叠前时间偏移成像技术及其应用

崔汝国¹ 潭天¹ 凌勋² 贾明辰² 段云卿¹

(1. 中国地质大学 地下信息探测技术与仪器重点实验室,北京 100083;2. 中国石油新疆油田分公司 勘探开发研究院,新疆 克拉玛依 834000)

摘要:零炮检距剖面是地震反射成像过程中的重要成果。通过弯曲反射界面模型,分析了共中心点(CMP)道集与共反 射点(CRP)道集的差别,认为当反射界面倾斜时,常规处理中的CMP叠加不能得到准确的零偏移距剖面,而沿CRP道集 叠加的叠前时间偏移能得到准确的零偏移距剖面,另外,还介绍了叠前时间偏移的实现方法和步骤,包括预处理、偏移速 度场的建立和偏移后CRP道集的处理等,并结合实际资料进行了效果分析。

关键词 :零偏移距剖面 ;共中心点道集 ;共反射点道集 :叠加 :叠前时间偏移

中图分类号: P631.4 文献标识码: A 文章编号: 1000 - 8918(2006)06 - 0541 - 04

地震偏移成像技术一般可分为叠后偏移和叠前 偏移 其目的都是为了使地下地质构造能准确成像。 随着油气勘探目标复杂程度的不断增加,对地震成 像的精度提出了越来越高的要求。在共中心点 CMP(common mid point)叠加基础上的叠后偏移剖 面已不能适应地质解释的要求,为此,叠前偏移已成 为地震资料处理的基本要求。叠前偏移又分时间偏 移和深度偏移。叠前时间偏移与叠前深度偏移虽然 都能适应非水平层状的地质界面 但它们对速度模 型的适应程度是不同的。由于叠前深度偏移对速度 模型的精度要求远比叠前时间偏移对速度模型精度 要求要高,所以在实际的资料处理中,还是以叠前时 间偏移为主^[1]。笔者从分析倾斜反射界面下 CMP 道集与 CRP(common reflection point)道集的不同出 发 介绍叠前时间偏移的实现过程及其特点。与叠 后时间偏移相比,它不仅能实现真正的共反射点叠 加 同时能正确确定出反射点的真实位置 使成像比 叠后偏移更加准确可靠。

1 CMP 道集与 CRP 道集

若地下反射界面为水平层状介质,则 CMP 道集 与 CRP 道集没有区别;当地下反射界面为非水平层 状介质时,CMP 道集与 CRP 道集就不是一回事。现 以图1说明两者的区别²¹。

图的下半部分是一个弯曲反射界面,界面以上 为常速介质,如果在该模型上方沿地震测线方向进 行多次覆盖数据采集,就可以得到如该图上半部分

图1 弯曲反射界面情况下的 CRP 道集与 CMP 道集示意 所示的不同炮检距的共炮检距时距曲线,从外向里 的顺序是从零炮检距到最大炮检距。所有的共炮检 距时距曲线组成了这一段弯曲模型的共炮检距时距 曲面。R 为弯曲反射界面上一个反射点 S 和 G 表 示关于反射点 R 的某一个炮检距对 x_0 是从该点零 炮检距出射到地表的位置 P_0 对应 R 点的零炮检距 双程时间 P_h 对应 R 点的最大炮检距双程时间。连 接 P_0 和 P_h 的这根曲线就是关于 R 点的 CRP 道集。 如果在 x_0 处用一个垂直平面切割共炮检距时距曲 面 ,那么这个切面就是通常我们所分选出的关于 R点的 CMP 道集。由此可见 ,在非水平层状介质情形 下 ,CMP 道集与 CRP 道集并不重合 ,只有在水平层 状介质情况下 ,CRP 道集才将退回到 CMP 道集。

常规的共中心点叠后以水平层状介质模型为基础,而叠前时间偏移则是在叠前数据中沿着CRP道

集进行叠加。一般来说,仅从常规的 CMP 叠加并不 能得到真正的零炮检距剖面,只有沿着 CRP 道集进 行叠加,才能得到真正的零炮检距剖面。

2 叠前时间偏移方法的实现^[3-4]

虽然实现叠前时间偏移的方法很多,但在实际 资料处理中,常用方法主要还是克希霍夫积分法。 积分法偏移的基础是应用波动方程的克希霍夫积分 解来解决反射层的偏移问题。一般情况下,它不受 反射界面倾角的影响,是当前应用较广的一种偏移 方法。

众所周知,当介质为均匀、各向同性且完全弹性 时,纵波波动方程为

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} \, . \tag{1}$$

它的克希霍夫积分解的形式为

$$u(x \ y \ z \ t) = \frac{1}{2\pi} \iint [u(x_0 \ y_0 \ z_0 \ t_0)]$$
$$\frac{\partial}{\partial z_0} \frac{\partial (t - t_0 - r/v)}{r}] dt_0 dA_0 , \qquad (2)$$

式中 $\mu(x, y, z, t)$ 为波场函数值 ν 为波的传播速度; A_0 为地面观测平面 $\mu(x_0, y_0, z_0, t_0)$ 为波场地面观测 值 $\lambda(t - t_0)$ 为在 $t = t_0$ 时震源激发形成的 δ 脉冲函 数 γ 为波传播的距离 $\mu(t_0, z_0)$ 是波从地下点(x_0, y_0, z_0) 达地面(x_0, y_0, z_0)沿射线路径的传播时间。

对于叠前时间偏移,要同时将炮点和检波点向 下延拓。采用 Berryhill 波场延拓的求和公式

$$u(x \ y \ z \ t) = \frac{1}{\pi} \sum \beta \frac{z}{r} F * u(x_0 \ y_0 \ z_0 \ t + t_0)$$
(3)

式中 β 是加权因子 ;F 是滤波因子。做叠前时间偏 移时 ,有 z = 0 ,所以叠前时间偏移的计算公式可以 写成

$$u(x \ t) = \frac{1}{\pi} \beta_{S} \beta_{G} \frac{\tau^{2}}{t_{S} t_{G}} F_{S} * F_{G} * u(x_{0} \ \beta \ t_{S} + t_{G})$$
(4)

式中 S 为炮点 C 为接收点 τ 是时间深度坐标 ,地 面 $\tau = 0$ $\mu_s + t_c$ 是信号从震源经反射点回到接收点 的旅行时。

3 叠前时间偏移的应用

3.1 偏移前数据预处理

叠前时间偏移成像处理的输入为经过预处理的 CMP 道集数据,而输入道集数据的信噪比、静校正 量、振幅的不均匀性以及基准面的选择都会影响共 中心点道集的质量,制约偏移的成像效果。因此,在 预处理中应着重做好野外静校正、振幅恢复与补偿、 叠前去噪、子波处理、速度分析与剩余静校正迭代等 工作,提高叠前资料信噪比和叠加速度的精度,为叠 前时间偏移提供良好的基础资料。

3.2 叠前时间偏移实现步骤

根据克希霍夫积分算法原理,克希霍夫积分叠 前时间偏移过程由2部分组成: 克希霍夫波动积分 处理和反射波旅行时的计算。在实际应用中,叠前 时间偏移采用了图2所示的流程,其主要步骤有:① 将常规处理后的数据抽成 CMP 道集 明确道集内地 震道偏移距分布 对道集内具有相同偏移距的道进 行相加,并对所缺偏移距根据偏移距间距补充零值 道 从而使每一个 CMP 道集内的偏移距分布均匀: ②将最终叠加速度场经内插及平滑处理作为初始偏 移速度场 对输入 CMP 道集在共偏移距域内进行偏 移 得到初始 CRP 道集 ;③利用相同的速度场 ,对 CRP 道集进行反动校正,并对反动校正后的 CRP 道 集重新进行速度分析 得到新的偏移速度场 ④利用 新的偏移速度场 对输入 CMP 道集重新进行叠前时 间偏移,得到新的 CRP 道集; ⑤采用监控手段检查 CRP 道集是否拉平,判断偏移速度准确与否,并对 局部速度异常进行调整 最终完成叠前时间偏移的 全过程。

图 2 叠前时间偏移流程

在整个处理流程中,建立合理的、高精度的速度 模型尤为重要,它是叠前时间偏移取得成功的关键。 克希霍夫积分法偏移可输出单道偏移结果,从而可 以使偏移速度分析在指定的 CRP 点上进行。也就 是说,叠前时间偏移能让速度分析和偏移成像同时 进行,通过偏移速度分析来提高速度模型的精度,保 障叠前时间偏移的质量。从流程图也可以看出,速 度模型的建立是一个复杂费时的迭代过程。在处理 过程中,要充分利用工区内的地质、钻井、测井和 VSP 资料,建立合理和高精度的速度模型。另外,对 于 CRP 道集内同相轴拉不平的问题,可采用剩余动 校正方法进行校正。该方法是应用剩余速度进行剩 余动校正。剩余速度是直接用 CRP 道集生成速度 谱 ,通过剩余速度分析方法得到。

3.3 偏移效果分析

叠前时间偏移首先从理论上取消了输入数据为 零偏移距的假设,避免了正常时差校正叠加所产生 的畸变;其次,叠前时间偏移采用不同炮检距的资 料,既适用于大倾角的偏移成像,又包含了速度信 息,是复杂地区地震数据成像一种较好的方法;第 三,它能消除速度分析过程中不同倾角和位置的反 射带来的影响,提高速度分析结果的精度和成像的 质量,并能对陡倾角反射进行较好的成像,提高横向 分辨率。图 3a 为某三维工区内一条测线的叠后时 间偏移剖面,图 3b 则为该测线的叠前时间偏移剖 面。在剖面的中段(4.2 s 附近),叠前时间偏移剖 面比叠后时间偏移剖面更能刻画地下地质情况。在 叠前时间偏移剖面中,地层接触关系清楚,小断裂清 断,断点干脆,成像效果明显优于叠后时间偏移。

a—叠后时间偏移剖面 ;b—叠前时间偏移剖面

图 4 叠前时间偏移与叠后时间偏移效果对比

图 4a 为某测线的叠后时间偏移剖面,偏移归位 不准,波组特征不清晰,而且背景干扰严重,很难进 行精确的地震地质解释;图 4b 为叠前时间偏移剖 面,地震波组特征清楚,地层接触关系与断层清晰, 构造形态一目了然,信噪比高,易于进行精细的构造 解释和落实断层的空间展布及平面组合。

4 结束语

叠前时间偏移提供了较为精确的零偏移距剖 面,是解决复杂构造地区成像的一种行之有效的技 术方法。但叠前时间偏移只在速度横向变化不剧烈 的情况下语应较好,如果速度的横向变化很大,则需 要进行叠前深度偏移。另外,叠前时间偏移不是一 个孤立的处理流程,它与常规叠前处理密不可分,只 有作好常规叠前处理,获得高质量的叠前数据,叠前 时间偏移才能取得好的成像效果。与此同时,合理 准确的速度模型也是叠前时间偏移成功的关键,速 度模型的建立要综合多种因素,并经叠前偏移和速 度分析的多次迭代。

参考文献:

- [1] 马在田. 论反射地震偏移成像[J]. 勘探地球物理进展 2002, 25(3):1.
- [2] Perroud H , Hubral P , Hocht G , et al. Migrating around in circles

——Part III[J]. The Leading Edge ,1997,16(8) 875.
 [3] 熊翥.复杂地区地震数据处理[M].北京:石油工业出版社, 2002.

[4] 罗银河,刘江平,俞国柱.叠前深度偏移评述[J].物探与化探, 2004 28(6) 540.

THE PRESTACK TIME MIGRATION TECHNOLOGY AND ITS APPLICATION

CUI Ru-guo¹ ,Qin Tian¹ ,Ling Xun² ,Jia Ming-cheng² ,DUAN Yun-qing¹

(1. Geo-detection Laboratary Ministry of Education China University of Geosciences Beijing 100083 China ; 2. Research Institute of Exploration and Development, Xinjiang Branch Company of PetroChina, Karamay 834000 China)

Abstract: The zero-offset (z_0) section is an important achievement in seismic reflection imaging. The differences between the common midpoint (CMP) and the common reflection point (CRP) are discussed on the basis of the dome-like reflector model. In usual seismic data processing , we cannot get the correct z_0 sections if oblique layers are imaged. However, the prestack time migration technique using CRP stacking can help us to obtain the correct z_0 sections. This paper discusses the key steps in the application of such prestack time migration techniques as seismic data preprocessing , construction of migration-velocity field and CRP gather processing after migration. The processing effects are demonstrated with real data.

Key words : zero offset section ;common midpoint(CMP) gather ; common reflection point(CRP) gather ; stacking ; prestack time migration

作者简介:崔汝国(1969-),男,高级工程师,一直从事地震勘探技术研究工作,现为中国地质大学(北京)在读博士研究生, 公开发表学术论文数篇。

Abstract: The quantity of seismic signal data is very large. If merely composite succession FFT algorithm is used to process the seismic signal , the data quantity will be doubled and redoubled , and hence the calculation will become cumbersome. Aimed at the problem of the real succession of the seismic signal , this paper deals with the fast Fourier transform of the real signal. Three fast Fourier transform algorithms for real successions are put forward , a quantitative analysis for reducing the calculation work was made , and the practical seismic data were computed. It can be seen from the analytical and computation results that these three methods can obviously reduce the quantity of calculation and save the storage space of the computer.

Key words : seismic signal processing real signal Fourier transformation fast Fourier transform

作者简介 : 孙祥娥 (1970 –),女 副教授 ,长江大学电信学院 ,成都理工大学博士研究生 ,研究方向为现代数字信号处理及其在 石油勘探开发中的应用 ,公开发表学术论文数篇。