矿产保护与利用

CONSERVATION AND UTILIZATION OF MINERAL RESOURCES

№.6 Dec. 2007

一种超细粒嵌布铁矿石的选矿研究与评价

牛艳萍¹, 许洪峰^{2,3}, 葛凤⁴, 丁淑芳⁵, 何章辉¹

(1. 黑龙江省地质矿产测试应用研究所,哈尔滨,150036; 2. 武汉理工大学,武汉,430070; 3. 牡丹江环保局,牡丹江,157000; 4. 煤炭科学总院唐山研究院,唐山,063012; 5. 黑龙江科技学院,哈尔滨,150057)

摘要:青海某地含少量氧化矿的磁铁矿,矿物组成简单、有用矿物嵌布极细,属于难选矿石。采用阶段性磨矿、阶段性弱磁选及反浮选工艺后,磨矿细度 - 500 目达到 95% 以上,铁精矿 TFe 61.11%,回收率为 45.98%,产率为 24.74%。

关键词:磁铁矿;赤铁矿;弱磁选;反浮选;正交试验

中图分类号:TD951.1 文献标识码:B 文章编号:1001-0076(2007)06-0029-03

Mineral Processing Research and Assessment for an Ultra - fine - grained Dissemination Iron Ore

NIU Yan - ping, XU Hong - feng, GE Feng, et al.

(Heilongjiang Institute of Geology & Mineral Resources Testing & Application, Harbin 150036, China)

Abstract: The magnetite ore from Qinghai province with fewer minerals while contenting a little iron oxidized mineral is very difficult to be separated because of ultra – fine – grained dissemination of the iron minerals. By a process of "stage grinding – stage low – intensity magnetic separation – reverse flotation", a concentrate of 61.11% Fe can be obtained with a recovery of 45.98% and a yield of 24.74%. After grinding, –500 mesh in the minerals should be over 95%.

Key words: magnetite; hematite; reverse floatation; orthogonal test

青海某地铁矿床属沉积岩型铁矿,主要可回收的矿物为磁铁矿、赤铁矿,脉石矿物主要为硅酸盐。该矿石矿物组成简单,有用矿物嵌布极细而难选。

1 试样

1.1 原矿多元素化学分析结果

原矿多元素化学分析结果见表1。

表 1 原矿多元素化学分析结果(%)

组分 TF	e FeO	Fe ₂ O ₃	SiO ₂	TiO ₂	Al_2O_3	CaO	MgO
含量 32	88 11.56	35.23	40.32	0.50	2.50	3.88	2.03
组分 Na	O K ₂ O	P2O5	S	H ₂ O	Cu	Zn	烧失
含量 0.	20 0.99	0.74	0.17	0.14	0.02	0.041	0.69

从表 1 可以看出, $TFe/FeO^{[1]}$ 的比值为 2.84(>2.7),说明矿石是以磁铁矿为主的混合矿。

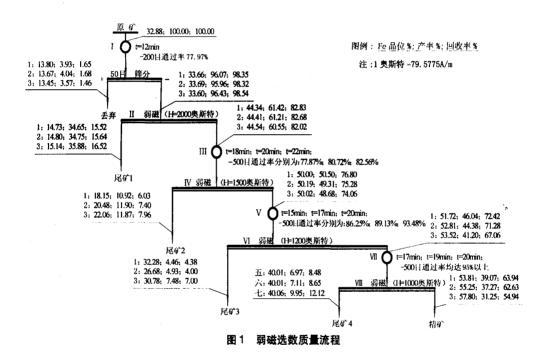
1.2 原矿的矿物组成及嵌布特征

表 2 原矿的矿物组成(%)

矿物	磁铁矿	假象赤铁矿	赤铁矿	菱铁矿	黄铁矿
含量	32.60	5.96	8.66	1.20	0.80
矿物	石英	粘土矿物	金红石	其它	
含量	38.35	10.70	1.00	1.00	

从表 2 可以看出, 矿石中脉石矿物种类较简单, 主要是石英, 少量的粘土矿物。磁铁矿是选矿回收 的主要对象, 多呈半自形或他形粒状产出, 根据结晶 粒度, 矿石中微细粒级磁铁矿分布广泛, 粒度为 10

[•] **收稿日期**:2007 - 08 - 17;**修回日期**:2007 - 09 - 24 **作者简介**:牛艳萍(1981 -),女,汉,硕士,现主要从事金属及非金属选矿与深加工工作。


~5 μm 之间,是最主要产出形式;赤铁矿,条状,颗粒细小,一般小于 5 μm,和磁铁矿共生在一起。总的来说,磁铁矿的嵌布粒度太细,脉石和磁铁矿共生,通过磨矿不容易解离,在一定程度上影响铁精矿的质量,并将导致尾矿的品位偏高,精矿回收率低。

1.3 铁元素的赋存状态及分布

表3 铁的化学物相分析结果(%)

铁物相	磁铁 矿	假象赤 铁矿	菱铁矿	赤褐铁矿	硫化 铁	硅酸 铁	TFe
含量	23.37	3.28	0.59	4. 81	0.05	0.78	32.88
分布率	71.08	9.98	1.79	14.63	0.15	2.37	100.00

由表3可知,矿石中铁主要以磁铁矿的形式存在,分布率为71.08%;以假象赤铁矿形式存在的铁分布率为9.98%,以赤(褐)铁矿形式存在的高价氧化铁分布率为14.63%;赋存在硫化物中的Fe、碳酸铁的含量较低,分布率分别为0.15%、1.79%。如采用弱磁选回收矿石中的铁矿物,71.08%即为铁的最大理论回收率;假象赤铁矿和赤铁矿中的铁可能损失掉,这部分Fe的分布率为24.61%,如磨矿后它们仍与磁铁矿连生,则可能进入铁精矿。如采用强磁一弱磁选工艺,最大理论回收率为95%,硫化物铁加上硅酸盐中铁和碳酸盐中的铁分布率合计为4.31%,即为选矿铁的理论损失率。

1.4 铁矿物的粒度特性

表 4 铁矿物嵌布粒度统计结果(%)

粒级(μm)	产率	累积产率	粒级(μm)	产率	累积产率
+10	17.51		-2+1.6		
-10+6.5	28.67	46. 18	-1.6+1.3	0.99	99.60
-6.5 + 5	16.20	62.38	-1.3+1.0	0.35	99.95
-5 + 2.6	26.98	89.36	-1.0	0.05	100.00
-2.6+2	6.87	96.23			

由表 4 可知,要使铁矿物单体解离,累计分布率在 89.36%时,磨矿细度为 +2.6 μm。由此认为,该

铁矿的嵌布粒度太细,一般磨矿很难单体解离。

2 磁选试验

采用弱磁选流程,进行三种不同磨矿细度的弱磁选试验,数质量流程见图1。

从图1可看出,3号铁精矿的品位高于其它流程,达到57.80%,这是因为通过增加磨矿时间,使矿物单体解离更充分,从而提高了磁选的效果。

3 反浮选试验

采用脂肪酸类捕收剂对3号磁选精矿进行反浮

选以去除石英为主的脉石矿物,用正交试验确定适合的反浮选药剂制度,流程见图2,因素和水平见表5,试验结果见表6,正交试验的结果分析见表7。

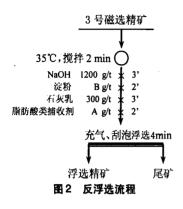


表5 反浮选试验的因素和水平

水平	A、捕收剂(g/t)	B、淀粉(g/t)	C、充气量(m³/h)
1	100	400	0.008
2	160	600	0.012

表6 正交试验结果(%)

试验号	产品	全流程产率	TFe	回收率	选矿效率
	浮尾	25.59	59.81	46.55	20.96
1	浮精	5.66	48.73	8.39	2.73
	小计	31.25	57.80	54.94	23.69
	浮尾	15.79	63.32	30.41	14.62
2	浮精	15.46	52.17	24.53	9.07
	小计	31.25	57.80	54.94	23.69
	浮尾	23.78	60.68	43.88	20.10
3	浮精	7.47	48.65	11.06	3.59
	小计	31.25	57.80	54.94	23.69
	浮尾	22.72	60.22	41.61	18.89
4	浮精	8.53	51.36	13.33	4.80
	小计	31.25	57.80	54.94	23.69

表7 正交试验的结果分析

	各	因素的	水平	Market E(M)
试验号	A	В	С	. 选矿效率 E(%)
1	1	1	1	20.96
2	2	1	2	14.62
3	1	2	2	20. 10
4	2	2	1	18.89
E	41.06	35.58	39.85	E \$\sqrt{E} = 74.52
\mathbf{E}_{1}	33.51	38.99	34.72	$E_T = \sum_{i=1}^{n} E_i = 74.57$
$\overline{E}_1 = 1/3E_1$	20.53	17.79	19.93	<u>F</u> −1/4F
$\overline{\mathbf{E}}_{\mathbf{I}} = 1/3\mathbf{E}_{\mathbf{I}}$	16.76	19.50	17.36	$\overline{E}_0 = 1/4E_T$
$r = \overline{E}_{max} - \overline{E}_{min}$	3.77	1.71	2.56	

从表 7 的结果分析可以得出: 影响选矿效率的 因素依次为 A(捕收剂)、C(充气量)、B(淀粉); 正 交试验初步确定的条件为 $A_1B_2C_1$ 。

对试验条件 A, B, C, 进行验证, 结果见表 8。

表 8 结果表明,反浮选尾矿铁品位与表 5 中四组试验相比虽然不是最高的,但选矿效率却是最高的。因此,综合评价确定 $A_1B_2C_1$ 为最合适的浮选药剂制度,即捕收剂用量 100 g/t、淀粉用量 600 g/t、充气量 $0.008 \text{ m}^3/h$ 。

表8 条件 A, B₂C, 的验证试验结果(%)

产品	全流程产率	TFe	回收率	选矿效率
浮精	6.51	45.22	8.96	
浮尾	24.74	61.11	45.98	21.24
小计	31.25	57.80	54.94	

4 反浮选铁精矿化学分析

表 9 最终铁精矿化学分析结果(%)

矿物	TFe	FeO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	P	S
含量	61.11	23.02	61.46	12.83	0.92	0.034	0.067

由表 9 可知, 铁精矿 TFe 为 61. 11%, 含 P 0.034%、S 0.067%、SiO₂ 12. 83%, 没能达到 SiO₂ \leq 10% 的指标。这是因为磁铁矿和赤铁矿的嵌布粒度太细,无法和脉石矿物石英单体解离造成的。

6 结论

- (1)该矿属含少量氧化矿的磁铁矿床,其矿物组成较简单,主要为磁铁矿、假象赤铁矿、赤褐铁矿等有用矿物,主要脉石矿物为石英。矿物的嵌布粒度极细,难以单体解离,选矿难度很大。
- (2)采用阶段性磨矿、阶段性弱磁选及反浮选工艺,磨矿细度 500 目达 95% 以上,铁精矿 TFe 61.11%,回收率 45.98%,产率 24.74%。
- (3)反浮选工艺采用的主要药剂捕收剂为脂肪酸类捕收剂,抑制剂为改性淀粉,进行加温浮选。
- (4)该矿石性质特殊,嵌布粒度极细,试验研究 和推荐的工艺流程较复杂,铁精矿回收率偏低。

参考文献:

[1] 杨小生,何平波,冯其明. 矿物加工工艺学[M]. 武汉:武汉理工大学教材中心,2002.