抑制作用,表明 Pb<sup>2+</sup>对 MFA 具有较高的亲和力。三种金属离子的水合离 子半径顺序依次为 Pb<sup>2+</sup>(4.01) <Cu<sup>2+</sup>(4.19) < Zn<sup>2+</sup>(4.30),水合半径越小的金属离子空间位阻 越小,越容易接近活性吸附位<sup>[18]</sup>。与 Cu<sup>2+</sup>和 Zn<sup>2+</sup>



图 5 双组分体系中 Cu<sup>2+</sup>的吸附穿透曲线



相较,Pb<sup>2+</sup>的共价指数更高<sup>[19]</sup>,与O原子中的孤对

电子有更强的相互作用而形成络合物[20]。

#### 2.5 吸附剂的损失

表 5 显示了双组分体系中 Cu<sup>2+</sup>的三个动态吸 附模型拟合参数。在动态吸附过程中,吸附剂由 于受到水流的持续冲刷会造成一定的质量损失。 因此,在吸附床高度为 9 cm、进水为去离子水的 条件下,考察了不同流量下 MFA 的损失率随时间 的变化,见图 6。由图 6 可知,随着时间的延长, MFA 的损失率逐渐增加。120 min 后损失率趋于 平稳,流量为 2、3、4 mL/min 对应的损失率分别 为 0.38%、0.52%、0.72%,较低的损失率表明 MFA 是一种比较耐水力冲刷的吸附剂。

| 表 5     | 双组分体系中 Cu <sup>2+</sup> 的动态吸附模型拟合参数                 |
|---------|-----------------------------------------------------|
| Table 5 | Parameters of different models in the binary system |

| 二元体系  | Tho                                                                | Yoon-Nelson模型                           |       |                                   |                |       |
|-------|--------------------------------------------------------------------|-----------------------------------------|-------|-----------------------------------|----------------|-------|
|       | $k_T / (\text{mL} \cdot (\text{min} \cdot \text{mg})^{-1})$        | $q_e/(\mathrm{mg}\cdot\mathrm{g}^{-1})$ | $R^2$ | $k_{YN}/(\min^{-1})$              | τ/min          | $R^2$ |
| Cu-Zn | 1.36                                                               | 1.29                                    | 0.936 | 0.027                             | 132            | 0.936 |
| Cu-Pb | 2.73                                                               | 0.63                                    | 0.925 | 0.055                             | 65             | 0.925 |
|       | Adams                                                              | ms-Bohart模型                             |       | () ((                             |                |       |
|       | $k_{AB}/(10^{-3} \text{ L} \cdot \text{mg}^{-1} \text{ min}^{-1})$ | $N_0/({\rm mg}\cdot{\rm L}^{-1})$       | $R^2$ | $(q_e)_{exp}/(\text{mg} \cdot g)$ | $t_{0.5}$ /min |       |
| Cu-Zn | 0.42                                                               | 1003.38                                 | 0.558 | 1.36                              | 125            |       |
| Cu-Pb | 0.68                                                               | 518.46                                  | 0.776 | 0.59                              | 70             |       |





# 3 结 论

(1)在热改性粉煤灰对 Cu<sup>2+</sup>的动态吸附中, 床层高度、流量以及 Cu<sup>2+</sup>初始浓度均会影响穿透 时间和吸附效率。增加床层高度, Cu<sup>2+</sup>的穿透时间 延长,动态吸附能力增强。提高流量和初始浓 度, Cu<sup>2+</sup>的穿透速率加快,动态吸附率降低。

(2) 采用 Thomas、Yoon-Nelson 和 Adams-

Bohart 模型对动态吸附数据进行拟合,吸附过程符合 Thomas 和 Yoon-Nelson 模型。降低床层高度、增加流量和初始浓度,有助于提高动态吸附速率。

(3) 在双组分体系中, Zn<sup>2+</sup>和 Pb<sup>2+</sup>的存在均
 会抑制 MFA 对 Cu<sup>2+</sup>的动态吸附,抑制性表现为
 Pb<sup>2+</sup>> Zn<sup>2+</sup>。

# 参考文献:

[1] 宋明铭. 高碳粉煤灰综合利用技术研究[J]. 矿产综合利用, 2021(3):93-98.

SONG M M. Study on comprehensive utilization technology of high carbon fly ash[J]. Multipurpose Utilization of Mineral Resources, 2021(3):93-98.

[2] 李沛伦, 胡真, 王成行, 等. 酸改性粉煤灰的制备及其降解选矿废水 COD 研究[J]. 矿产综合利用, 2019(2):103-108.

LI P L, HU Z, WANG C X, et al. Experimental study on preparation of acid modified fly ash and its degradation of COD in mineral processing wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(2):103-108.

YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44.

[4] Huang X R, Zhao H H, Zhang G B, et al. Potential of removing Cd(II) and Pb(II) from contaminated water using a newly modified fly ash[J]. Chemosphere, 2020, 242:125148.

[5] 高宏, 李恒, 贺波, 等. 用改性粉煤灰微珠吸附处理铅锌硫 化矿选矿废水[J]. 湿法冶金, 2018, 37(1):40-43.

GAO H, LI H, HE B, et al. Adsorption treatment of benefication wastewater of Pb-Zn sulfide ore by sulphuric acid modified fly ash[J]. Hydrometallurgy of China, 2018, 37(1):40-43.

[6] 黄训荣, 赵航航, 张贵宾, 等. 改性粉煤灰对废水中镉的吸附作用[J]. 应用生态学报, 2019, 30(9):3215-3223.

HUANG X R, ZHAO H H, ZHANG G B, et al. Adsorption of Cd<sup>2+</sup> from wastewater by modified fly ash[J]. Chines Journal of Applied Ecology, 2019, 30(9):3215-3223.

[7] Zhang P Z, Zhang X X, Yuan X R, et al. Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures[J]. Bioresource Technology, 2021, 331:125013-125021.

[8] 骆欣,杨怡心,徐东耀.热改性粉煤灰对水中 Cu(II) 的吸附研究[J].应用化工,2020,49(9):2242-2251.

LUO X, YANG Y X, XU D Y. Study on adsorption of Cu(II) by thermal modified fly ash[J]. Applied Chemical Industry, 2020, 49(9):2242-2251.

[9] 雷苏, 曾鹏鑫, 王鹏, 等. Na<sub>2</sub>CO<sub>3</sub> 基吸附剂颗粒制备及其 脱碳性能[J]. 化工进展, 2019, 38(8):3562-3571.

LEI S, ZENG P X, WANG P, et al. Investigation on granulation and  $CO_2$  uptake of  $Na_2CO_3$ -based sorbent pellets[J]. Chemical Industry and Engineering Progress, 2019, 38(8):3562-3571.

[10] Li Y, Liu S B, Wang C, et al. Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide[J]. Journal of Hazardous Materials, 2020, 386:121942.1-11.

[11] Hayati B, Maleki A, Najafi F, et al. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems[J]. Chemical Engineering Journal, 2018, 346:258-270.

[12] Dorado A D, Gamisans X, Valderrama C, et al. Cr (III) removal from aqueous solutions: a straightforward model approaching of the adsorption in a fixed-bed column[J]. Journal of Environmental Science and Health Part A, 2014, 49:179-186.

[13] Rokhsare G O, Behruz M, Ali N, et al. Competitive adsorption of nitrate in fixed-bed column packed with bioinspired polydopamine coated zeolite[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):2232-2240.

[14] Zhang X, Bai B, Puma G L, et al. Novel sea buckthorn biocarbon SBC@ $\beta$ -FeOOH composites: efficient removal of doxycycline in aqueous solution in a fixed-bed through synergistic adsorption and heterogeneous Fenton-like reaction [J]. Chemical Engineering Journal. 2016, 284: 698-707.

[15] 杜兆林,陈洪安,秦莉,等.纤维素基吸附材料除污工艺 及吸附模型研究进展[J].农业资源与环境学报,2020, 37(1):6-16.

DU Z L, CHEN H A, QIN L, et al. Decontamination and adsorption modelling by cellulose-based adsorption materials: A review[J]. Journal of Agricultural Resources and Environment, 2020, 37(1):6-16.

[16] He J, Zhou Q H, Guo J S, et al. Incredulity on assumptions for the simplified Bohart-Adams model: 17a-ethinylestradiol separation in lab-scale anthracite columns[J]. Journal of Hazardous Materials, 2020, 384:121501.

[17] Hui K S, Chao C Y H, Kot S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash[J]. Journal of Hazardous Materials, 2005, 127(1-3):89-101.

[18] Zhao D Z, Wang Z, Lu S, et al. An amidoximefunctionalized polypropylene fiber: Competitive removal of Cu(II), Pb(II) and Zn(II) from wastewater and subsequent sequestration in cement mortar[J]. Journal of Cleaner Production, 2020, 274:123049.

[19] Zhu Y, Hu J, Wang J. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan[J]. Journal of Hazardous Materials, 2012, 221-222:155-161.

[20] Chen C, Wang J L. Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2007, 74:911-917.

(下转第187页)