文章编号:1007-3071(2007)02-0047-07

赣江三角洲形成及其演变遥感研究

雷天赐¹ 彭轩明¹ 陈立德¹ 祝民强²

(1. 宜昌地质矿产研究所,湖北 宜昌,443003;2. 东华理工学院江西省数字国土重点实验室,江西 抚州,344000)

摘要:以鄱阳湖区2个时相的 MSS、TM 遥感影像和15万地形图作为数据源,在具有最大信息 量背景下,依据地物光谱、形态等影像特征对赣江河道变迁及三角洲成因进行了解译,发现河 道的变迁主要表现为河流的改道和袭夺;采用人机交互式手段,利用多时相影像数据对赣江三 角洲 1976~1991 年来演变进行了遥感动态监测,统计出 15年间三角洲前缘新淤面积为 37.6 km²,整体淤积速度约 2.5 km²/a,且各部位淤积程度不一,并以中支淤积速度最快。

关 键 词 赣江三角洲 遥感动态监测 鄱阳湖

中图分类号 :P631.9 文献标识码 :A

通过对河流及三角洲演变的监测研究可以预 测其未来发展趋势,但常规监测方法却很难做到宏 观、持久、全面、及时,而遥感技术则具备快速、廉 价、客观和跨时段等优点。本文将以赣江三角洲为 研究对象,借助遥感手段对其演变过程和入湖河道 变迁情况进行动态监测研究。

1 研究区概况及遥感数据源

1.1 研究区基本概况

都阳湖是我国最大淡水湖,也是典型的过水湖 泊,它容纳赣、抚、信、修、饶五河来水,调蓄后经湖 口注入长江;其中赣江是最大支流,自进入南昌市 后不断发生分叉而形成网状河。首先在裘家洲头 分为东、西两大河,东大河经扬子洲在蛟溪头又分 为赣江南支和中支;西大河在芦洲头分为赣江主支 和北支,北支从芦洲头分流至下堡闵家再分二支: 官港河和沙汊河;原来的赣江单河道分成多个河 道,或直或弯,相互连通,最后四支汇入鄱阳湖。由 于河湖的长期作用、淤淀形成了赣江三角洲,其平 面呈扇形展布;在空间分布上,可划分为三角洲平 原亚相、三角洲前缘亚相和湖相三个亚相^[1];顶点 位于南昌市八一大桥附近,前缘呈不规则弧形向鄱 阳湖湖盆延伸,弧的两个端点分别位于吴城镇和三 江口。三角洲地形平坦,自顶点向前缘呈缓倾斜, 总面积约1600 km²(图1)。

1.2 数据源及其预处理

本次研究的遥感数据来自美国陆地资源卫星 Landsat - 2、5 时相选择上充分考虑了成像时的水 文条件和成像日期近似、时间跨度大且均为最低水 位等因素,否则变化检测结果不具可比性。因此, 选择了1976年10月6日和1991年10月15日两 景MSS、TM数据(如表1)轨道号p121r040。

表1 所选影像参数及当日径流情况

Table 1	The images parameter and condition of shot -
	range radial flow in one day

卫星成像时间	径流	数据类型	波段数	空间分辨率
1976 – 10 – 6	枯季	MSS	4	80m
1991 - 10 - 15	枯季	TM	7	30m

图像预处理首先进行几何校正,利用 ERDAS 校正模块,以该区15万地形图作参照,通过选取 同名地物点对1991年影像进行校正,几何校正模 式选用二次多项式,投影方式UTM,坐标系 WGS84 /重采样采用双线性内插法;然后,采用同样

收稿日期 2007-01-10

基金项目 :中国地质调查局长江上游宜昌 – 江津段环境工程 地质调查(D200602).

作者简介,雷天赐 1977—),男,硕士,从事遥感技术应用工作. 万万数据

的校正参数,以校正后的1991年影像为基础,对 1976年影像数据和历史资料按像元间点点对应进 行配准,精度控制在RMS<0.3个象元。最后,进 行了大气校正、最佳波段组合测试、图像增强等多 项预处理。

2 三角洲形成与赣江河道变迁的关系

现代赣江主支流沿九岭地块东部边缘呈弧线 状延伸至吴城镇,注入鄱阳北湖后进入长江。根据 遥感图像判读,赣江河道演变特征主要表现为河流 改道及袭夺(图2),其结果导致了三角洲的形成及 后期的演变。为了研究方便,以水下分流间湖湾切 割特征为依据,将三角洲前缘水上部分划分为A、 B、C 三大朵体(图1),其分别位于变化较大的赣江 主支、中支和南支入湖处,各朵体的形态及发育规 模反映了不同时期赣江河道的位置、水量大小及所 含泥沙量,亦反映了赣江河道的兴衰及历史变迁。

朵体 A 是由赣江两次改道入湖携带的泥沙淤 积而成,后因赣江主支再次发生迁移到达现今位 置,河水携带的大量泥沙直接进入鄱阳北湖,先前 的河道水量逐渐减小而日益萎缩,朵体的发育速度 也因泥沙供给量不足而日趋缓慢;又由于 NW 部地 壳的相对持续抬高,后来赣江北支和中支相继分离 万方数据 和不断壮大,其携带的大量泥沙在朵体 B 内以河口 沙坝形式沉积下来,湖水对河口沙坝反复淘选和搬 运使得部分细粒被搬运到朵体 A 前端形成薄层新 鲜席状沙。朵体 A 总面积 201.5 km²,是三个朵中 发育最早的,目前建设速度较慢。

图 2 赣江支流改道与袭夺图(TM543) Fig. 2 Map showing the Ganjiang Rriver diversion and capture

(左 赣江主支改道图 ;右 赣江北支被西支袭夺图)

朵体 B 面积 250.9 km²,形似一个倒垂的葫芦, 其形成、发展受北支和中支两条河流控制,明显经 历了两个历史发展阶段。早期阶段:赣江北支首先 从主支上分离出来,河水携带大量泥沙进入湖区, 在河湖的相互作用下开始了朵体 B 的建设,其发展 主要由北支控制;晚期阶段:由于赣江中支与主支 的分离、赣江主支袭夺北支等因素的出现,北支水 量开始减小,并逐渐失去了对朵体 B 发展的支配。 随着赣江中支的不断发展壮大,水量也越来越丰 富,河水携带的泥沙大量堆积,逐渐成为控制朵体 B 的主导力量,将其向前推进得较远,使之成为目 前建设最快的朵体。

朵体 C 面积为 347.9 km² ,其形成相对较晚。根 据古河道遥感解译,历史时期朵体 C 为赣江南支和 信江二河淤蚀控制,而现在赣江南支、抚河和信江交 汇于三江口并由此入湖。根据目前朵体 C 分布范围 及淤积状况推测,在较早一段时期内淤积较快,近期 淤积作用虽仍占主导,但不如朵体 B 明显;其沉积方 式主要为水下河道分支或决口,分支或决口河道彼 此交错连接如同网状,泛滥沉积作用明显。

3 赣江三角洲演变遥感动态监测

三角洲的发展演变 ,在平面上主要表现为湖岸

线是淤进还是退蚀,遥感变化检测主要是通过判断 湖岸线的淤蚀方向来明确三角洲发展的动态变 化^[2]。因此,湖岸线的提取是比较关键的步骤。在 遥感影像上,由于水体质地均一,其在各波段的光 谱特征稳定而且明显,相对其它地物来说提取难度 要小得多。首先选择提取水体,通过水体的边缘线 来确定水陆分界线,即湖岸线;然后分别对提取出 的水体在平面上进行定量变化检测,湖面扩大代表 湖岸线是退蚀的,三角洲在萎缩;相反则说明湖岸 线是淤进的,三角洲在扩张。

3.1 水体的提取

地表各物体由于其结构、组成以及物理化学性 质的差异,从而导致不同的地物对电磁波的反射存 在着差异,以及其热辐射也不完全相同^[3]。水体几 乎全部吸收了近红外和中红外波段内的全部入射 能量,所以水体在近红外和中红外波段的反射能量 很少,而植物、土壤、沙体及岩石等在这两个波段内 的吸收能量较小,有较高的反射特性,使得水体在 这两个波段上与植物、土壤、沙体及岩石有明显的 光谱差别^[4]。根据目视解译结果,在遥感影像上选 择本区几种典型地物进行采样,并对样本进行训 化,测定光谱反射值,且从中抽取一些典型而有代 表型的数据列于表中(表2,表3),生成相应的波谱 曲线图(图3,图4)。

从图表可知,研究区内的六种典型地物在各波 段都具有不同的反射特征,通过分析及反复的试验 研究后,发现水体具有独特的谱间关系特征(图5, 图6):TM影像中,即波段2加波段3大于波段4 加波段5;MSS影像中,即波段1加波段2大于波 段3加波段4。根据水体这一与众不同的波谱特 征,分别设定条件函数:TM1+TM2>TM3+TM4 (MSS)和TM2+TM3>TM4+TM5(TM),通过建 模分别对1976、1991年两景影像中三角洲前缘内 三朵体中残留水体进行了提取(图7)。利用提取

表 2 1976 年 10 月 6 日遥感影像部分典型地物采样点的波谱反射值

 Table 2
 The spectrum reflective value of part typical ground objects on remote sensing image in Oetober 6 , 1976.

				TM1				TM2				TM3				TM4	
地物 名称	样本数	最 小 值	最大值	平均值	标准差	最 小 值	最 大 値	平均值	标准差	最 小 值	最大值	平均值	标准差	最 小 值	最大值	平均值	标准差
水体	61511	20	39	27.739	3.173	17	53	30.484	6.359	8	41	17.655	6.804	1	18	4.971	2.968
沙地	3458	24	50	36.016	4.449	30	80	50.927	9.970	35	84	55.224	8.478	26	64	42.665	6.305
裸露 洼地	3086	17	28	21.465	1.581	16	33	21.497	2.300	26	60	37.920	3.683	18	53	32.539	4.325
草洲 植被	5325	17	29	21.567	1.344	16	37	21.296	2.479	33	61	46.643	4.416	20	64	43.113	5.946
林地	2939	15	27	19.089	1.977	13	36	18.987	2.753	22	54	39.157	5.664	16	55	36.751	6.728
裸露 丘陵 区	8475	17	33	24.400	1.971	18	49	29.615	4.399	14	54	41.318	4.244	8	46	34.154	3.840

表 3 1991 年 10 月 15 日遥感影像部分典型地物采样点的波谱反射值

Table 3 The spectrum reflective value of part typical ground objects on remote sensing image in October 15, 1991.

		TM2					TM3				TM4					TM5			
地物 名称	样本数	最 小 值	最 大 值	平均值	标准差	最 小 值	最 大 値	平均值	标准差	最 小 值	最 大 値	平均值	标准差	最 小 值	最 大 值	平均值	标准差		
水体	182781	31	46	40.623	1.950	29	54	42.892	3.216	19	40	23.226	2.612	6	30	10.600	0.977		
沙地	10148	36	61	48.035	4.182	39	80	58.554	7.163	43	84	62.263	5.877	60	171	109.635	15.060		
裸露 洼地	7978	35	44	38.782	1.209	36	52	43.595	1.7073	<u>89.6</u> 2	2	48.90	93.144	45	97	73.237	6.377		
草洲 植被	13347	29	37	32.627	0.978	26	37	28.900	1.029	43	96	72.404	8.982	32	74	62.600	3.762		
林地	2174	27	35	31.072	1.443	25	36	29.332	1.712	34	74	53.753	7.457	21	83	46.788	10.707		
·裸露 丘陵 区	14475	33	45	38.128	1.793	33	56	43.065	3.243	30	69	54.263	4.058	18	109	74.170	10.638		

图 4 几种典型地物波谱曲线图(1991 年 10 月 15 日)

图 7 各朵体内水体多时相遥感对应图(左:1976 年 MSS ;右:1991 年 TM) (上: : (上: : (本 A:)中: : (本 A:) (二 : : (本 A:)

Fig. 7 The corresponding chart of the water in each part on multi – phase remote sensing image (Left :MSS ,1976 ;Right : TM ,1991) Up Lobe A ; Middle : Lobe B ; Down : Lobe C. The water is black)

Table 4 The	e area statistic	table of the rel	maining lake an	a land in each	part 1976 ~ 199	1
	朵体 A	(km ²)	朵体 B	(km ²)	朵体 () (km ²)
	残留湖	淤地	残留湖	淤地	残留湖	淤地
1976 年	55.9	145.6	99.6	151.3	116.0	231.9
1991 年	49.0	152.5	79.2	171.7	105.7	242.2
1976~1991 年淤地	-6.9	6.9	-20.4	20.4	- 10. 3	10.3
增加面积 km ²	6.	9	20	. 4	10). 3

表 4 各朵体内 1976 ~ 1991 年残留湖与淤地面积统计表 Table 4 The area statistic table of the remaining lake and land in each part 1976 ~ 1991

出的水体对各朵体分别进行掩膜处理,然后利用统 计模块对处理后朵体内残留湖、淤地进行了面积统 计,其结果见表4:

4.2 赣江三角洲变化检测

变化检测是根据两个时期的遥感图像来计算 其光谱差异,其实质就是对两景不同时期的遥感图 像进行波谱差值运算,通过波谱值的变化来反映地 物的变化^[5]。上述虽然对三个朵体进行了水体、淤 地提取,并统计出每个朵体内残留水体和淤地面积 以及增减情况,但就朵体内具体什么部位发生了淤 积、什么地方被侵蚀没能反映出来,也无法判断三 角洲淤进或退蚀方向。因此,为了让冲淤情况更加 直观,准确预测未来三角洲发展趋势,以不同时相 提取出的水体为对象进行变化检测处理(图8)。 图中黑色代表新淤积的泥沙,即1976年为水体而 1991年已变为淤地;灰色代表地物前后没有发生变 化,即1976年的水体和淤地1991年仍对应为水体 和淤地;白色代表扩张的水面,即1976年为淤地而 1991年已经被水体淹没了。

图 8 1976~1991 年各朵体变化检测图(左 :朵体 A ;中 :朵体 B ;右 :朵体 C) Fig. 8 The change detection of each part 1976~1991(Up : Lobe A ; Middle : Lobe B ; Low : Lobe C)

5 结论

根据朵体内残留水体与淤地的提取、面积统计 及变化检测结果分析,每个朵体内均有冲有淤,但基 本上都是以淤为主。由于淤地面积在增大,说明 万方数据 1976~1991 的 15 年间,三角洲前缘向前推进了;但 从每个朵体增加的淤地面积来看,其淤进速率又各 不一样,其中尤以朵体 B 推进最快、朵体 C 次之、朵 体 A 推进最慢,说明目前三角洲前缘的淤积主要集 中在中支。同时,泥沙淤积存在一个显著的特点,即

53

淤积主要发生在水下分流河道两侧、河口位置处。 根据统计结果计算,朵体A在15年间共新增淤地面 积6.9 km²,向湖区推进速度为0.46 km²/a;朵体B 在15年间共新增淤地面积20.4 km²,向湖区推进速 度为1.36 km²/a;朵体C在15年间共新增淤地面积 10.3 km²,向湖区推进速度为0.69 km²/a,由此可以 推测三角洲的发展趋势将仍以中支为龙头,北支和 南支为两翼扇状继续向湖区推进。另外,三角洲前 缘在15年间共淤积面积为37.6 km²,整体淤积速度 约2.5 km²/a;按鄱阳湖枯水期面积不到1000 km²、 赣江泥沙淤积量约占五河的三分之二换算^[6],则整 个鄱阳湖平均淤积速率约3.76 km²/a;若不考虑湖 盆的抬升或下降等其它因素,照此速度下去,推测 260年左右鄱阳湖将会被泥沙淤平。

由于遥感具有可追溯历史痕迹和动态对比的 功能,因此在调查河道变迁、三角洲演变以及了解 河道或尾闾治理效果等方面,具有其它方法难以比 拟的优越性。但是 利用遥感手段对三角洲冲淤的 研究还只停留在二维平面变化上 ,没有反映出三角 洲冲淤变化的三维特征 ,这还有待今后继续探索。

参考文献

- [1] 叶崇开,张怀真,王秀玉. 鄱阳湖近期沉积速率的研究[J]. 海洋与湖沼,1991(3)272—277
- [2]常 军 刘高焕 刘庆生. 黄河三角洲海岸线遥感动态监 测[J]. 地球信息科学 2004 f(1) 94—98
- [3]周成虎 路剑成 杨晓梅 ,等. 遥感影像地学理解与分析
 [M] 北京 科学出版社 2001
- [4] 杜云艳 周成虎. 水体的遥感信息自动提取.[J]. 遥感学 报,1998.2(4) 264—269
- [5]党安荣,王晓荣,陈晓峰,等.遥感图像处理方法[M].北 京,清华大学出版社 2003
- [6] 尹宗贤 涨俊才. 鄱阳湖水文特征(II] J]. 海洋与湖沼, 1987,18(2) 208—214

Remote Sensing Research of Development and Evolution in Ganjiang Delta

LEI Tian - ci¹, PENG Xuan - ming¹, CHEN Li - de¹, ZHU Min - qiang²

(1. Yichang Institute of Geology and Mineral Resources, Yichang 443003, Hubei, China; 2. The Digital Land Key lab of Jiangxi Province of The East China Institute of Technology, Fuzhou 344000, Jiangxi, China)

Abstract : Regarding 2 – phase Remote sensing images of MSS and TM and 1 50000 relief map in Poyang Lake as data sources, the Ganjiang transition and delta evolution are interpreted in maximal information assembly based on the spectral signature and morphological character ; Its was considered that river 's transition mainly manifestated its diversion and capturing stream. By the means of human – computer interaction , making use of the remote sensing image from 1976 to 1991, the dynamic monitoring of evolution in Ganjiang Delta was carried out , the increased area in delta front was 37.6 km² and it is pushed forward at the speed of 2.5km²/a ;Each part is pushed forward at different rate and the mud filling chiefly focuses on the Ganjiang 's middle branch in delta front.

Key words Ganjiang Delta ; remote sensing dynamic monitoring ; Poyang Lake