文章编号: 1007-3701(2012)04-331-09

钦杭成矿带西段古龙花岗岩株群岩石学、地球化学及年代学

许 华,黄炳诚,倪战旭,钟辉运,黄 英,李 乾

(广西区域地质调查研究院,广西桂林 541003)

摘要:古龙花岗岩株群包括大村、古龙、思泰、社山、上木水、大坡等侵入体,岩性主要为石英 闪长岩-英云闪长岩-花岗闪长岩-二长花岗岩组合,岩石普遍含角闪石。岩石化学系列属 于钙碱性系列-高钾钙碱性系列,主量元素具高 CaO 低 K₂O 的特征。稀土总量低,轻稀土富 集,弱 Eu 亏损。微量元素 Nb、Ta、Sr、P、Ti 强烈亏损,Th、U、Zr、Hf 相对富集。对古龙岩体进 行了高精度的 LA-ICP-MS 锆石 U-Pb 定年,获得石英闪长岩等时线年龄为 445.9±1.2Ma (MSWD=0.035)。研究认为古龙花岗岩株群形成于早志留世,属于加里东期 I 型花岗岩,形成 于华南加里东期造山带俯冲-碰撞挤压构造背景,岩浆物质来源主要为俯冲带幔源岩浆并 混入了部分壳源物质。

关键词:岩石地球化学;LA-ICP-MS 锆石 U-Pb 年龄;古龙花岗岩株群;钦杭成矿带西段中图分类法:P595,P597 文献标识码:A

古龙花岗岩株群位于广西大瑶山东侧古龙-社山一带,由6个出露规模大小不等的花岗岩株组 成。由于缺少同位素测年资料,该花岗岩株群的形 成时代一直存在争议。在钦杭成矿带地质矿产调查 1:25万贵县幅(F49C001002)区调修测工作中,笔 者对古龙花岗岩株群进行了野外调查,从岩石学、 地球化学、同位素年代学等方面进行了较详细的研 究,对其成因和形成构造环境进行了探讨。

1 区域地质背景

古龙花岗岩株群位于钦杭成矿带西段大瑶山 隆起东南缘,灵山 - 藤县断裂北西侧。岩株群大致呈 E-W 向弧状展布,自西往东出露有大村、古龙、思 泰、社山、上木水、大坡等 6 个规模大小不等的侵入 体(图 1),出露面积最大的古龙岩体约 14.6 km²,其 余的为 0.5~6.7 km²。岩体多呈近圆状岩株侵入于寒 武系小内冲组砂、页岩,外接触带围岩发育宽约 250 ~1500 m 的角岩化带,且发育花岗闪长斑岩脉。

各侵入体岩性特征大同小异,岩性主要为石英 闪长岩-英云闪长岩-花岗闪长岩(或花岗闪长斑 岩)-二长花岗岩(或花岗斑岩)组合,石英闪长岩、 英云闪长岩(花岗闪长岩)中富含暗色闪长质包体。 古龙、大村、大坡等岩体出露主要为中-细粒石英 闪长岩、英云闪长岩、花岗闪长岩(或花岗闪长斑 岩),而社山、思泰、上木水等岩体出露主要为中-细粒花岗闪长岩(或花岗闪长斑岩)、黑云二长花岗 岩(或花岗斑岩)。其中,社山花岗闪长岩体内部尚 有晚燕山期花岗斑岩(LA-ICP-MS 锆石 U-Pb 年龄 为 91.05 Ma)^{III}侵入。

2 岩石学特征

各岩体具有明显的岩相分带,一般岩体边缘相 为石英闪长岩、英云闪长岩或花岗闪长斑岩,中心 相为花岗闪长岩或二长花岗岩。如古龙岩体的中心

收稿日期:2012-7-24;修回日期:2012-8-9.

基金项目:中国地质调查局地质矿产调查评价专项(编号: 1212011120815).

作者简介:许华(1969—),男,高级工程师,从事区域地质调查工作,E-mail:xuhua88131@yahoo.com.cn.

相为中 - 细粒黑云母花岗闪长岩和英云闪长岩,边 缘相为中 - 细粒石英闪长岩;社山岩体中心相为中 - 细粒黑云母花岗闪长岩或二长花岗岩,边缘相为 花岗闪长斑岩。

石英闪长岩:呈浅灰色,中-细粒花岗结构,块 状构造;主要由斜长石(55%)、石英(16%)、普通角 闪石(14%)、黑云母(8%)等矿物组成;斜长石 (An=28~47)呈半自形宽板状,晶体大小为0.2~5mm, 以 0.5~2 mm 居多,0.2~0.5 mm 次之,具明显环带,内环带主要部分为中长石(An=47),边部为更 长石(An=28),部分斜长石晶粒内有更基性的拉长 石(An=60)不规则状包块;他形粒状石英分布于斜 长石之间,大小多在 2 mm 左右;黑云母鳞片大小 不一,小者 0.5 mm 左右,大者可达 5 mm,为聚片集 合体。普通角闪石呈长柱状,柱长一般为 1~2 mm 间;副矿物有磁铁矿、锆石、磷灰石、榍石等。

图1 古龙岩株群地质简图

Fig. 1 Simplified geological map of the Gulong granites

1-邕宁群;2-罗文组;3-黄洞口组第三段;4-黄洞口组第二段;5-黄洞口组第一段;6-小内冲组;7-培地组;8-正圆岭组;9-花岗斑岩; 10-石英闪长岩;11-花岗闪长岩;12-角岩化;13-岩体相变线;14-地质界线.

英云闪长岩:呈浅灰色,中-细粒花岗结构,块 状构造;主要由斜长石(36%~50%)、石英(36%~ 40%)、黑云母(6%~10%)、普通角闪石(4%~ 8%)、钾长石(3%~4%)等矿物组成;斜长石半自形 板状晶体大小多在0.5~2mm之间,少数略大于2mm, 斜长石环带构造明显,内环多已被斜黝帘石和粘土 矿物交代;他形石英分布于斜长石间,大小多在2mm 左右,少数可达3mm;黑云母鳞片大小不一,小者 0.5mm左右,大者可达5mm,它们往往被绿泥石交 代;普通角闪石呈长柱状,柱长多在1~2mm间; 副矿物有磁铁矿、锆石、磷灰石等。

花岗闪长岩:呈浅灰白色,中-细粒花岗结构, 块状构造;主要由斜长石(基性斜长石钠长石化, An=8)(40%)、石英(42%)、黑云母(5%)、钾长石 (9%)等矿物组成。长英矿物大小为 0.2 ~ 1.6 mm, 以 0.5~1 mm 间居多;斜长石被钠长石及少量斜 黝帘石、绢云母交代,黑云母被绿泥石、方解石交 代,但原矿物外形仍保留;副矿物有黄铁矿、锆 石、磷灰石等。

二长花岗岩:呈浅灰白色,中-细粒花岗结构, 块状构造;主要由斜长石(基性斜长石钠长石化, An=7)(33%)、石英(32%)、钾长石(20%)、黑云母 (绿泥石化)(5%)等矿物组成。长英质矿物大小为 0.2~1.2 mm,以 0.5~1 mm 居多。斜长石被钠长石及 少量斜黝帘石交代,黑云母被绿泥石交代,但原矿物 外形仍保留;副矿物有黄铁矿、锆石、磷灰石等。

3 岩石地球化学特征

笔者选取了代表性岩石类型,对古龙花岗岩株 群进行了岩石地球化学测试。主、微量元素及稀土元 素分析均由武汉综合岩矿测试中心完成,全岩地球 化学数据见表 1。文中图件采用 GeoKit 软件^四制作。 **3.1 主量元素特征**

自石英闪长岩(英云闪长岩)→花岗闪长岩→ 二长花岗岩,SiO₂含量由62.15%→70.91%→ 71.13%变化,表现为从中性到酸性,由低钾向高钾 方向演化。总体SiO₂含量偏低,具高钙(CaO:2.11% ~6.72%)低钾(K₂O:1.03%~3.83%)的特征。全碱 (Na₂O+K₂O)3.69%~6.44%,Na₂O > K₂O,碱度率 (AR)为1.41~2.23,铝饱和指数(A/CNK)为0.93~ 1.22,为准铝质-过铝质。在SiO₂-(Na₂O+K₂O) (TAS)图解(图2)中,全部样品均属亚碱性,分别落 于闪长岩、花岗闪长岩及花岗岩区,与前文矿物和 结构定名一致;在SiO₂-K₂O 图解(图3)中,样品多 落于钙碱性系列,个别已落于低钾系列界线附近, 少量演化晚期样品落于高钾钙碱性系列,显示为低 钾系列→钙碱性系列→高钾钙碱性系列演化的火 山弧花岗岩组合特征。

1-橄榄辉长岩;2a-碱性辉长岩;2b-亚碱性辉长岩;3-辉长闪长岩;4-闪长岩;5-花岗闪长岩;6-花岗岩;7-硅英岩;8-二长辉长岩; 9-二长闪长岩;10-二长岩;11-石英二长岩;12-正长岩;13-副长石 辉长岩;14-副长石二长闪长岩;15-副长石二长正长岩;16-副长正 长岩;17-副长深成岩;18-宽方钠岩/磷霞岩/粗白榴岩;Ir:Irvine分界 线,上方为碱性,下方为亚碱性.

Fig.3 SiO₂-K₂O diagram for the Gulong granites

3.2 稀土元素特征

稀土元素总量(ΣREE)为83.81×10⁻⁶~169.74 ×10⁻⁶,轻重稀土(LREE/HREE)比值5.54~10.74, 岩石轻重稀土分馏明显。δEu值为0.68~0.85,属 弱负Eu异常。总体稀土总量(ΣREE)偏低,而Y (15.12×10⁻⁶~19.53×10⁻⁶)含量相对偏高,反映了 火山弧花岗岩的稀土元素含量特征。其稀土配分曲 线为轻稀土富集型(图4),轻稀土区间斜率较陡, 重稀土区间平缓。各侵入体代表样品的稀土配分曲 线基本相似,不同岩性样品曲线显示为协调的演化 性,表明古龙花岗岩株群不同的侵入体均具有相同 或相似的岩浆源区和成岩环境。

3.3 微量元素特征

在微量元素原始地幔标准化蛛网图(图 5)中, 大离子亲石元素 Ba、K、Sr 及部分高场强元素 Nb、 Ta、P、Ti 亏损(谷),部分高场强元素 Th、U、Zr、Hf 相对富集(峰),反映了典型的火山弧花岗岩微量元 素特征。

4 年代学

4.1 样品采集和测试方法

在古龙岩体中,选取主要岩性进行锆石分选和 年龄测试。样品(GL-1)采自古龙镇附近的新鲜基 岩,岩性为中 - 细粒黑云角闪石英闪长岩。采用常 规的重选和磁选,将锆石从全岩中分离,最后在双 目镜下挑纯。

样品制靶和锆石阴极发光、背散射照像在中国

	DI	53.83	54.02	60.61	79.65	79.43	63.02			Mo	0.18	0.12	0.03	0.67	0.72	0.22	Ηf	2.31	2.4	3.45	3.39	3.57	4.39
	AR	1.41	1.38	1.54	2.19	2.23	1.53			M	06.0	0.2	0.36	5.23	2.63	0.82	Ba	356	329.8	729	817	726	683
	VCNK	0.93	0.99	1.01	1.22	1.19	1.15			Sn	1.26	0.84	1.93	5.05	3.95	3.47	Zr	76.4	70.9	113	120	121	148
	otal A	9.84	.82	17.6	9.80	08.6	9.78	百分比值		δEu	0.82	0.75	0.85	0.68	0.75	0.77	Bi	0.01	0.03	0.01	0.32	2.59	0.21
	CO ₂ T	0.06 99	0.10 99	0.11 99	0.31 99	0.23 99	0.04 99	+全碱)重量		L/HREE	5.54	9.97	10.74	8.24	8.55	9.65	>	128	134.1	114	49.0	48.9	104
1	$\mathrm{H}_{2}\mathrm{O}^{+}$	1.15	1.13	1.59	1.33	1.23	2.26	Al ₂ O ₃ +CaO-		ZREE	83.81	169.74	146.28	128.57	123.48	124.80	Sr	201	178.5	269	157	151	316
	P_2O_5	0.10	0.09	0.16	0.10	0.10	0.13)+全碱)/(Y	5.99	9.53	6.73	8.58	6.71	5.12	ï	3.17	86.	.29	.22	00.6	0.3
	K_2O	1.16	1.03	1.73	3.77	3.83	1.86	J ₂ O ₃ +CaC		Cu .	29 1:	.36 19	.31 10	.36 1	.36 1	.27 1	D	.34 8	.36 9	96.	69.7	.70 6	.39]
ı,	Na_2O	2.88	2.66	2.93	2.47	2.61	2.55	s(AR) : (A		Y-P 1	.95 0	.78 0	0 16.	.28 0	.19 0	.73 0	ЧI	6.49	7.16	5.9 1	24.0 7	5.7 9	8.8 4
	CaO	6.72	6.27	5.28	2.11	2.18	4.46	碱度率		E	.28 1	.30 1	.27 1	.33 2	31 2	.26	Pb 4	0.6 6	0.55 7	5.8]	3.8	9.7 2	0.2
	MgO	2.57	2.58	2.15	1.07	1.09	2.13	子数比值		1	81 0	93 0	74 0	0 66	87 0	.66 0	[a	1 61.	.61 1(82 2	.40 5	34 6	90 2
	MnO	0.13	0.13	0.12	0.07	0.08	0.10	+CaO)分		0	58 1.	68 1.	58 1.	65 1.	59 1.	54 1.	4P	83 1	0 09	83 0	42 1	90 1	84 0
	FeO	3.27	3.60	2.90	2.10	2.23	2.90	0+Na2O-		H H	1 0.	.0 6	4 0.	0 6	3 0.	3 0.	2	.3 4.	75 5.	.0 6.	59.	68.	.7 8.
	Fe_2O_3	2.33	1.85	2.29	0.45	0.34	1.73	Al ₂ O ₃ /(K ₂		Δ.	2.6	3.4	1 2.7	2.9	1 2.7	5.6	8	49	2 57.	62	9 17	5 21	83
	12O3	6.97	6.73	6.51	4.63	4.72	6.45	KNC): /		Tb	0.42	0.66	0.43	0.51	0.44	0.45	ß	16.9	17.9	21.2	14.9	15.6	18.3
	10 ₂ A	35 1	34 1	1.39 1	0.26	0.25 1	0.36	炮和度(A		Gd	2.44	4.49	3.07	2.80	2.69	2.75	Zn	59.0	63.81	67.0	41.3	43.5	46.9
	io ₂ 1	2.15 (31 (.55 () 16.(1.81 (2和: 铝(Eu	0.68	1.13	0.86	0.68	0.68	0.77	õ	9.38	9.12	36.7	12.7	65.7	13.5
	S	格	措 63	뀪 03	11	7(岩 62	Lc+Kp ž		Sm	2.52	4.58	3.03	3.16	2.78	3.23	ട	14.4	15.86	12.9	5.44	5.81	7.74
	推	石英闪长	英云闪长	英云闪长	长花岗岩	岗闪长岩	英云闪长	Dr+Ab+Ne+		PN	11.00	26.23	19.05	17.24	16.29	18.52	Ç	18.9	45.1	21.1	20.6	17.9	38.2
	Ŧ	幕云角闪:	自闪黑云	自闪黑云	三母五	民工母花	自闪黑云	佳矿物 Q+(Pr	3.07	7.31	5.89	4.92	4.74	5.26	Sc	16.6	16.10	14.6	7.74	7.67	13.6
	바		-1 ¢	-2		-1	-1	JPW 标?		Ce	26.72	61.71	56.53	45.84	45.12	45.81	Be	0.99	1.08	1.60	2.96	3.18	1.97
	样品	古龙	2352	2060	2253	2254	2263	数(DI): (La	13.47	35.57	33.16	26.25	25.98	25.80	E	14.2	14.56	13.8	25.7	24.4	15.9
	侵入体	十十十十	日 人 白 件	大村岩体	47 m m	在山石体	大坡岩体	*注: 分异指	续表	样品号	古龙-1	2352-1	2060-2	2253-1	2254-1	2263-1	样品号	古龙-1	2352-1	2060-2	2253-1	2254-1	2263-1

表1 古龙岩株群岩石的主量元素(wt%)、微量元素和稀土元素(×10⁻⁶)分析结果表 Table 1 Major element (wt%),trace element and REE(×10⁻⁶) compositions of the Gulong granites

万方数据

	ЧЧ	²³² Th	Ω_{872}	1	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	Deez	²⁰⁶ Pb	^{/238} U	-/9d/107	٩d	77/qd,07	D°	~/qd.007	U"
测点编号		×10-6		- Th/U	测量值	lσ	测量值	lσ	测量值	lσ	年龄/Ma	lσ	年龄/Ma	lم	年龄/Ma	lσ
GL 1-01	5.19	14.07	31.91	0.44	0.1513	0.0787	0.6108	0.0809	0.0722	0.0027	2360.2	1024.4	484.1	51.1	449.3	16.2
GL-1-02	5.06	14.75	38.52	0.38	0.0840	0.0130	0.5377	0.0180	0.0715	0.0016	1294.4	300.9	436.9	11.9	445.3	9.7
GL-1-03	3.92	17.19	42.53	0.40	0.0521	0.0014	0.5473	0.0469	0.0715	0.0006	300.1	63.0	443.2	30.8	445.5	3.4
GL-1-04	0.99	8.43	20.53	0.41	0.0714	0.0130	0.5673	0.0209	0.0717	0.0014	970.1	378.5	456.3	13.6	446.4	8.3
GL-1-05	11.98	46.65	109.84	0.42	0.0536	0.0003	0.5291	0.0028	0.0716	0.0002	353.8	11.1	431.2	1.8	445.9	1.5
GL-1-06	4.71	19.32	48.01	0.40	0.0532	0.0004	0.5256	0.0045	0.0717	0.0003	344.5	16.7	428.9	3.0	446.5	1.7
GL-1-07	13.82	52.16	78.23	0.67	0.0537	0.0006	0.5294	0.0054	0.0715	0.0003	366.7	22.2	431.4	3.6	445.4	1.6
GL-1-08	2.60	13.50	35.07	0.38	0.0995	0.0261	0.5868	0.0338	0.0717	0.0018	1614.5	501.7	468.8	21.7	446.3	10.7
GL-1-09	3.37	22.75	56.33	0.40	0.0546	0.0012	0.5520	0.0329	0.0715	0.0010	394.5	50.0	446.3	21.5	445.4	6.0
GL-1-10	2.25	16.90	37.22	0.45	0.0534	0.0005	0.5263	0.0047	0.0715	0.0003	346.4	20.4	429.3	3.1	445.3	1.6
GL-1-11	7.68	61.42	140.67	0.44	0.0540	0.0003	0.5343	0.0119	0.0716	0.0013	368.6	8.3	434.7	7.9	445.8	8.0
GL 12	12.85	94.06	157.28	09.0	0.0551	0.0004	0.5282	0.0049	0.0695	0.0003	416.7	18.5	430.6	3.3	433.0	1.5
GL-1-13	4.89	21.52	42.13	0.51	0.0543	0.0005	0.5361	0.0061	0.0716	0.0005	383.4	20.4	435.8	4.0	445.8	3.3
GL-1-14	13.09	40.77	86.52	0.47	0.0552	0.0008	0.5436	0.0124	0.0716	0.0015	420.4	31.5	440.8	8.2	445.5	8.8
GL-I-15	8.19	17.15	37.79	0.45	0.0529	0.0015	0.5220	0.0203	0.0717	0.0021	324.1	63.0	426.5	13.5	446.1	12.8
GL-I-16	3.58	25.02	49.77	0.50	0.0528	0.0004	0.5189	0.0073	0.0714	0.009	320.4	21.3	424.4	4.9	444.3	5.2
GL-1-17	7.02	36.14	80.44	0.45	0.0540	0.0007	0.5332	0.0085	0.0717	0.0007	372.3	63.9	434.0	5.6	446.2	4.2
GL-1-18	7.54	24.31	65.00	0.37	0.0532	0.0003	0.5255	0.0041	0.0717	0.0004	344.5	13.0	428.8	2.7	446.5	2.4
61-1-19	4.25	28.60	68.00	0.42	0.0535	0.0006	0.5296	0.0073	0.0717	0.0004	350.1	25.9	431.5	4.8	446.3	2.3
GL-1-20	10.78	53.72	131.09	0.41	0.0538	0.0002	0.5315	0.0038	0.0717	0.0005	364.9	9.3	432.8	2.6	446.1	2.7

万方数据

测年数据约束,长期以来存在争议,如1:20万桂平 幅区域地质测量报告将其归为加里东期侵入体^[11]; 广西区域性地质志认为属燕山早期第三次侵入形 成的同熔型中酸性侵入岩^[12];1999年及2006年版 1:50万广西壮族自治区数字地质图均认为其形 成于中侏罗纪^[13-14]。以上划分均据区域地质资料,并 无实测数据的支持。

本次工作首次对古龙岩体进行了高精度的 LA-ICP-MS 锆石 U-Pb 定年,获得古龙岩体石英闪 长岩的加权平均年龄为 445.9 ± 1.2Ma。陈懋弘等 (2011)对苍梧县社洞钨钼矿床花岗岩类研究^{III}时对 社山岩体和平头背岩脉进行了 LA-ICP-MS 锆石 U-Pb 定年和矿石辉钼矿 Re-Os 测年,获得社山岩 体花岗闪长岩年龄为 435.8 ± 1.3Ma,平头背花岗闪 长斑岩脉 432.0 ± 1.7Ma,石英脉型辉钼矿 Re-Os 等 时线年龄 437.8 ± 3.4Ma。

上述高精度测年数据表明:古龙花岗岩株群的 形成年龄为445~432 Ma,属早志留世(加里东期)。

5.2 岩石成因

古龙花岗岩株群的岩石组合为石英闪长岩 -

英云闪长岩 – 花岗闪长岩 – 二长花岗岩,岩石普遍 含角闪石;岩石化学系列包括了低钾系列 – (中钾) 钙碱性系列 – 高钾钙碱性系列,主量元素具高 CaO 低 K₂O 的特征;稀土分馏程度较高,轻稀土富集,弱 Eu 亏损,稀土总量(Σ REE)低,Y元素含量相对偏 高;微量元素原始地幔标准化蛛网显示右倾模式, 强烈的 Nb、Ta、Sr、P、Ti 亏损,Th、U、Zr、Hf 相对富 集:这些特征表明古龙花岗岩株群为典型的火山弧 I型花岗岩,具壳幔混源花岗岩的特点。

在岩浆岩成因 SiO₂- Zr 判别图(图 8a)中,样品 均落于 I 型花岗岩区。在 Defant 的经典岛弧岩石与 埃达克岩判别图(图 8b)上,样品均落于经典岛弧 岩石区域。在 Pearce 的花岗岩构造环境判别图中, Y-Nb 微量元素判别图(图 8c)落于火山弧 + 同碰 撞花岗岩区,而 Y-Nb 微量元素判别图(图 8d)则 落于火山弧花岗岩区,个别投点靠近同碰撞花岗岩 过渡区。

对古龙花岗岩株群的岩石组合、主量元素、稀 土元素和微量元素的特征分析表明,该岩株群为与 岛弧或活动大陆边缘有关的 I 型花岗岩(科迪勒拉

型),形成于俯冲-碰撞挤压构造背景,岩浆物质来 源主要为俯冲带幔源岩浆和部分混入的壳源物质。 5.2 构造意义

华南加里东期的大地构造属性长期存在争议, 如加里东海沟 - 岛弧系^[18]、古生代多岛海^[19]、陆内褶 皱造山带^[20-23]。

舒良树(2008)¹²⁴将加里东晚阶段花岗(闪长) 岩细分为两期:早期属 I 型花岗岩,形成时代 430~ 460 Ma,以含角闪石、数量少、规模小为特征;晚期 属 S 型花岗岩,形成时代 400~430 Ma,规模大、数 量多:认为花岗岩是陆内造山作用的产物。彭松柏 (2006)^[2] 在两广云开隆起区识别出有加里东期基 性侵入岩,并认为其形成于俯冲-碰撞大陆边缘的 火山弧构造背景,可作为华南地区存在加里东期扬 子板块向华夏板块的俯冲 - 碰撞和华南新元古 代-早古生代洋盆的存在、闭合的证据。刘宝珺等 (1993)¹²⁹认为华南加里东期盆地消亡过程中,虽然 发生过有限俯冲作用,但没有形成典型的岛弧型或 科迪勒拉型或地体拼贴型造山带,也不同于拗拉槽 造山作用形成的陆内造山带,而是华夏板块向 NW 漂移导致华南盆地脉动式发育形成的一种独特的 "南华型"造山带。

在钦杭结合带西段,特别是大瑶山隆起及其东 缘地区,类似于古龙、社山的英云闪长岩或花岗闪 长(斑)岩体仍很多。如周边地区的大宁、桂岭、永 和、古袍-桃花等花岗闪长(斑)岩体,属于 I 型或 I 型和 S 型之间的过渡类型,具有壳幔混合特征,且 与 Au、Cu、Mo 等成矿关系密切^[27-31]。因此,古龙-社山一带具活动陆缘性质的加里东期 I 型(科迪勒 拉型)花岗岩株群的厘定,对于深入研究华南地区 加里东期构造-岩浆演化及其成矿作用具有重要 的意义。

6 结论

(1)古龙花岗岩株群形成于早志留世(445~ 432 Ma)。

(2)古龙花岗岩株群属于加里东期 I 型花岗 岩,形成于华南加里东期造山带俯冲 – 碰撞挤压构 造背景,岩浆物质来源主要为俯冲带幔源岩浆和部 分混入的壳源物质。

(3)古龙加里东期具活动陆缘性质的 I 型(科 迪勒拉型)花岗岩株群的厘定,对于深入研究华南 地区加里东期构造 - 岩浆演化及其成矿作用具有 重要的意义。

感谢武汉地质调查中心赵小明博士和龙文国 研究员对本项目的支持;本文成文过程中得到了中 国地质科学院矿产资源所覃小锋博士和陈懋弘博 士指导,在此谨致谢忱。

参考文献:

- [1] 陈懋弘,莫次生,黄智忠,等.广西苍梧县社洞钨钼矿床花岗 岩类锆石LA-ICP-MS和钨钼矿Re-Os年龄及其地质意 义[J].矿床地质,2011,30(6):963-978.
- [2] 路远发.GeoKit: 一个用VBA构建的地球化学工具软件包 [J].地球化学,2004,33(5):459-464.
- [3] Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews, 1994, 37: 215 – 224.
- [4] Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area. Northern Turkey [J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81.
- [5] Middlemost E A K. Magmas and Magmatic Rocks [M]. London: Longman, 1985: 1 – 266.
- [6] Sun S S and McDonough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes [C]. // Saunders A D and Norry M J (eds). Magmatism in the Ocean Basin. Geological Society, London, Special Publications, 1989, 42: 313 – 345.
- [7] Liu Y S, Hu Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257: 34 - 43.
- [8] Yuan H L, Gao S, Dai M N et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple collector ICP-MS [J]. Chemical Geology, 2008, 247 (1-2): 100 - 118.
- [9] Yuan H L, Gao S, Liu X M et al. Accurate U-Pb age and trace element deterninations of zircon by laser ablation-inductively coupled plasma-mass spectrometry [J]. Geostandards and Geoanalytical Research, 2007, 28(3): 353 – 370.
- [10] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄 解释的制约[J].科学通报,2004,49(16):1589-1605.
- [11] 广西区调队.1:20万桂平幅区域地质测量报告书[R]. 1964:64-73.
- [12] 广西壮族自治区地质局. 广西壮族自治区区域地质志 [M].北京:地质出版社,1985.

- [13] 广西壮族自治区地质矿产勘查开发局.广西壮族自治区 数字地质图及说明书(1:50万)[R].1999.
- [14] 广西壮族自治区地质矿产勘查开发局.广西壮族自治区 数字地质图及说明书(1:50万)[R]. 2006.
- [15] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics discrimination and petrogenesis
 [J]. Contributions to Mineralogy and Petrology, 1987, 95: 407 - 419.
- [16] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347: 662 - 665.
- [17] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 1984, 25: 956 – 983.
- [18] 郭令智,施央申,马瑞士.华南大地构造格架和地壳演化 [C] //国际交流学术论文1:构造地质 地质力学.北京:地 质出版社,1980:109-116.
- [19] 殷鸿福,吴顺宝,杜远生.华南是特提斯多岛洋体系的一部分[J].地球科学,1999,24(1):1-11.
- [20] 任纪舜,姜春发,张正坤.中国大地构造及其演化[M].北 京:科学出版社,1980:1-140.
- [21] 任纪舜.论中国南部大地构造[J].地质学报,1990,65(4): 275-288.
- [22] 汤加富.华南变质基底的组成、边界和构造演化[J].安徽

地质,1994,4(1-2):104-111.

- [23] 舒良树.华南前泥盆纪构造演化:从华夏地块到加里东 造山带[J].高校地质学报,2006,12(4):418-431.
- [24] 舒良树,于津海,贾东,等.华南东段早古生代造山带研究 [J]. 地质通报,2008,27(10):1581 – 1593.
- [25] 彭松柏,金振民,付建明.两广云开隆起区基性侵入岩的 地球化学特征及其构造意义 [J]. 地质通报,2006,25(4):
 434-441.
- [26] 刘宝珺,许效松,潘杏南,等.中国南方古大陆沉积、地壳演 化与成矿[M].北京:科学出版社,1993:1-263.
- [27] 骆靖中.桂东地区花岗岩类与金银成矿的关系[J].桂林冶 金地质学院学报,1993,13(4):329 – 339.
- [28] 刘腾飞.桂东花岗岩类特征及其与金矿关系[J].广西地质, 1993,6(4):877-886.
- [29] 李文杰,梁金城,冯佐海,等.桂东北地区几个加里东期花 岗岩体的地球化学特征及其构造环境判别[J].矿产与地 质,2006,20(4-5):353 - 360.
- [30] 李晓峰,梁金城,李容森,等.华南志留纪钼矿化:白石顶钼 矿锆石SHRIMP U-Pb年龄和辉钼矿Re-Os年龄证据[J]. 矿床地质,2009,28(4):403-412.
- [31] 程顺波,付建民,徐德明,等.桂东北大宁岩体锆石SHRIMP 年代学和地球化学研究[J].中国地质,2009,36(6):1278 – 1288.

Petrography, Geochemistry and Chronology of Gulong Granite Stock Group in West Segment of Qinzhou–Hangcheng Metallogenic Belt

XU Hua, HUANG Bing-Cheng, NI Zhan-Xu, ZHONG Hui-Yun, HUANG Ying, LI Qian (Guangxi Institute of Regional Geological Survey, Guilin 541003, Guangxi, China)

Abstract: Gulong granite stock group is composed of the intrusive bodies in Dacun, Gulong, Sitai, Shangmushui, Dapo, etc., and is mainly assembly of quartz diorite- tonalite- granodiorite- admellite, and commonly contain hornblende. Those rocks are belong to calc-alkaline series and high-K calc alkaline series, with higer CaO content. The rocks are characterized by low REE contents, consistently show LREE-riched patterns, weakly Eu depletion, depletion of Nb, Ta, Sr, P, Ti, and relatively rich in Th, U, Zr, Hf. Zircon LA-ICP-MS U-Pb dating of quartz diorite yielded the isochron age of 445.9 ± 1.2 Ma(MSWD=0.035) in Gulong granites, and indicated that Gulong granites stock group were formed in Early Silurian, and is part of Caledonian I-type granites which were formed in Caledonian orogenic belt of South China subduction-collision squeezing tectonic setting. The source for Gulong granite mainly are the mantle-derived magma from subduction zones, partly mixed with the crustal material when magma intrusion.

Key words: petrogeochemistry; zircon LA-ICP-MS U-Pb daing; Gulong granite stock group; West segment of Qinzhou-Hangzhou metallogenic belt