CONSERVATION AND UTILIZATION OF MINERAL RESOURCES

某氧化铜银矿浮选试验研究:

谭 兵

(云南国土资源职业学院,云南 昆明,650217)

摘要:对云南某氧化铜银矿实验室小型试验研究表明,采用新型捕收剂 LW61 作为氧化铜捕收剂浮选,铜精矿中铜回收率为74.59%,铜品位15.21%,含银1035.24g/t,银回收率65.29%,该指标比较理想。

关 键 词:铜银矿;氧化矿;捕收剂 LW61;浮选

中图分类号:TD952.1;TD923+.13 文献标识码:B 文章编号:1001-0076(2012)01-0018-04

Research on Flotation of a Oxide Copper Silver Ore

Tan Bing

(Yunnan State Land Resources Vocational College, Kunming, Yunnan 650217, China)

Abstract: Small experiment study in a Laboratory was carried out on an oxide copper silver ore in Yunnan province. With new collector LW61 to float copper, copper concentrate of Cu 15.21% with a recovery of 74.59% and of Ag 1035.24 g/t with a recovery of 65.29% was obtained.

Key words: copper silver ore; oxidized ore; collector LW61; flotation

1 引言

氧化铜是我国铜矿资源的重要组成部分,储量比较丰富。我国大多数硫化矿床的上部都有氧化带,有的矿床被氧化而成为大中型的氧化矿床。因此,开发和处理氧化铜矿,对于铜冶金工业的发展具有重大意义,随着硫化矿床不断的开发利用,资源不断减少,氧化铜矿的处理,将具有越来越重大的意义[1]。

云南某地氧化铜银矿,原矿铜品位 0.87%,伴生银 67.36 g/t。由于浮选技术等原因,现场采用硫酸搅拌浸出回收氧化铜资源,搅拌浸出系统日处理原矿量仅为 800 t/d,而萃取电积系统产铜能力 30 t/d,造成萃取电积系统达不到设计处理量,产能设计不合理,伴生银矿得不到综合回收。随着近年来银价的大幅上涨,综合回收该矿中的伴生银矿,具有重大的经济价值^[2]。为了扩大矿山处理能力,综合

回收伴生银矿资源,作者采用新药剂浮选提高铜精矿品位,铜精矿进入酸浸搅拌浸出系统,浸渣作为银精矿提取银,从而达到扩大矿山处理能力,综合回收伴生银矿资源的目的。

2 矿石性质

2.1 试验矿样

选用矿区开采范围内氧化铜银矿试验原矿样, 其主要化学组成见表1。

表 1 原似主要化字组成								%
成分	Cu	Pb	Ag	S	Те	SiO ₂	CaO	MgO
含量	0.87	0.07	67.36	0.06	1.45	75.75	2.54	7.57
注:Ag 含量单位为 g/t。								

原矿主要化学组成分析结果表明:有用元素为铜、银。

^{*} 收稿日期:2011-04-19;修回日期:2011-09-08 作者简介:谭兵(1959-),男,湖南洞口人,副教授,理学学士,现主要从事应用化学、选矿及高等职业教育教学研究。

2.2 铜物相分析

原来铜物相分析结果见表 2。

表 2 原矿铜的物相分析结果

物相	自由氧 化铜	结合氧 化铜	次生硫 化铜	原生硫 化铜	总铜
含量	0.56	0.26	0.02	0.03	0.87
分布率	64.37	29.89	2.30	3.45	100.00

该铜矿中铜主要以氧化铜为主,自由氧化铜含量为 0.56%,占总铜的 64.37%;结合氧化铜含铜 0.26%,占总铜29.89%。氧化铜占总铜的94.26%。

铜物相分析结果表明:该铜矿属氧化铜类型,且为高结合率氧化铜矿。

3 试验结果及分析

3.1 常规药剂浮洗试验

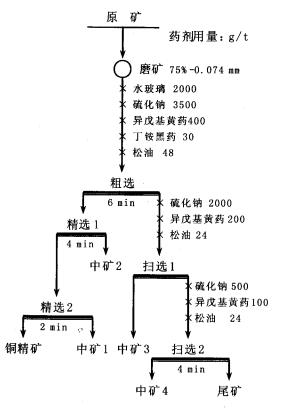


图 1 常规药剂浮选工艺流程

从氧化铜矿石回收铜矿物最常见的工艺,是用硫化钠硫化氧化铜矿,而后进行浮选^[3]。根据矿石性质分析结果,采用水玻璃作为硅的抑制剂,硫化钠硫化氧化铜,异戊基黄药作为铜捕收剂,少量丁铵黑

药作为银捕收剂。浮选工艺流程见图 1,结果见表 3。

表3 常规药剂浮选结果

%

产品	产率	뒴	占位	回收率		
) 111) 4 P	Cu	Ag	Cu	Ag	
铜精矿	1.63	16.45	1163.23	31.02	28.98	
中矿 1	1.32	6.12	423.12	9.35	8.54	
中矿 2	2.32	2.14	158.23	5.74	5.61	
中矿3	2.52	1.87	174.33	5.45	6.71	
中矿 4	1.87	1.62	95.23	3.50	2.72	
尾矿	90.34	0.43	34.35	44.94	47.43	
原矿	100.00	0.86	65.42	100.00	100.00	

注:Ag 含量单位为 g/t。

表 3 结果表明:常规药剂浮选精矿铜品位可以达到 16.45%,但铜回收率只有 31.02%,粗扫选总铜回收率只有 55.06%,银回收率也很低,尾矿铜和银损失严重。

3.2 新药剂浮选试验

新药剂浮选工艺流程主要考察 LW61 对氧化铜矿物的捕收性能。新药剂 LW61 是烃基含氧酸(及其盐)类混合型捕收剂,针对 5 μm 以上微细粒级捕收效果极佳,其成分组成属无毒、无污染化工原料。试验流程同图 1,异戊基黄药用 LW61 氧化铜捕收剂代替,其它药剂条件及浮选时间都相同。试验结果见表 4。

表 4 新药剂 LW61 浮选结果

%

产品	产率	品	占位	回收率	
, 10) ap	Cu	Ag	Cu	Ag
铜精矿	3.14	14.23	995.23	52.43	46.40
中矿 1	1.57	5.24	368.28	9.65	8.59
中矿2	2.42	1.93	134.42	5.48	4.83
中矿 3	4.36	1.35	102.34	6.91	6.63
中矿4	3.20	1.20	93.68	4.51	4.45
尾矿	85.31	0.21	22.98	21.02	29.11
原矿	100.00	0.85	67.35	100.00	100.00

注:Ag 含量单位为 g/t。

新药剂 LW61 试验结果表明,其对氧化铜矿物的捕收能力比普通黄药强,精矿铜品位 14.23%, Cu 回收率 52.43%,粗扫选总铜回收率达到 78.08%,进一步优化试验条件,可能达到更好的指标。

3.3 粗选条件优化试验

在新药剂预选试验的基础上对铜粗选磨矿细度

及主要选矿药剂用量开展条件试验,确定最优化的试验条件。

3.3.1 粗选磨矿细度试验

对磨矿细度 - 0.074 mm 分别占 75%、80%、85%条件下开展磨矿细度试验,试验流程见图 2,结果见表 5。

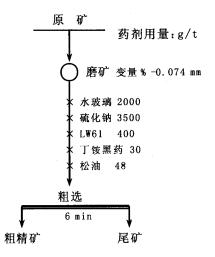


图 2 磨矿细度浮选工艺流程

表 5 磨矿细度浮选结果

%

磨矿细度(-0.074mm)	铜品位	铜回收率
75	8.01	66.55
80	7.87	74.57
85	7.65	73.45

磨矿细度试验结果表明,在80%-0.074 mm 下试验结果最佳,本次试验选定磨矿细度为80%-0.074 mm。

3.3.2 硫化钠用量试验

试验流程采用图 2 流程, 磨矿细度为 80% -0.074 mm, 硫化钠条件分别为3 000 g/t、3 500 g/t 及4 000 g/t, 其它条件不变的情况下开展硫化钠用量试验, 结果见表 6。

表 6 粗选硫化钠用量试验结果

硫化钠用量/(g・t ⁻¹)	铜品位	铜回收率
3000	9.02	64. 17
3500	7.91	75.24
4000	7.82	75.43

表 6 硫化钠用量条件可以看出,在硫化钠用量 3 500 g/t 条件下试验效果最佳。

3.3.3 LW61 用量试验

试验采用图 2 流程,磨矿细度为 80% -0.074 mm,硫化钠用量为3 500 g/t,捕收剂 LW61 用量分别为 300 g/t、350 g/t 及 400 g/t。其它条件不变的情况下开展 LW61 用量试验,结果见表7。

表 7 粗选 LW61 用量试验结果

LW61 用量/(g·t ⁻¹)	铜品位/%	铜回收率/%
300	8.74	73.23
350	8.43	76.64
400	7.85	77.04

从表7粗选 LW61 用量条件可以看出,在 LW61 用量 350 g/t 条件下,试验效果最佳。

3.4 闭路试验

在开路试验的基础上开展闭路试验,流程见图 3,结果见表8。

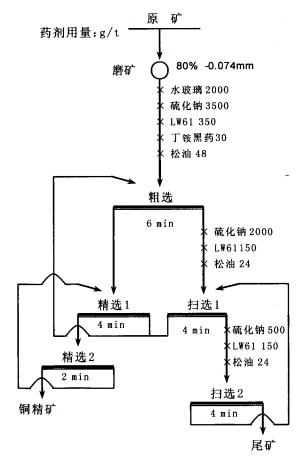


图 3 闭路浮选工艺流程

闭路试验结果表明精矿铜品位15.21%,回收率

74.59%,精矿银品位1035.24 g/t,银回收率65.29%,指标较好。下一步矿山将采用优先浮选铜、铜精矿进入搅拌浸出系统,综合回收铜银资源。

表 8 闭路试验结果

%

产品	产率	品位		回收率	
) 111	广华	Cu	Ag	Cu	Ag
铜精矿	4. 25	15.21	1035.24	74.59	65.29
尾矿	95.75	0.23	24.43	25.41	34.71
_ 原矿	100.00	0.87	67.39	100.00	100.00

注:Ag 含量单位为 g/t。

4 结论

(1)试验采用新捕收药剂浮选氧化铜矿,工艺流程为"一次粗选两次扫选两次精选"作业,在新捕

收剂 LW61 的作用下,药剂条件简单,回收率较高。解决了以往氧化铜矿浮选回收率低、药剂复杂等问题。

(2)从经济方面分析,通过浮选后铜精矿进入 搅拌酸浸系统,浸出渣直接作为银精矿,综合回收了 伴生银矿,对该类型铜银矿显现出明显的优势。

参考文献:

- [1] 骆兆军,张文彬. 国内外氧化铜选矿现状与前景[M]. 昆明:第四届青年选矿学术会议,1996,41-44.
- [2] 黎鼎鑫,王永录. 贵金属提取与精炼[M]. 长沙:中南大· 学出版社,2003.
- [3] 骆兆军,张文彬. 难选氧化铜矿多硫化钠硫化浮选研究 [J]. 第四届全国青年选矿学术会议论文集[M],昆明: 云南科技出版社,1996.