REMOTE SENSING FOR LAND & RESOURCES

No. 4 2006 Dec. 2006

地基多波段遥感大气可降水量研究

刘三超¹²,柳钦火¹,高懋芳³

(1. 遥感科学国家重点实验室,中国科学院遥感应用研究所,北京 100101;2. 中国科学院研究生院,北京 100039;3. 中国农业科学院农业资源与农业区划研究所,北京 100081)

摘要:利用自动观测多波段 CE 318 太阳分光光度计,首先结合地面资料求出瑞利散射光学厚度,再用 870 nm 和 1 020 nm 非吸收通道内插出 936 nm 通道的气溶胶光学厚度。通过辐射传输模型 MODTRAN 模拟不同大气模式和观测角下的大气可降水量和透过率关系,利用改进的 Langley 法计算出大气可降水量,分析了影响结果的误差源。

关键词:大气可降水量;透过率;改进的Langley法 中图分类号:TP 79:P 412.13 文献标识码:A

0 引言

水汽是主要集中于大气对流层下部的一种重要 温室气体,是全球变化研究和数值模式中的重要参 数。在定量遥感研究中,水汽是近红外到红外波段 的主要吸收气体,消除水汽作用成为红外遥感大气 校正需要解决的关键问题^[1]。

大气可降水量(Precipitable Water,简称 PW)是 指垂直方向大气柱中含有的水汽总量^[2]。水汽在 940 nm 附近有很强的吸收作用,因此,用 940 nm 通 道测量大气对太阳直射辐射的消光作用,可反演大 气可降水量。张军华等用地基遥感研究西藏当雄地 区气溶胶光学特性^[3],指出设置水汽通道的重要性; Reagan 和 Frouin 等提出利用水汽通道反演大气可降 水量的方法^[4,5],并分析了影响反演结果的各种因 素;宋正方等对大气水汽红外遥感进行了研究^[6]; 黄意玢等分析认为 940 nm 近红外通道研究水汽总 量是可行的^[7];胡秀清等利用太阳辐射计 940 nm 通道反演了青海湖地区大气水汽^[8];Gao B C 和 Kaufman 等提出利用 MODIS 的 940 nm 通道反演大 气水汽^[9,10],并且使水汽成为 MODIS 对外发布的大 气产品之一。

地基多波段太阳光度计通过设定一系列窄通道 探测大气气溶胶特性和水汽含量,是研究大气物理 特性和大气成分的重要手段。本文采用 CE 318 型 文章编号:1001-070X(2006)04-0006-04

光度计 940 nm、870 nm 和 1 020 nm 通道,结合 MODTRAN 4.0 辐射传输模型,研究了大气可降水量 的反演方法。

1 仪器和实验概况

实验于 2005 年 10 月初到 11 月初在江西省千 烟洲生态观测站进行,观测为期一个月,所用仪器为 法国 CIMEL 公司的 CE 318 型号太阳光度计,架设于 千烟洲生态站主楼楼顶,光度计共有 9 个通道,其中 1 020 nm 通道设有两个滤光片,仪器增设了 1 610 nm 通道,以提高对大气中大颗粒气溶胶探测能力。表 1 为本文反演水汽所用仪器对应通道的中心波长、半 波宽度和定标系数 V₀。

表1 CE 318 太阳光度计反演大气可降水量波段的参数

中心波长/nm	半波宽度/nm	V_0
870	10	23 136
936	10	24 851
1 020	10	11 143

2 大气可降水量的反演

2.1 原理

大气对辐射的消光作用主要包括散射和吸收作 用。研究表明,在一般大气条件下,到达地表的太阳 直接辐射与大气总光学厚度存在负指数关系,这就

收稿日期:2006-02-08;修订日期:2006-03-27

基金项目:国家自然科学基金项目(40371087);中国科学院知识创新工程重要方向性项目(KZCX3 – SW – 338 – 2);973 项目 (620000779 万 方数据

是著名的 Beer 定律 即

$$E = E_0 d_s \exp(-m\tau) \tag{1}$$

式中 E 为地面接受太阳直射辐亮度; E_0 为大 气上界太阳直射辐亮度; d_s 为日地距离修正因子; m 为大气质量; τ 为大气总光学厚度。Beer 定律原 则上适用于单色平行光的辐射传输,但对于吸收作 用不是很强的一定带宽的辐射,也可以进行类似应用。

水汽在波长 940 nm 左右有很强吸收,且在此吸 收带内为连续吸收,因此,大气在 940 nm 波长段内 并不能简单适用 Beer 定律。Reagan 等系统研究了 水汽强吸收波段大气水汽和大气透过率的关系^[4], 提出了改进的 Langley 法,把水汽透过率从总消光作 用中分离出来,表示为水汽含量的函数,即

$$E = E_0 d_s \exp(-m\tau_1) T_w \qquad (2)$$

式中 , $T_{_w}$ 为水汽透过率 ; τ_1 为除水汽外大气光 学厚度 ,可表示为三部分光学厚度之和 ,即

$$\tau_1 = \tau_a + \tau_r + \tau_{03}$$
 (3)

式中, τ_a 为气溶胶光学厚度; τ_r 为瑞利散射光 学厚度; τ_{03} 为臭氧光学厚度,其中大于 800 nm 通道 的臭氧吸收可以忽略^[12]。

研究发现 ,936 nm 水汽吸收通道的大气透过率 与可降水量有很好关系。图 1 为用 MODTRAN 4.0 模拟的中纬度夏季大气模式下,天顶角分别为 0°、 40°和 60°,包含通道相应函数影响的 936 nm 通道大 气透过率与大气可降水量的关系。从图上可看出, 在相同天顶角的情况下,大气透过率与大气可降水 量存在明显负指数关系。

根据大气质量和观测天顶角之间的关系,Reagan^[4]、Frouin ^[5]和 Hathore 等^[11]研究表明,*T* 和大 气质量以及大气可降水量(后面公式中均用 W 来表 示)之间关系可表示为

$$T_w = \exp(-am^b W^b)$$
 (4)
式(4)两边取对数 经过变换可进一步表示为
万方数据 $1/T_w) = a(mW)^b$ (5)

式中 μ 、b 为系数 ,其值与仪器通道的中心波长、 半波宽度以及波段响应函数有关 ,可用辐射传输模 型模拟不同大气模式下进行取值。

由于光度计输出电压值 *DN* 正比于仪器接收的 太阳辐射^[12],设 *DN*₀为对应大气上界太阳直射辐亮 度 *E*₀的输出电压值,因此,根据式(2),*DN* 和 *DN*₀ 的关系可表示为

$$DN = DN_0 d_s \exp(-m\tau_1) T_w \qquad (6)$$

经过以上分析,大气可降水量可用式(7)进行计 算,即

$$W = \frac{1}{m} \exp\{\frac{1}{b} \ln[\frac{1}{a} (\ln(\frac{DN_0 d_s}{DN} - m\tau_1)]\} (7)$$

2.2 气溶胶光学厚度和瑞利散射光学厚度

936 nm 水汽连续吸收非常强烈,使得气溶胶光 学厚度不能直接应用 Beer 定律,但与 940 nm 相邻的 870 nm 和 1 020 nm 通道受吸收气体影响很小,因此 可以先求出这两个通道气溶胶光学厚度^[12],再用 Angstrom 定律计算出式(8)中的 α 和 β ,最后内插出 940 nm 的 τ_a ,即

$$\tau_{a}(\lambda) = \beta \lambda^{-\alpha} \qquad (8)$$

大量研究表明,瑞利散射光学厚度_τ,主要与波 长、测点高程和大气状况有关^[12],计算公式为

$$\tau_r = (1 + 0.011 \ 3\lambda^{-2} + 0.000 \ 13\lambda^{-4}) \times (9)$$

0. 008 569 $\lambda^{-4}e^{-0.125H}P/1$ 013. 25

式中 / 为海拔高度(km) / 为气压(Hpa)。

 2.3 日地距离修正因子和大气质量 设中间变量 x 为日角 ,

$$x = 2\pi (D - 1)/365$$
 (10)

式中 *D* 为儒略日天数。这样 ,式(2)中的日地 距离修正因子 *d*_s可表示为

 $d_{s} = 1.000\ 109\ + 0.033\ 494\cos x\ + 0.001\ 472\sin x\ + \\ 0.000\ 768\cos 2x\ + 0.000\ 079\sin 2x$

(11)

由于大气质量主要与天顶角 θ 有关 ,用式(12) 计算即可达到很高的计算精度^[12]。

 $m = 1/[\cos(\theta/180) + 0.15(93.885 - \theta)^{-1.253}]$ (12)

太阳天顶角 θ 可用下式计算

 $\theta = \arccos(\sin\delta\sin\varphi + \cos\delta\cos\varphi\cos\omega)$ (13)

式中_ω为经过时间和位置订正的太阳时角;δ 为赤纬,计算公式如下

 $\delta = 0.\ 006\ 894 - 0.\ 399\ 512\cos x + 0.\ 072\ 075\sin x - 0.\ 006\ 799\cos 2x + 0.\ 000\ 89\sin 2x$

3 结果和误差分析

3.1 大气可降水量日变化

整个实验期间,天空晴朗(偶有碎云),而且又是 Landsat-5卫星过境时间(2005年10月31日)。图 2为用本文方法计算的大气可降水量随时间变化情况(每2min一次)。

图 2 2005 年 10 月 31 日大气可降水量随时间的变化

经统计 2005 年 10 月 31 日大气可降水量平均 值为 2. 03g/cm², Landsat – 5 卫星过境时间为上午 10 32 左右 地基测量的大气可降水量为 2. 14g/cm², 这些结果对 TM6 热红外波段反演地表温度非常重 要^[1]。

从图 2 可看出,虽然实验时间在秋季,但大气可 降水量的日变化较明显,相对变化幅度可达到 30% 以上。从图上还可以大致分析大气可降水量的日内 变化规律:上午大气水汽呈增加趋势,而下午的水 汽含量则开始下降。由于风场变化和大气环流运 动,大气水汽含量会产生一定波动。

3.2 误差源分析

定标系数是影响气溶胶光学厚度和大气水汽反 演精度的主要因素^[11]。利用 10 月 31 日观测数据对 仪器进行了初步标定 ,发现定标结果和所提供的数 据差别在 1% 以内 ,因此 ,认为采用的定标数据是可 靠的。

大气模式是影响公式(4)中系数 *a*、*b* 的重要因素。表 2 为用 MODTRAN 4.0 模拟的中纬度夏季、冬

表2	三种大气模式	下	a, b	系数和相关系数
----	--------	---	------	---------

大气模式	a	b	R^2
中纬度夏季	0.711 5	0.57	0.9987
中纬度冬季	0.715 1	0.5527	0.998 3
热带大气	0.7174	0.5518	0.9987

季和热带了神秘气模式下,太阳天顶角从 0° 变化到

80°不同大气可降水量所拟合的 a、b 值和相关系数。

从表 2 可以看出 a, b 值随大气模式变化影响较 小 这表明仪器波段设计比较合理 本文采用的方法 是可行的。

云是影响大气水汽反演的主要干扰因素,从图2 可看出2min一次的测量数据存在一定锯齿,可能 是视场内出现薄云造成的。观测没有同步的云测量 数据,只能通过人工判别或者平滑方法减少云的影响。

4 结论

(1)结合多通道窄波段的非水汽吸收波段,利用 Angstrom 定律可计算出 936 nm 通道气溶胶光学厚 度,针对 936 nm 水汽强吸收波段,结合 MODTRAN 辐射传输模型 利用改进的 Langley 法可求出大气可 降水量。

(2)即使在秋天,大气可降水量日内变化也较 大,影响本方法水汽反演结果精度的主要干扰因素 是云。

(3)由于云对太阳辐射影响很大,在测量时应尽 量进行同步的云量观测,以剔除云污染的数据。

致谢:感谢中国科学院遥感应用研究所柳钦火老师和 顾行发老师小组成员在千烟洲实验的协作和帮助。

参考文献

- [1] 刘三超 涨万昌. 张掖绿洲城市热效应的遥感研究[J]. 国土资 源遥感 2003(4):17-21.
- [2] 杨景梅,邱金桓. 用地面湿度参量计算我国整层大气可降水量 及有效水汽含量方法的研究[J]. 大气科学 2002 26(1) 9 -22.
- [3] 张军华,刘莉,毛节泰. 地基多波段遥感西藏当雄地区气溶胶 光学特性[J].大气科学 2000 24(4) 549-558.
- [4] Reagan J A, Pilewskie P A, Scott Fleming I C, et al. Extrapolation of Earth – based Solar Irradiance Measurements to Exoatmospheric Levels for Broad – band and Selected Absorption – band Observations[J]. IEEE Trans. Geosci. Rem. Sens., 1987, 25 (6) 647–653.
- [5] Frouin R, Deschamps P Y, Lecomte P. Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption Near 940 nm : Theory and Airborne Verification[J]. J. Appl. Meteorol. ,1990 29 :448 – 460.
- [6] 宋正方,魏合理,吴晓庆.大气水汽红外遥感[J].环境遥感, 1996,11(2):130-137.
- [7] 黄意玢 董超华. 用 940 nm 通道遥感水汽总量的可行性试验
 [J].应用气象学报 2002 13(2):184 192.
- [8] 胡秀清,张玉香,黄意玢,等.利用太阳辐射计940 nm 通道反

演大气柱水汽总量 J]. 气象科技 2001 29(3):12-17.

- [9] Gao B C, Goetz A F H. Column Atmospheric Water Vapor and Vegetation Liquid Water Retrievals from Airborne Imaging Spectrometer Data[J].J. Geophys. Res., 1990 95 3549-3564.
- [10] Kaufman Y J , Gao B C. Remote Sensing of Water Vapor in the Near IR from EOS/MODIS[J]. IEEE Trans. Geosci. Rem. Sens. ,

- [11] Halthore R N, Eck T F, Holben B N, et al. Sun Photometric Measurements of Atmospheric Water Vapor Column Abundance in the 940 - nm Band J.J.J. Geophys. Res., 1997, 102 #343 - 4352.
- [12]李正强 赵风生 赵 崴 等. 黄海海域气溶胶光学厚度测量研究
 [J]. 量子电子学报 2003 20(5) 635-640.

MULTI – SPECTRAL OPTICAL REMOTE SENSING OF PRECIPITABLE WATER

LIU San – chao^{1 2}, LIU Qin – huo¹, GAO Mao – fang³

(1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China; 2. Graduate University of CAS, Beijing 100039, China; 3. Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, China)

Abstract: Water vapor is a key parameter in climate change and quantitative remote sensing. For ground based sun – photometer data the modified Langley method can be used to derive precipitable water (PW). In this paper, the authors retrieved PW by means of 940 nm water vapor high – absorption channel and non – gas absorption 870 nm and 1 020 nm channels. After deriving aerosol optical thickness (AOT) of 870 nm and 1 020 nm channels , AOT of 936 nm was interpolated by using the Angstrom law. Using simulation with the MODTRAN 4.0 radiation transform model under different atmospheric models and zenith angles the authors detected the relationship between PW and atmospheric transmittance. Then PW was retrieved every two minutes by means of the modified Langley method. The results show that the temporal variation of PW in autumn remains remarkable in the study area and the main error source seems to be the cloud effect. This method is useful in atmospheric and thermal remote sensing studies. **Key words** : Precipitable water ; Transmittance ; Modified Langley method

第一作者简介:刘三超(1979-),男,博士,主要从事大气和环境遥感应用及红外定量遥感研究。

(责任编辑:刁淑娟)

《国土资源遥感》改版增页启事

《国土资源遥感》自创刊以来深受广大作者和读者的偏爱,期刊的引文率和影响因子不断攀升,社会影响力不断加强,影响面不断扩大。目前,期刊载文量已不能满足广大读者和用户的需求,一直是超页码载文。 鉴于此 2007 年起《国土资源遥感》将开始改版,增加页码。

改版后的《国土资源遥感》为标准 A4 版,每期页码由原来的 72 页增加至 94 页,每期定价 25 元,全年定价 100 元(含邮寄费)。

《国土资源遥感》可通过邮局订阅,邮发代号:82-344。错过邮局订阅者,可通过编辑部订阅,邮汇、信 汇均可。

邮局汇款请寄:北京市海淀区学院路31号中国国土资源航空物探遥感中心《国土资源遥感》编辑部; 邮编:100083。

信汇请寄:北京银行学院路支行;帐号:010903391001201110037-35中国国土资源航空物探遥感中心 (请在附言中注明遥感编辑部)。

欢迎投稿!欢迎订阅!欢迎惠刊广告!

万方数据

(本刊编辑部)

^{1992 30 871 - 884.}