2004 年12 月

文章编号:1001-4810(2004)04-0273-04

中全新世十~百年降水波动的 江苏宜兴石笋δ¹⁸O 记录[®]

陈昌海,姜修洋

(南京师范大学地理科学学院,江苏南京 210097)

摘 要:据江苏宜兴茗岭洞穴 ML 石笋的 Th²³⁰测年结果、年层计数以及与树轮¹⁴C 残差曲线的对比,建立了该石笋记录的中全新世持续 561 年的氧同位素时间序列 $(5.13 \sim 5.69$ kaB.P.)。分辨率达 3~4 年的氧同位素曲线与相应时段树轮¹⁴C 残差 呈显著的正相关(r=0.54),揭示了中全新世东亚季风降水百年尺度上受太阳辐 射驱动。从石笋 δ^{18} O 功率谱中识别出类似树轮¹⁴C 的 28~25a、10a 等周期成分,表 明该地区十年尺度季风降水也受太阳活动的影响。 关键词:中全新世;季风降水;石笋 δ^{18} O;江苏宜兴 中图分类号:P532;P597 文献标识码:A

北半球高纬度地区深海印和湖泊沉积物印的研 究表明:全新世时期北大西洋和北太平洋百年至千年 级冷事件响应于太阳活动强度的变化。应用高精度U 一系测年法,印度洋季风区阿曼两支石笋记录进一步 证实了十年至百年尺度季风气候与太阳活动之间存 在密切关系^[3:4]。国内谭明等^[5]根据北京石花洞石笋 年层厚度资料,进一步证实了最近二千多年来东亚季 风与太阳能量输出也有良好的关系。已有资料表 明^[6],中全新世北半球夏季太阳辐射处于由高至低的 转折时期,而这一背景下季风与太阳活动之间的关系 尚未得到证实。为此本文研究了一支采自江苏宜兴茗 岭洞内的石笋气候记录,通过U-系测年和计数年代 学分析进一步探讨了这一至关重要的问题。

1 材料与方法

本文研究的ML 石笋采集于江苏宜兴茗岭镇。该 地位于宜兴市西南部(31°11′N,119°39′E),为低山丘 陵,属中北亚热带季风气候,全年温暖湿润,年均温 15.7℃,年均降水量1177mm。石笋总长1522mm,外 表凹凸不平,底径153mm,顶较尖(图1(a))。沿石笋中 部生长轴方向切开抛光,可见清晰的生长纹层(图1 (b)、(c)),宽窄不一,呈乳白色、肉色,由半透明条纹 分隔。除极少数纹层发现有薄层黏土质碳酸盐外,其 余均为较纯净的次生碳酸盐沉积物,未见明显的沉积 间断现象。

将石笋中心部分切成约4cm 厚的板条,用于铀系 年代和氧碳同位素的样品采集。3 块铀系年代样品采 自石笋顶部、中部和底部(图1(a)),每块样量约 200mg,分析仪器为 MC-ICP-MS,按 Shen 等(2002) 方法[7],由美国明尼苏达大学地质地球物理系同位素 实验室程海博士测试。从距顶22mm 深度开始用刻刀 沿石笋生长中轴逐层刻取氧碳同位素样品,每毫米刻 \sim 700mm 层段发生显著偏移,生长中轴增多 30mm, 实际采样深度为1530mm,共采3060个),每10mm选 1个样品(计153个,平均分辨率达3 \sim 4a)进行氧碳同 位素分析。采用碳酸盐自动装置与 Finnigan MAT-253 型质谱仪联机测试,每9个样品插一个标样 (NBS19,δ¹⁸O:-2.2‰,VPDB),分析误差小于0.1‰ (VPDB标准),测试由南京师范大学地理科学学院同 位素实验室完成。

① 基金项目:国家杰出青年科学基金(40225007)资助项目

第一作者简介教赋器海(1969-),男,南京师范大学地理科学学院硕士研究生,从事气候环境变化研究。 收稿日期:2004-09-15

图1 江苏宜兴 ML 石笋纵剖面与生长年纹层 Fig. 1 Vertical section and annual growth layers of ML stalagmite from Yixing, Jiangsu (a)江苏宜兴 ML 石笋纵切面素描,图中黑点为测年采样点, 数字1~9为层段序号;(b)、(c)为小矩形框箭头所指层段 的放大,图中数字为年纹层序号。

2 时间标尺的建立

表1给出了江苏宜兴ML石笋从顶至底3个层位 的U、Th同位素成分和230Th年龄。测年样品呈乳白 色,镜下观察到较多的黏土杂质,因此石笋沉积过程 中有较多外界的碎屑²³²Th(见表1),由此带来较大测 年误差。为了解决这个问题,我们对石笋抛光面进行 观察,肉眼可见清晰较厚的生长纹层,厚度平均达 2.73mm(图1(b),(c)),可用于精确的年层计数。在 石笋光面上以9个较厚的半透明条纹为标志深度,分 d_9 个生长层段(图1(a)),由顶到底各层段年层计数 结果依次为110、16、129、19、73、113、23、51、27,共561 层。因某些年层处存在薄层黏土质碳酸盐中,还不能 完全确定是否存在缺轮现象。为进一步标定持续生长 561年的准确年龄段,我们将 561年的 δ^{18} O 序列与树 轮¹⁴C 残差($\Delta^{14}C_{res}$)曲线^[14]进行对比(图 2),从而确定 ML 石笋生长时段开始于 5.13kaB. P.,终止于 5.69kaB.P.(理由详见后述)。

表1 江苏宜兴 ML 石笋 U、Th 同位素成分和²³⁰Th 年龄

Tab. 1	U,	Th	isotopic	compositions	and	²³⁰ Th ages of	of ML st	alagmite	from `	Yixing,	Jiangsu
								· · · · ·	-	- 0.1	

样号	距顶深度	²³⁸ U 含量	²³² Th 含量	²³⁰ Th/ ²³² Th	$\delta^{234} U$	$(^{230}Th/^{238}U)$	未校正年龄	校正年龄	$\delta^{234} U$
	(mm)	$(\times 10^{-9})$	$(\times 10^{-12})$	原子比 (×10 ⁻⁶)	(测量值)	(活度比)	(aB. P.)	(aB. P.)	(校正初始值)
ML-1	18	48.7±0.8	$997\pm\!17$	47.2±1.7	177.6 ± 3.5	0.0585 ± 0.0018	5560 ± 180	5050 ± 310	180.1 ± 3.6
$ML\!-\!2$	656	56.4±0.1	$937\!\pm\!16$	57.8±2.1	169.3 ± 3.6	0.0582 ± 0.0017	5570 ± 93	5156 ± 227	171.7 \pm 3.6
ML-3	1429	51.3 ± 0.08	632 ± 14	83 ± 3	180.2 \pm 3.4	0.0620 ± 0.0017	5880 ± 160	5580 ± 220	183.1 \pm 3.5

① 误差为 2σ 测年统计误差;② 衰变常数取值为 λ_{230} =9.1577×10⁻⁶y⁻¹, λ_{234} =2.8263×10⁻⁶y⁻¹, λ_{238} =1.55125×10⁻¹⁰y⁻¹;

²³⁴U = ([²³⁴U/²³⁸U]activity-1)×1000;③ 校正的²³⁰Th 年龄假定了初始²³⁰Th/²³²Th 原子比为地壳平均值 4.4±2.2×10⁻⁶。

3 百年尺度石笋δ¹⁸Ο 变化

石笋生长微层厚度和石笋稳定同位素是洞穴古 气候变化的重要代用指标。ML 石笋生长快,年层厚 度横向变异大,不适合用于古气候变化研究,因而我 们选用石笋稳定同位素来作为反映气候信息的研究 对象。洞穴石笋 ð¹⁸O 变化主要取决于大气降水的同 位素组成和洞穴地表年均温^[8]。对同在东亚季风区的 南京洞穴系列石笋的研究^[9~11]表明:在石笋同位素 平衡的条件下,石笋的 ð¹⁸O 值大小主要反映夏季风 降水量变化。ML 石笋ð¹⁸O 测试结果进一步证实了该 指标主要指示大气降水量变化。图2 给出了距顶22~ 1522mm <u>房段 ð¹⁸O</u>值随时间的变化曲线, ð¹⁸O 值波动 范围为一9.0‰~5.3‰,变幅达3.6‰,平均值为一 7.5%。全新世温度变化不大,长江中下游地区在 2~ 3 C之间^[12],按O'Neil 方解石与水之间的同位素平衡 分馏方程($-0.24/1000 \cdot C$)^[13]计算,由温度变化导 致的石笋 δ^{18} O 值变幅仅在 0.48‰ $\sim 0.72\%$ 之间。而 ML 石笋 δ^{18} O 变幅达 3.6‰,因此 ML 石笋 δ^{18} O 主要 反映了降水量的变化,即降雨量愈大,石笋 δ^{18} O 值偏 负^[14]。

根据阿曼洞穴石笋研究结果^[3,4],季风降水变化 与反映太阳活动强度的树轮¹⁴C 残差呈同步变化,因 此我们可以将ML 石笋δ¹⁸O 序列跟树轮¹⁴C 残差序列 进行对比。图 2 为 9 点平滑δ¹⁸O 曲线与树轮¹⁴C 残差 曲线的对比。平移对比发现:两者在5.13~5.69kaB. P.期间在百年尺度上均呈现了显著的三个波动旋 回,在U-系测年误差范围内,年层序列δ¹⁸O 与树轮¹⁴C 残差有着较好的一致性,相关系数r=0.54。据 M. Stuiver 等研究^[15],树轮残差可作为太阳辐射产生的 大气中核素多少的代用指标,从而反映太阳辐射的强 弱变化:残差值愈负,大气中核素的产率愈低,太阳辐 射愈强;反之,太阳辐射则愈弱。由此可见,太阳辐射 增强,季风降水增多;太阳辐射减弱,季风降水减少。 综上所述,东亚季风在中全新世间百年尺度上季风降 水与太阳辐照存在着比较显著的正相关关系。平均而 言,当树轮¹⁴C 残差偏负 1‰,石笋 δ¹⁸O 平均偏负 0.1‰。然而两者在5.3kaB.P.左右存在明显差异,据 ML 石笋年层计数,夏季风降水显著下降的持续时间 仅为 96 年,比树轮 Δ¹⁴C 曲线少了 34 年。目前我们还 不能判别这一差异的原因,南阿曼石笋 δ¹⁸O 记录在 这一时段也与树轮 Δ¹⁴C 不相吻合,该时段刚好对应 干北大西洋冰漂碎屑 Bond4 事件^[1]。

北半球太阳辐射自全新世以来呈下降趋势,ML 石 笋 δ¹⁸O 时间序列处在太阳辐射由强变弱的过渡 期。然而,ML 石笋 δ¹⁸O 记录的东亚季风降水变化总 趋势比较平缓,未出现下降趋势,这与安芷生等通过 各种地质记录以及大气模拟得到的结论一致,即以降 水量多少为标志的全新世大暖期在中国长江中下游 地区发生于 7000~5000aB.P.^[16]。迄今为止,可与树 轮¹⁴C 残差对比的中全新世高分辨率气候记录为数不 多,其中处于印度洋季风区的阿曼 Q5 石笋降水记录 在该时段积齐毁辐射变化大体一致^[3],进一步说明了 百年尺度季风降水变化受太阳辐射驱动。

4 功率谱分析

从江苏宜兴ML 石笋δ¹⁸O 的功率谱(图3)中可识 别出较显著的周期成分有 139a、51a、28~25a、17~ 16a、10a 和 7.5a,它们大致与太阳活动周期一致。其 中139a 的周期验证了上述的东亚季风降水与太阳辐 射百年尺度上的响应关系,但该周期成分未能通过 95%置信度检验,这与本文研究的ML 石笋δ¹⁸O 时间 序列较短有关。而51a、28~25a、17~16a、10a 和 7.5a 的周期信号都通过了 95%置信度检验,特别是 28~ 25a 和 10a 周期也都显著表现在树轮 Δ¹⁴C 功率谱 中^[17],应属于太阳黑子活动周期,说明十年尺度上东 亚季风降水受太阳活动影响。由此也验证了由大气环 流模型(GCM)得出的结论:太阳黑子活动微小变化 就能导致地表气候系统发生变化^[18,19]。

图 3 江苏宜兴 ML 石笋 δ¹⁸O 功率谱 Fig. 3 Power spectrum of δ¹⁸O of ML stalagmite

from Yixing, Jiangsu

5 结 语

通过宜兴ML 石笋³¹⁸O 与树轮¹⁴C 残差的对比研 究,揭示了中全新世十年至百年尺度上太阳辐射对东 亚季风降水有显著的驱动作用,与北大西洋、北太平 洋和北印度洋地区太阳一气候的响应关系一致。令人 感兴趣的是该石笋生长快,平均达 2.73mm/a,由此 可分析到季节分辨率甚至更高的古气候信息,是否会 发现东亚季风降水的年内季节变化旋回呢?这有待于 进一步深入研究加以证实。

致 谢:感谢导师汪永进教授的悉心指导;感谢美国 明尼苏达大学地质地球物理系同位素实验室程海博 士测定U系年龄。

参考文献

- Gerard Bond, Bernd Kromer, Juerg Beer, et al. Persistent Solar Influence on North Atlantic Climate during the Holocene [J]. Science, 2001, 294: 2130-2136.
- [2] Feng Sheng Hu, Darrell Kaufman, Sumiko Yoneji, et al. Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Sub arctic [J]. Science, 2003, 301: 1890-1893.
- [3] Dominik Fleitmann, Stephen J. Burns, Manfred Mudelsee, et al. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman [J]. Science, 2003, 300: 1737-1739.
- U. Neff, S. J. Burns, A. Mangini, et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 k yr ago [J]. Nature, 2001, 411: 290-293.
- [5] Tan M, Liu T S, Hou J Z, et al. Cyclic rapid warming on centennial-scale revealed by a 2650 - year stalagmite record of warm season temperature [J]. Geophysical Research Letters, 2003, 30: 1617-1620.
- [6] Daoxian Yuan, Hai Cheng, R. Lawrence, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon [J]. Science, 2004, 304: 575-578.
- [7] Shen C C, Edwards L R, Cheng H, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry [J]. Chemical Geology, 2002, 185: 165-178.
- [8] Bar-Matthews M, Ayalon A, Matthews A, et al. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleo-climate research in semiarid regions [J]. Geochimica et Cosmochimica Acta, 1996, 60: 337-347.
- [9] Wang Y J, Cheng H, Edwards L R, et al. A high resolution

absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294: 2345-2348.

- [10] 汪永进,吴江滢,吴金全,等. 末次冰期南京石笋高分辨率气候
 记录与GRIP冰芯对比[J].中国科学(D)辑,2000,30(5):533
 -539.
- [11] 汪永进,吴江滢,刘殿兵,等. 石笋记录的东亚季风H1事件突 变性特征[J]. 中国科学(D)辑,2002,32(3):227-233.
- [12] 施雅风.中国东南部全新世气候变化大势[A].见:施雅风总 主编,张丕远主编,长江中下游及其以南地区10000年来气候 变化序列探讨[C].济南:山东科学技术出版社,1996,108-158.
- [13] Hendy C H. Paleo-climatic data from speleothems [J]. Nature, 1968, 219: 48-51.
- [14] 谭明,刘东生,钟华,等.季风气候条件下全新世洞穴碳酸钙稳 定同位素气候信息初步研究[J].科学通报,1997,42(12): 1302-1306.
- [15] Stuiver M, Remier P J, Bard E, et al. INTCAL 98 Radiocarbon age calibration, 24,000-0 cal BP[J]. Radiocarbon, 1998, 40: 1041-1083.
- [16] Zhisheng An, Stephen C. Porter, John E. Kutzbach, et al. Asynchronous Holocene optimum of the East Asian monsoon
 [J]. Quaternary Science Review, 2000, 19: 743-762.
- [17] Stuiver M & Braziunas, T F. Sun, ocean climate and atmospheric CO₂: an evaluation of causal and spectral relationships
 [J]. Holocene, 1993, 3: 289-305.
- [18] J. Haigh. The Impact of Solar Variability on Climate [J]. Science, 1996, 272: 981-984.
- [19] D. Shindell, D. Rind, N. Balachandran, et al. Solar Cycle Variability, Ozone and Climate [J]. Science, 1999, 284: 305 - 308.

DECADAL TO CENTENNIAL SCALE PRECIPITATION OSCILLATION DURING MID-HOLOCENE RECORDED IN A STALAGMITE FROM YIXING, JIANGSU PROVINCE

CHEN Chang-hai, JIANG Xiu-yang

(College of Geography Science, Nanjing Normal University, Nanjing, Jiangsu 210097, China)

Abstract: A 561-year (5.13 \sim 5.69ka B. P.) oxygen isotope time series in the Mid-Holocene is established on the basis of ²³⁰ Th, annual-layer counting and the Δ^{14} C of growth ring dating results of a stalagmite from Mingling cave at Yixing, Jiangsu province. The remarkable positive correlation (r=0.54) between the 3 \sim 4 year resolution oxygen isotope curve and the Δ^{14} C of growth ring curve during the same period reveals that East Asian Monsoon precipitation is positively related to solar activity at centennial time-scale during Mid-Holocene. Power spectrum analysis for δ^{18} O of the stalagmite proves that there were the periodicities of 28 \sim 25 year and 10 year respectively, which shows the East Asian Monsoon precipitation was also affected by decadal scale variations of solar activities.

Key words: Mid-Holocene; Monsoon precipitation; δ^{18} O of the stalagmite; Yixing, Jiangsu