赞比亚某高铁锰矿工艺矿物学特性

刘鹏飞, 孙永升, 袁帅, 韩跃新

(东北大学资源与土木工程学院,辽宁 沈阳 110819)

摘要:赞比亚某高铁锰矿中有用矿物为赤铁矿和各种锰矿物,铁品位为44.71%,锰品位为17.86%。为制 定合适的选别工艺流程,通过光学显微镜、化学分析、X射线衍射等手段,对该矿石的化学成分、矿物组成及 嵌布特征等方面进行的研究。研究结果表明:该矿石中主要的铁矿物为赤铁矿,含量为61.53%;主要的锰矿物 为软锰矿、褐锰矿和硬锰矿,含量分别为18.62%,4.82%和4.66%。最后针对该矿石进行了预富集—磁化焙 烧—磁选实验,最终获得铁精矿铁品位平均值为67.97%;铁作业回收率平均值为94.67%。锰精矿锰品位平均 值为49.85%;锰作业回收率平均值为88.24%。该研究结果对该矿石的分选工艺流程的制定具有一定的指导意 义,同时也能为同类矿石提供借鉴。

关键词:赞比亚;高铁锰矿工艺矿物学;磁化焙烧

doi:10.3969/j.issn.1000-6532.2022.04.006 中图分类号: TD952 文献标志码: A 文章编号: 1000-6532 (2022) 04-0027-06

锰矿石共分为五个基本类型:氧化锰矿石, 碳酸锰矿石,共生多金属锰矿石,硫锰矿石和锰 结核,其中最重要的是氧化锰矿石和碳酸锰矿 石^[1]。近些年来,锰在膳食添加剂的制备、化肥、 细胞和精细化工等领域都发挥着重要作用^[2]。锰在 钢铁行业中主要用于脱硫和脱氧;也用作合金的 添加剂,以提高钢的强度、硬度、弹性极限、耐 磨性和耐腐蚀性等。在高合金钢中,还用作奥氏 体化合元素,用于炼制不锈钢、特殊合金钢、不 锈钢焊条等^[3]。

世界锰矿分布极不均衡,主要分布在南非、 乌克兰、澳大利亚、印度、加蓬、中国等国,其 中南非锰矿资源约占世界的 76.9%,乌克兰占 10%^[4]。我国的锰矿资源特点是"贫、薄、杂、 细",全国平均锰品位只有 21.4%^[5]。

我国是世界上最大的锰矿石进口国。2019年

我国锰矿进口量已超过 3000 万 t, 且短时间内仍 将是全球第一消费大国^[6]。我国锰矿石资源供求现 状决定了我国必将长期依赖进口锰矿石^[7],因此, 对赞比亚某高铁锰矿进行矿物工艺学研究,以期 建立合适的分选流程,解决我国锰矿需求。

1 矿石物质组成分析

1.1 化学多元素分析

矿石主要化学成分分析见表1。

表1表明,该矿石的主要化学元素为铁和 锰,矿石中铁品位为44.71%,锰品位为17.86%, 其中二价锰含量极少,说明该矿石属于高铁锰 矿;有害元素磷和硫含量均较低;SiO₂、Al₂O₃、 CaO、MgO和烧失量均不高,说明该矿石中碳酸 盐和硅酸盐矿物较少;铁和锰为该矿石中主要有 用元素,其他元素利用价值较小。

表 1	原矿	「化学多元素分析/%
-----	----	------------

		Та	ble 1 Resu	lts of raw n	naterial chem	ical multi-e	lement analy	ysis		
TFe	FeO	Mn	Mn^{2+}	SiO ₂	Al_2O_3	CaO	MgO	Р	S	烧失
44.71	<0.1	17.86	< 0.1	5.08	1.98	0.18	0.26	0.022	0.004	2.72

收稿日期: 2020-06-25

基金项目:磁化焙烧过程中铁矿物的物相转化及调控机制(51874071)

作者简介:刘鹏飞(1994-),男,硕士研究生在读,目前主要从事锰矿研究。

1.2 铁化学物相分析

矿石中铁化学物相分析结果见表2。

表 2 表明,该矿石中的铁主要赋存于赤铁矿 矿物中,占总铁含量的 98.18%,其次是磁铁矿, 占 0.79%,其他形式铁含量较少。

1.3 锰化学物相分析

矿石中锰化学物相分析结果见表 3。

表 3 表明,该矿石中的锰主要赋存于软锰矿 矿物和水、褐锰矿矿物中,分别占总锰含量的 77.35%和18.83%,少量赋存在菱锰矿中。

_	Table 2Iron phase analysis results of the ore								
	名称	赤铁矿中铁	磁铁矿中铁	硫化铁中铁	碳酸铁中铁	硅酸铁中铁	总铁		
	含量/%	42.04	0.34	0.22	0.10	0.12	42.82		
	分布率/%	98.18	0.79	0.51	0.23	0.28	100.00		
_								7	

表? 矿石铁化学物相结果分析

农 3 前 4 通 化 子 物 伯 细 化 子 物 伯 细 木 力 彻								
Table 3Manganese phase analysis results of the ore								
名称	软锰矿中锰	水、褐锰矿中锰	菱锰矿中锰	总锰				
含量/%	13.97	3.40	0.69	18.06				
分布率/%	77.35	18.83	3.82	100.00				

主。 拉丁经化学物相线电八轮

1.4 矿石的矿物组成

矿石的 XRD 见图 1, 矿石的矿物组成及含量 见表 4。

从图1中可以看出:该矿石中主要金属矿物 为赤铁矿和软锰矿,主要脉石矿物为石英。

表 4 表明,该矿石中金属矿物主要为赤铁 矿,含量为 61.53%,其次为软锰矿、褐锰矿和硬 锰矿,含量分别为 18.63%、4.82% 和 4.66%,脉 石矿物主要为黏土矿物和石英,含量分别为 6.8% 和 2.72%。

图 1 原矿 XRD Fig.1 XRD analysis of raw ore

表 4 矿石中主要矿物组成及	含量
----------------	----

		Table 4	Main minera	is composition	and contents of	the ore		
名称	赤铁矿	软锰矿	褐锰矿	硬锰矿	水锰矿	石英	黏土矿物	合计
含量/%	61.53	18.62	4.82	4.66	0.85	2.72	6.80	100.00

2 矿石构造和矿物构造

2.1 矿石构造

通过对该矿石的标本观察可知,该矿石构造 主要包含:块状构造,胶状构造和浸染状等。

(1)块状构造。矿石中的金属矿物如赤铁 矿、硬锰矿和褐锰矿等以其中一种为主,构成致 密集合体,其中金属矿物含量在80%以上的形成 块状构造。

(2)胶状构造。矿石中部分硬锰矿以胶状产 出,呈胶状构造。

(3)浸染状构造。矿石中的部分赤铁矿、硬 锰矿等以粗细不等的粒状嵌布在脉石矿物中,且 无定向排列,形成浸染状构造。

2.2 矿物构造

(1) 自形半自形晶构造。矿石中的赤铁矿主 要以自形、半自形的板状、片状、粒状产出,形 成自形-半自形晶结构。

(2)他形晶构造。矿石中的部分褐锰矿和硬 锰矿以他形晶产出,不具任何完好晶面,形成他 形晶结构。

(3) 交代构造。矿石中的褐锰矿蚀变生成硬 锰矿,硬锰矿沿边缘和内部交代褐锰矿,二者连 晶产出,形成交代结构。

3 矿石中主要矿物的嵌布特征

3.1 赤铁矿

矿石中的赤铁矿含量高,主要以自形-半自形

的板状、片状、粒状和鳞片状的致密集合体,集 合体颗粒十分粗大,少量赤铁矿嵌布在脉石中 (图 2(a)、(b)、(c)、(d))。部分赤铁矿的粒间充

(a) 赤铁矿 (Ht) 以鳞片状集合体产出

(c) 赤铁矿 (Ht) 以板状集合体产出

填粒状、不规则状、脉状的褐锰矿、硬锰矿和软 锰矿,一些细粒赤铁矿分布在褐锰矿和硬锰矿中 (图 2(e)、(f))。

(b) 赤铁矿 (Ht) 以粒状、板状和片状集合体产出

(d) 赤铁矿 (Ht) 嵌布在脉石 (G) 中

(e) 褐锰矿 (Brn) 充填在赤铁矿 (Ht) 粒间并包裹赤铁矿

(f) 胶状硬锰矿 (Ps) 嵌布在赤铁矿 (Ht) 中

图 2 赤铁矿嵌布特征 Fig.2 Dissemination characteristics of hematite

3.2 褐锰矿

褐锰矿以致密的粒状集合体产出,颗粒粗 大,在矿石中较集中分布。常见褐锰矿常以粒 状、不规则状和脉状充填在赤铁矿粒间和集合体 的裂隙中,并包裹细粒的赤铁矿(图 2(e)、图 3(a)、 (b))。褐锰矿常发生蚀变生产硬锰矿,二者连晶 共生,硬锰矿在褐锰矿中呈斑点状、脉状、网状 分布。有的褐锰矿蚀变严重,仅剩余少量细粒褐 锰矿包裹在硬锰矿中(图 3(c)、(d))。

3.3 硬锰矿

硬锰矿主要为褐锰矿蚀变矿物,多以不规则

状、斑点状、细脉状和网状分布在褐锰矿中,二 者连晶共生,形成致密的块体。常见硬锰矿与褐 锰矿一起充填在赤铁矿的粒间,并包裹细粒赤铁 矿,少量以胶状、土状和波纹状嵌布在脉石中 (图 3(c)、图 4(a))。硬锰矿常与软锰矿连晶共 生,包裹细粒软锰矿(图 4(b))。

3.4 软锰矿

部分软锰矿以粒状、柱状产出,多与硬锰矿连 晶共生,嵌布在硬锰矿中。少量软锰矿充填在赤铁 矿粒间和嵌布在脉石中,另一部分以胶状、土状产出, 分布在脉石中,粒度较细小(图4(b)、图5(a)、(b))。

(a) 褐锰矿 (Brn) 中分布细粒赤铁矿 (Ht)

(b) 褐锰矿 (Brn) 充填在赤铁矿 (Ht) 粒间

(c) 褐锰矿 (Brn) 与硬锰矿 (Ps) 连晶共生,包裹赤铁矿 (Ht) (d) 褐锰矿 (Brn) 沿裂隙和内部蚀变为硬锰矿 (Ps) 图 3 褐锰矿嵌布特征

Fig.3 Dissemination characteristics of braunite

(a) 硬锰矿 (Ps) 以胶状分布在脉石 (G) 中

(b) 硬锰矿 (Ps) 和软锰矿 (Pu) 连晶共生

图 4 硬锰矿嵌布特征 Fig.4 Dissemination characteristics of psilomelane

(a) 软锰矿 (Pu) 以胶状产出,包裹细粒赤铁矿 (Ht)

(b) 软锰矿 (Pu) 以粒状嵌布在脉石 (G) 中

图 5 软锰矿嵌布特征 Fig.5 Dissemination characteristics of pyrolusite

4 主要矿物工艺粒度

矿石中嵌布粒度特征是矿石的重要性质,其 中赤铁矿、软锰矿、褐锰矿和硬锰矿和为回收矿 物,对其进行粒度测定。根据选矿需要,将褐锰 矿、硬锰矿和软锰矿统计结果合并计为锰矿物。 主要矿物工艺粒度统计结果见表 5。

从表 5 看,赤铁矿和锰矿物在+0.15 mm 粒级 中的分布率分别为 93.12% 和 81.42%,可见赤铁矿 和锰矿物的粒度以粗粒嵌布为主。

粒度/mm	赤铁矿分布率/%	累计含量/%	锰矿物分布率/%	累计含量/%
+0.15	93.12	93.12	81.42	81.42
-0.15+0.10	2.74	95.86	7.78	89.20
-0.10+0.075	1.46	97.32	3.62	92.82
-0.075+0.053	0.55	97.87	2.67	95.49
-0.053+0.037	1.33	99.20	3.30	98.79
-0.037	0.80	100.00	1.21	100.00
合计	100.00	100.00	100.00	100.00

表 5 主要矿物工艺粒度统计结果

5 选别工艺流程

基于对该高铁锰矿矿物工艺学的研究,制定 两种选别方案。方案一是对原矿直接进行悬浮磁 化焙烧,磁化焙烧产品进行弱磁选;方案二是先 对原矿进行一段强磁预富集,预富集产品再进行 悬浮磁化焙烧和弱磁选。方案一和方案二我们均 进行半工业化实验,具体条件和指标如下:

在方案一中,针对-1 mm 原矿物料开展了还 原温度、还原剂用量、还原气氛、处理量等悬浮 磁化焙烧系件实验。确定-1 mm 物料适宜的悬浮 磁化焙烧工艺参数为:还原温度 500℃以上、处 理量 80 kg/h、CO 用量 8.0 m³/h、H₂ 用量 4.0 m³/h、 N₂ 用量 14.7 m³/h、总气量 26.7 m³/h、还原剂浓度 40%、过剩系数 1.5; -1 mm 原矿物料在悬浮磁化 焙烧 500℃ 下连续稳定运行,焙烧样品磁选管磁 选后,铁精矿铁品位平均值为 66.60%;铁回收率 平均值为 93.93%。锰精矿锰品位平均值为 46.22%; 锰回收率平均值为 87.29%。

对于方案二,同样针对-1 mm 物料采用一段 强磁预富集工艺可获得 TFe 品位 46.64%,锰品位 17.92% 的预富集精矿,针对该预富集精矿开展了 还原温度、还原剂用量、还原气氛、处理量等悬 浮磁化焙烧条件实验。适宜的悬浮磁化焙烧工艺 参数为:还原温度 500℃ 以上、处理量 80 kg/h、CO 用量 7.5 m³/h、H₂ 用量 3.8 m³/h、N₂ 用量 13.8 m³/h、 总气量 25.1 m³/h、还原剂过剩系数 1.4;预富集精 矿在悬浮磁化焙烧 500℃ 下连续稳定运行,焙烧 样品磁选管磁选后,铁精矿铁品位平均值为67.97%; 铁作业回收率平均值为94.67%。锰精矿锰品位平 均值为49.85%;锰作业回收率平均值为88.24%。

6 结 论

(1) 矿石中金属矿物含量高,金属矿物主要 为赤铁矿、硬锰矿、褐锰矿和少量软锰矿,脉石 矿物主要为石英。

(2)赤铁矿与锰矿物之间嵌布关系较密切, 赤铁矿粒间充填锰矿物,一些细粒赤铁矿包裹在 锰矿物中,赤铁矿与锰矿物较难完全解离。

(3) 锰矿物之间嵌布关系十分密切,硬锰矿 常呈脉状、网状分布在褐锰矿中,硬锰矿常包裹 细粒软锰矿难以彼此解离。

(4) 部分硬锰矿和软锰矿以胶状、土状产 出,增加了回收难度。

(5) 在矿物工艺学研究的基础上,分别为磁 化焙烧—弱磁选和预富集—磁化焙烧—弱磁选, 两种工艺均可达到良好的指标。

参考文献:

[1] 王世磊, 章贤臻, 李运姣, 等. 天然锰矿低温 NH₃-SCR 烟 气脱硝催化活性研究[J]. 矿产综合利用, 2020(1):76-82.

WANG S L, ZHANG X Z, LI Y J, et al. Performance of low temperature no catalytic oxidation activity of natural manganese ore catalysts[J]. Multipurpose Utilization of Mineral Resources, 2020(1):76-82.

[2] 何欢聚,季淑娟. 基于专利信息的电解锰渣资源化利

用[J]. 矿产综合利用, 2019(6):7-12.

HE H J, JI S J. Resource utilization of electrolytic manganese slag based on patent information[J]. Multipurpose Utilization of Mineral Resources, 2019(6):7-12.

[3] Zhuo Cheng, Guocai Zhu, Yuna Zhao. Study in reductionroast leaching manganese from low-grade manganese dioxide ores using cornstalk asreductant[J]. Hydrometallurgy, 2008, 96(1):176-179.

[4] 柴斌. 高铁锰矿固态还原—磁选及强化技术 [D]. 长沙: 中南大学, 2013.

CHAI B. Process for solid-state reduction and magnetic separation of high iron content manganese ore and its streng-thening technology[D]. Changsha: Central South University, 2013.

[5] 洪世琨. 我国锰矿资源开采现状与可持续发展的研究[J].

中国锰业, 2011, 29(3):13-16.

HONG S K. Research on the mining status and sustainable development of manganese ore resources in China[J]. China's Manganese Industry, 2011, 29(3):13-16.

[6] 邢万里, 王安建, 王曼丽. 全球锰资源供需形势简析[J]. 矿床地质, 2014, 33(S1):873-874.

XING W L, WANG A J, WANG M L. Brief analysis of global manganese resource supply and demand situation[J]. Mineral Deposits, 2014, 33(S1):873-874.

[7] 赵鹏. 高铁锰矿煤基直接还原—分选研究 [D]. 长沙: 中南 大学, 2012.

ZHAO P. Process for coal-based direct reduction and magnetic separation of high-iron manganese ore[D]. Changsha: Central South University, 2012.

Research on Process Mineralogy of a High-iron Manganese Ore in Zambia

Liu Pengfei, Sun Yongsheng, Yuan Shuai, Han Yuexin

(College of Resource and Civil Engineering, Northeastern University, Shenyang, China)

Abstract: The useful mineral in a high-iron manganese ore in Zambia is hematite and various manganese minerals, and the iron grade is 44.71%, the manganese grade is 17.86%. In order to make an appropriate sorting process, the chemical composition, mineral composition and embedded characteristics of the ore were studied by optical microscope, chemical analysis and X-ray diffraction. The research results show that the main iron mineral is hematite, the content is 61.53%; the main manganese minerals are anthracite, limonite and soft manganese, the content are 18.62%, 4.82% and 4.66%. Finally, pre-concentration-magnetization roasting-magnetic separation test was carried out on the ore, and the average TFe grade was 67.97%, the average recovery rate was 94.67%; the average Mn grade was 49.85%; the average recovery rate was 88.24%. The research results have certain guiding significance for the formulation of the ore sorting process, and also can provide a reference for similar ore.

Keywords: Zambia; Process mineralogy of high-iron manganese; Magnetization roasting