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A STUDY OF AUTOMATED CONSTRUCTION AND
CLASSIFICATION OF DECISION TREE CLASSIFIERS
BASED ON ASTER REMOTELY SENSED DATASETS

LI Ming —shi' PENG Shi —kui' ZHOU Lin> MA Yi - xiu’
1. College of Forest Resources and Environment Nanjing Forestry University Nanjing 210037 China 2. Forestry Division
of Agriculiural Bureau of Jianhu County Jianhu 224700 China

Abstract Based on performing various sorts of image processing on the original 9 bands of ASTER sensors the au-

thors objectively adopted the quantitative indicator of average separability to determine the optimal combinations of
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THE APPLICATION OF MULTISCALE IMAGE TEXTURE
TO THE DETECTION OF URBAN EXPANSION

SONG Cui —yu' LI Pei —jun’ YANG Feng — jie'
1. College of Geo — Information Science and Engineering Shandong University of Science & Technology Qingdao 266510
China 2. Institute of Remote Sensing and GIS Peking University Beijing 100871 China

Abstract It is difficult for remote sensing change detection based only on spectral information to obtain satisfactory
results. In this paper multiscale texture information combined with spectral information was adopted to evaluate the
urban expansion detection by using the post — classification comparison technique. The results show that if the
scale for texture extraction and the data combination are appropriately selected the addition of texture features in
change detection can significantly improve the overall accuracy and Kappa coefficient in comparison with the method
based only on spectral data. Moreover the combination of multiscale texture and spectral data in change detection
can produce the highest accuracy. However it is shown that false alarm may appear on the edges of some land cov-
er types when the texture information is incorporated in urban area change detection.

Key words Urban expansion detection Post — classification comparison Texture Multiscale
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features most suitable for classification. In conjunction with the signature or prototype data for each class the maxi-

mum likelihood classifier BP neural network classifier and decision tree classifier based on data mining software of
See 5.0 were respectively implemented to characterize the spatial distribution patterns of major land cover types over
the entire study area. The final classification results based on field validation with 379 actual observations show that
the decision tree algorithm possesses the best performance of extraction with an overall accuracy of 84.4% and a
kappa coefficient of 0. 822 followed by the BP network algorithm and that the maximum likelihood classifier has
the worst performance of classification. In comparison with the traditional establishment and classification proce-
dures which have been embedded into ENVI 4.1 and ERDAS 8.7 the automated decision tree algorithm used in
this study is based on See 5.0 and Cart module Classification and Regression tree . Due to its objectivity high
efficiency reliability and high accuracy the automated decision tree deserves more attention in future practice of
classification.

Key words ASTER Poplar Decision tree See 5.0 Classification
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