RESOURCES SURVEY & ENVIRONMENT

Vol. 30 No. 3

文章编号:1671-4814(2009)03-164-10

青藏高原羌塘东部治多县左支——失多 莫卜辉长岩带地球化学特征及构造意义

李 莉,白云山,牛志军,段其发,王建雄

(宜昌地质矿产研究所,湖北宜昌 443005)

摘要:青藏高原差塘东部治多县左支一一 失多莫卜辉长岩带形成于晚二叠世,由单一辉长 岩组成。岩石富碱,Na₂O>K₂O 为钙碱性系列。微量元素特征表现为大离子亲石元素(LILE)富 集,高场强元素分异,显示板内玄武岩特征。轻稀土元素高度富集, dEu 不显亏损,为弱负异常到 正异常。(⁸⁷Sr/⁸⁶Sr)i 较低,变化于 0.70419~0.70471 之间, ENd(c)值较高,变化于 4.3~4.9 之间, 显示了略亏损的地幔源区特征。该辉长岩带应形成于板内伸展扩张构造环境。

在新一轮国土资源大调查青藏高原羌塘东部地区1:25万区域地质调查工作中,在治 多县左支到失多莫卜一带新发现了左支——失多莫卜辉长岩带。以前青海省地质局区测队 1:100万温泉幅区域地质调查中未发现该岩带,笔者从岩石学和地球化学、同位素等方面对 左支——失多莫卜辉长岩带进行了较详细调查,分析了成因类型,并对其形成构造环境进行 探讨。

1 地质特征

青海南部治多县在大地构造上属东特提斯构造域,处于金沙江缝合带与班公湖—— 怒 江缝合带之间的北羌塘地块东北部。治多县左支—— 失多莫卜辉长岩带沿尕白一萨日咯钦 断裂分布,受该断裂带控制(图1)。由左支辉长岩体、扎查琼辉长岩体、萨日喀琼南辉长岩体、 失多莫卜辉长岩体及尕日松卡巴玛辉长岩体等 5 个侵人体组成,构成一个北西向展布的辉 长岩带,侵入二叠纪九十道班组、诺日巴尕日保组、尕笛考组及石炭纪杂多群碎屑岩组。出露 面积从南东部的左支辉长岩体到北西部的失多莫卜辉长岩体分别为 17 km²、1.5 km²、4.5 km²、3 km²及0.5 km²,呈小岩株状产出,总共为 26.5 km²。岩体与围岩的接触界线弯曲,呈 港湾状,围岩具烘烤退色现象,砂质围岩有硅化、角岩化现象,灰岩具角岩化现象。岩体边部

^{*} 收稿日期:2009-03-03

第一作者简介:李莉(1967~),女,主要从事地质矿产勘查与地理信息专业的研究。

图1 青藏高原羌塘东部治多县左支一失多莫卜一带地质略图

Fig. 1 Geological sketch map of the Zuozhi-Shiduomobu area, Zhiduo county, eastern Qiangtang, Qinghai-Tibet plateau

1-第四系;2-下侏罗统那底岗日组;3-中侏罗统;4-上三叠统巴贡组;5-上三叠统波里拉组;6-中二叠统碎屑岩组;7-中 二叠统九十道班组;8-中二叠统诸日巴尕日保组;9-下石炭统杂多群;10-辉长岩;11-断层;YZS-雅鲁藏布江板块缝合 带;BNS-班公湖-怒江板块缝合带;XJS-西金乌兰-金沙江板块缝合带;KQS-昆仑-秦岭板块缝合带

见有围岩捕掳体,捕掳体为砂岩、灰岩、火山岩,其大小不等,大者长约10m,宽约3m。岩体 分异作用差,相带不发育,仅在岩体边部见有约50~200 cm 宽的细粒冷凝边,并且不稳定, 在较短的距离内迅速变薄。岩体与围岩接触面外倾,倾角中等,一般40°~60°。

副矿物组合为磷灰石——钛铁矿——磁铁矿型。左支——失多莫卜辉长岩带为本次工 作首次发现,其侵入最新地层为中二叠世尕笛考组、诺日巴尕日保组及九十道班组,其岩石 化学特征相似于尕笛考组火山岩,二者可能岩浆来源相同,因此将其时代厘定为晚二叠世较 为合适。

2 岩石学特征

岩体的岩石类型简单,各侵入体岩石类型均为深灰色、灰绿色辉长岩。岩石具中细粒结构、辉长辉绿结构,块状构造。岩石由单斜辉石(40%)、斜长石(55%)、金属矿物(多为钛磁铁矿)3%~5%,石英2%~3%,及少量副矿物磷灰石组成。单斜辉石为透辉石,常被绿泥石、黑

云母等交代;斜长石为 An=62 的拉长石,多已蚀变为绢云母化,也见有黝帘石化及碳酸盐 化,个别见葡萄石化;石英多为填隙状、粒状;磷灰石多为针状。

3 样品分析方法

3.1 主元素、微量元素及稀土元素分析方法

各种地球化学测试直接用全岩粉未样品。主量元素由宜昌地质矿产研究所实验室采用 常规化学方法测定;微量元素及稀土元素由宜昌地质矿产研究所实验室主要采用ICP 电感 耦合等离子体发射光谱法、AES 电弧发射光谱法、COL 分光光度法、AAS 原子吸收光谱法 测定。

3.2 同位素样品分析方法

Sr、Nd 同位素测定:全岩样品采用 HF + HClO₄ 混合酸进行分解, $\Phi6 \times 100$ mm 的 Dowex50×8 阳离子树脂交换柱,HCl 作淋洗液分离Rb、Sr 和REE,Sm、Nd 的进一步分离采 用 $\Phi6 \times 120$ mm P₂₀₄萃淋树脂柱,HCl 作淋洗液。全部化学分离流程均在超净化实验室中进 行,全流程本底Sr 为1×10⁻⁹g,Nd 为2.13×10⁻¹⁰g,质谱分析在MAT261 多接收质谱计上完 成,用⁸⁸Sr/⁸⁶Sr=8.3752 和¹⁴⁶Nd/¹⁴⁴Nd=0.7219,对Sr 和Nd 作质量分馏校正,计算机自动处 理数据,采用国际标准样NBS987(Sr)和本实验室标准ZkbzNd(Nd)控制仪器工作状态,国家 一级标准物质GBW04411(Rb-Sr)和GBW04419(Sm-Nd)监控分析流程。本批样品实际测定 标准样品的结果如下:(1)GBW04411:W(Rb)=249.35×10⁻⁶,W(Sr)=157.95×10⁻⁶, ⁸⁷Sr/⁸⁶Sr=0.7598±0.0018P;(2)GBW04419:W(Sm)(10⁻⁶g)=3.018,W(Nd)=10.08, ¹⁴³Nd/¹⁴⁴Nd=0.512719±0.000008;(3)NBS987:⁸⁷Sr/⁸⁶Sr=0.71032±0.00015;(4)ZkbzNd:¹⁴³Nd/¹⁴⁴Nd=0.511564±0.00010,精度⁸⁷Rb/⁸⁶Sr 好于1%,¹⁴⁷Sm/¹⁴⁴Nd 好于0.5%, 衰变常数 λ (⁸⁷Rb)=1.42×10⁻¹¹a⁻¹,(¹⁴⁷Sm)=6.54×10⁻¹⁰a⁻¹。

4 岩石化学特征

岩石化学含量见表 1,SiO₂ 含量为 42.98%~55.11%,平均为 49.62%,明显属基性岩 类,(K₂O+Na₂O)为 1.87%~6.75%,平均 4.88%,均为 Na₂O>K₂O,Al₂O₃为 13.17%~ 19.96%,平均为 16.13%,较高,P₂O₅ 含量范围在 0.21%~1.32%之间,K₂O 含量变化大,范 围在 0.03%~2.52%之间。MgO 为 3.64%~9.20%,平均 4.97%,较低,TiO₂为 1.11%~ 3.09%,平均1.73%;FeO+Fe₂O₃为7.77%~14.15%,平均9.99%,较高。CaO/Al₂O₃平均 为 0.47,低于大洋拉斑玄武岩中CaO/Al₂O₃平均为0.688。Na₂O/K₂O 多数样品小于4,明显 低于大洋玄武岩(大洋玄武岩一般大于 10)和岛弧玄武岩(平均值 4.5 左右)。Mg[#]为 50~ 64.04,较低,反映岩浆已经历强烈演化。在SiO₂—K₂O + Na₂O 图解中(图略),样品在碱性 系列和亚碱性系列中均有分布,在SiO₂—K₂O 图解中(图 2),样品主要落人钙碱性系列和 高钾钙碱性系列中。A/CNK 为 0.55 变为 1.04,从准铝质向过铝质演变。

166

_

样品号	MY820	MY820-1	MY820-5	MY820-7	MY820-8	MY820-14	MY820-16	MY821-2	SR0178	SR0178/1
岩体名称	左支解长岩体		扎查琼辉长岩体		失多莫卜辉长岩体			萨日喀琼辉长岩体		
SiO2	50.88	51.08	47.01	46.8	50.06	42.98	49.92	55.13	55.11	51.79
TiO ₂	1.71	1.56	3. 09	2.05	1. 70	1.74	1.59	1.16	1.11	1.66
Al_2O_3	16.54	16.47	15-1	14. 57	16.06	16.3	16.2	16.33	16.69	16.44
Fe ₂ O ₃	2.41	2.70	4.94	4. 43	2.00	1.81	2. 72	1.49	1.52	2. 08
FeO	7.93	7.55	7.52	7.78	7.77	5.55	7.93	6.35	6.25	7.50
MnO	0.18	0.17	0.17	0.18	0.17	0.24	0.18	0.16	0.16	0.16
MgO	4.46	4.43	4 . 61	6.89	4.34	3.82	4. 79	3.86	3.64	4.64
CaO	7.77	7.67	7.33	7.88	8.16	10.91	8.05	6.19	6.17	7.35
NazO	2. 97	3 .01	4. 51	3. 57	4.09	4-23	3.05	4.24	4. 44	3. 19
K₂O	1.63	1.70	0. 03	0.56	1.49	2.52	1.73	1.25	1.25	1.62
P_2O_5	0.30	0.30	1.09	0.82	0.30	0. 58	0.35	0.29	0.28	0.28
灼失量	1.94	2 . 0 9	3.26	3. 34	3. 24	8.74	2.36	2.62	2.39	2.13
H₂O+	2.76	2.93	3. 73	4.09			3.09	3.11	2.88	2.80
CO2	0. 20	0.18	0.57	0. 08			0.14	0.22	0.26	0. 20
总量	98. 72	98- 73	98-66	98.87	99.37	99.42	98-87	99.07	99.01	98-84
Ар	0.68	0.68	2.50	1. 88	0.67	1.40	0.79	0.66	0.63	0.63
П	3. 36	3.07	6.15	4.08	、3.36	3.64	3.13	2.28	2.18	3. 26
Mt	. 3.61	4.05	7.51	6. 72	3.02	2-89	4.09	2.24	2.28	3. 12
Or	9. 95	10. 39	0. 19	3.46	9.16	16.42	10.59	7.66	7.64	9.90
Ab	25. 97	26.35	40.00	31.62	36.00	5.99	26.74	37.20	38. 88	27.91
An	27.88	27.33	21.87	23.11	21.91	19.90	26.32	22.64	22.69	26.63
Qz	2. 44	2.75	0. 59	0	0	0	0.2	5.12	4.28	2.75
· C	0	0	0	0	0	0	0	0	0	0
Di	8.35	8. 41	7.68	10.3	15.18	29.39	10.63	6.13	6.02	7.7
Hy	17.77	16.97	13. 51	13.39	0.82	0.00	17.51	16.08	15.39	18.09
Ol	0	0	0	5.44	9.89	2.22	0	0	0	0
Ne	0	0	0	0	0	18.13	0	0	0	0
DI	38. 35	39. 5	40.78	35.08	45.16	40.55	37.53	49. 98	50-8	40.56
A/	0 2 0	0. 79	0, 73	0.7	0.60	0, 55	0.75	0.83	0. 84	0, 81
CNK				••••						
SI	22.99	22.85	21.33	29-66	22.04	21.31	23.69	22.45	21.29	24.38
σ43 σ25	2. 36 0. 82	2- 41 0. 85	9° 01 9° 01	3. 12 0. 78	3+71 1,94	12. 6 2. 17	2·81	2.29	2+47 1.08	2, 34 0, 87
AR	1. 47	1. 48	1. 51	1, 45	1.60	1.66	1.49	1.64	1.66	1.51

表1 辉长岩岩石化学成分与CIPW 标准分子(%) Table 1 Major elements analysis(%) and CIPW norms of gabbros

注:由宜昌地质矿产研究所实验室分析测定

.

CIPW 标准矿物计算结果表明(表1);Ol、 Qz 在部分样品中出现,Ne 仅在个别样品 中出现,多数样品中出现 Hy, An、Ab 分 子普遍存在,Ab 平均29.88%,高于大洋 拉斑玄武岩, An 平均 24.79%, 低于大洋 💡 拉斑玄武岩(Ab 平均 21.73%, An 平均) 28.65%).

5 地球化学特征

5.1 稀土元素特征

稀土元素含量见表 2,稀土总量 ΣREE 为 76.25~317.87,较高,LREE/ HREE 为8.8~21.41,(La/Yb)n 为7.09 ~18.92, 轻稀土元素高度富集。(Dy/ Yb)n 为1. 39~1. 98,8Eu 为0. 8~1. 16, Fig. 2 SiO2-K2O diagram of gabbros from Zuozhi-Shid-不显亏损,为弱负异常到正异常,稀土配 分曲线为右倾型(图3),体现了岩浆结晶 分异作用的特点。总体来看,各样品稀土 1000 元素谱线相互平行,只有位置高低的平 移,显示REE 分馏程度相当。Eu/Eu*、 (La/Yb)n、(Dy/Yb)n 与SiO2、Mg[#]之间要¹⁰⁰ 无明显的相关关系,高SiO2 与低SiO2 样響 品铕异常相似(表1),这些特征表明地壳。 混染过和不是控制岩浆REE 演化的主要 途径,斜长石、角闪石和磷灰石分异对带 内岩浆演化影响也不强,岩石 REE 特征 的微小差异可能受部分熔融作用(如深 度、比例)所控制。

图 3 辉长岩稀土元素球粒陨石标准化配分曲线(图中 球粒陨石值采用Leedy 球粒陨石值)

5.2 微量元素特征

微量元素含量见表 3,高场元素 Fig.3 Chondrite-normalized REE patterns of gabbros (HFSE)Zr, Hf, Nb, Ta, Sm, P, Ti, Y, Yb

等活动性小,是研究岩浆成因及演化的可靠指标。左支——失多莫卜辉长岩带的Zr/Hf 值稳 定,Zr 含量变化在118~289 μg/g 之间,远大于典型MORB 和岛弧拉斑玄武岩的丰度;Hf 含 量变化在 3.38~7.06 μg/g 之间,高于MORB的Hf 平均含量(2.4 μg/g);Nb 含量除一个样 品为11 µg/g 外,其余19 个样品含量变化在13.1~60.2 之间,相当于板内玄武岩的^[1](Nb> 12 μg/g, Condie, 1989); Ta 含量除一个样品为0.68 μg/g 外, 其余19 个样品含量变化在0.91 ~2.99 μg/g 之间,类似于过渡型、富集型MORB 和板内玄武岩(Ta>12 μg/g),而明显不同 于亏损型 MORB 和岛弧型玄武岩(Ta≤0.7 μg/g)^[1]。

钾玄岩系列 系列 0 钙碱性系列 an 低钾(拉班) 系列 0 **4**N 45 50 55 60 70 75 65

图2 左支一失多莫卜辉长岩SiO2--K2O图解(据Peccerillo et al. ,1976a)

SiO₂%

80

HREE

δEu

Table 2 Rare earth elements analysis of gabbros (×10 ⁻⁵)										
样品号	MY820	MY820-1	MY820-5	MY820-7	MY820-8	MY820-14	MY820-16	5 MY821-2	SR0178	SR0178/1
岩体名称	左	支辉长岩体		扎査琼制	军长岩体	失多	5莫卜辉长	 岩体	萨日喀珀	就辉长岩体
La	23.8	16.4	48.4	52.60	28.7	52.4	22.2	41.5	44.4	30.5
Ce	40.0	27.3	91.8	89.80	48.5	87.4	39. 5	66.8	70.7	48.9
Pr	5.09	3.16	10.8	12.10	5.83	10.0	5.01	8.31	8.66	6-44
Nd	19.5	14.2	50.1	45.0	25.7	42.5	21.1	34.6	35.7	24.0
Sm	4.21	2.95	9.01	8-56	5.63	8-26	4. 71	6.85	6.90	5.48
Eu	1.43	1.15	2.99	2.61	1.68	2.38	1.57	1.86	1.91	1.57
Gd	4.28	3.15	8-64	7.60	4.96	6.21	4.90	5.71	5.92	5.23
Тb	0.68	0.51	1.23	1.01	0.89	1.03	0.80	0.99	0.89	0. 79
Dy	4.40	3.21	7.09	6.34	5.62	5.77	4.74	5-22	5. 32	5.41
Ho	0.80	0. 59	1.27	1.12	1.00	1.01	0.85	0.97	0.94	0.98
Er	2.38	1.72	3.24	3.19	3.09	2-68	2.52	2.61	2.53	2. 73
Tm	0.33	0.25	0.48	0.40	0. 43	0.38	0.36	0.36	0.38	0.40
Yb	1.96	1.47	2.93	2.50	2.42	1.97	2.16	2.13	2.30	2. 32
Lu	0.30	0.19	0.42	0.33	0.32	0.28	0.31	0.28	0. 32	0.30
Y	17.6	13.0	25- 5	23.60	22.6	20.8	19.4	20.5	21.0	21.9
SREE	109.16	76.25	238.4	233-16	134.77	222.27	110. 73	178.19	186-87	135.05
LREE	94.03	65.16	213. 1	210.37	116.04	202.94	94 . 09	159.92	168.27	116.89

辉长岩稀土元素分析结果(×10-4) 表 2

() (0 - 6)

由宜昌地质矿产研究所实验室采用 ICP-AES 系统测试

11.09

1.16

25.3

1.03

22.49

0.98

18.73

0.96

19.33

0.98

16.64

1.00

18.27

0.89

18.60

0.90

15.13

1.03

Zr/Nb 比值是非常有效的环境判别 指标,N-MORB 的 Zr/Nb 比值多大于 30, P-MORB 和板内玄武岩的 Zr/Nb 比 值则约为10左右^[2](Wilson,1989),左支 ---失多莫卜辉长岩带的 Zr/Nb 比值变 化在5.93~12之间,平均8.08。Hf/Th 比 值变化在 0.41~2.41 之间,类似于板内 玄武岩^[1] (Hf/Th < 8, Condie, 1989)。 Th/Nb 比值变化在 0.13~0.65 之间,平 均0.3,Nb/Zr 比值变化在0.08~0.22 之 间,平均0.13,与大陆板内玄武岩一致[3] (大陆板内玄武岩的 Th/Nb>0.11,Nb/ Zr>0.04,其中,拉斑玄武岩的 Nb/Zr= 0.04~0.15,碱性玄武岩的 Nb/Zr>

图4 辉长岩 MORB 标准化配分型式 (MORB 值据 Beviens et al. ,1984)

18.16

0.89

0.15。典型裂谷玄武岩的 Th/Nb=0.11~0.27,陆内拉张带或初始裂谷玄武岩的 Th/Nb> 0.27,一般为 0.27~0.67,陆—— 陆碰撞带玄武岩的 Th/Nb>0.67;地幔热柱成因玄武岩: Nb/Zr>0.15,Th/Nb<0.11。孙书勤等,2003),处于典型裂谷玄武岩与陆内裂谷带或初始 裂谷玄武岩之间。

左支——失多莫卜辉长岩带样品的 MORB 标准化微量元素分布图显示出"隆起"的特征(图4),大离子亲石元素(LILE)富集,高场强元素分异,总体特征类似于板内玄武岩的微 。量元素分布型式^[2]。

样品号	MY820	MY820-1	MY820-5	MY820-7	MY820-8	MY820-14	MY820-16	MY821-2	SR0178	SR0178/1
岩石名称	左	支辉长岩体		扎査琼劇	¥长岩体	失多	莫卜辉长岩	吉体	萨日喀琼	就解长岩体
Cu	244	148	238	169			184	51	89.4	194
РЬ	<1	11.1	3. 3	<1			6.5	1.8	7.1	2. 3
Zn	95. 7	74.8	141.0	172. 0			106	90. 2	86-2	85.7
Cr	90. 9	99. 3	55. 9	300. 0	25.4	212. 0	97.0	110	105.0	92. 3
Li	23. 9	26.6	49.2	31.2	23.6	61.4	23.4	34.1	27.0	24. 2
Rb	39.5	28-8	3. 35	10.6	39.9	73. 3	43.1	29.9	33. 8	40.1
Cs	5.10	5.13	3.00	3.00	4.15	11.90	4.90	3.00	2. 55	3.90
As	0.57	0.66	<0.02	<0. 02	0.74	0.56	<0.02	0. 25	0.74	1.49
Sr	724	705	1280	1170	510	1740	663	749	703	592
Ba	815	548	206	619	466	1090	738	555	618	745
v	348	315	358	302	312	234	305	189	169	273
Sc	35- 2	26.4	38. 3	35.7	33. 9	32.0	34. 9	20. 2	17.8	27.6
Ga	24. 7	24. 8	27.7	28. 3	34.3	35.6	29.4	19.3	16.2	23. 9
Be	2.07	2 . 01	2. 31	1.94	2. 31	2.27	2.19	1.39	1.24	1.78
Nb	15.6	11. 0	49. 7	37.5	17.1	34.5	16.9	23. 0	26. 0	13-1
Ta	1.28	0.91	2.60	1. 37	2.02	1.39	1.35	1.30	1.67	1.81
Zr	173	132	289	227	162	216	188	159	174	116
Hſ	5.00	4.07	7.06	5.83	4. 38	5.20	5. 57	5.74	5.76	3. 38
U	0. 58	0.52	0.64	0. 52	0.90	0. 80	0. 52	0.75	0. 98	0.75
Th	8.92	8.09	15.10	5.46	3.67	4. 43	5.05	3.46	8.83	8- 58

表 3 辉长岩微量元素分析结果(×10⁻⁶) Table 3 Trace elements analysis of gabbros(×10⁻⁶)

由宜昌地质矿产研究所实验室采用 ICP-AES 系统测试

6 Sr、Nd 同位素地球化学

左支——失多莫卜辉长岩带 Sr、Nd 同位素分析结果列于表 4,(⁸⁷Sr/⁸⁶Sr)i 较低,变化于 0.70419~0.70471 之间,ε_{Nd(t)}值较高,变化于 4.3~4.9 之间,显示了略亏损的地幔源区特 征。 表4 辉长岩 Nd, Sr 同位素组成

Table 4 Isotopic analysis results for Nd.Sr of gabbros								
	MY820	MY820-1	MY820-7					
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0.1296	0. 1337	0. 1109					
143Nd/144Nd	0.512756 ± 0.000009	0.512782 ± 0.000006	0.512717 ± 0.000008					
(143Nd/144Nd)i	0.512540	0. 512559	0. 512532					
E _{Nd(t)}	4.5	4.9	4.3					
⁸⁷ Rb/ ⁸⁶ Sr	0.1524	0. 113	0. 02027					
⁸⁷ Sr/ ⁸⁶ Sr	0.7052 \pm 0.00004	0.7046±0.00004	0.7042±0.00009					
(⁸⁷ Sr/ ⁸⁶ Sr)i	0.70471	0-70428	0.70419					
E _{Sr(t)}	7.2	1.1	-0.2					
T _{2DM}	661	631	674					

注:T=255 Ma

7 构造环境分析

研究区位于东特提斯构造域北部, 居拉竹龙——金沙江板块结合带与班公 湖——怒江板块结合带之间的北羌塘地 块的东部。靠近金沙江缝合带,其地质演 化与金沙江洋盆的形成——闭合关系密 切,明显具陆块边缘的构造属性。位于研 究区内的左支——失多莫卜辉长岩带其 特征为:岩石具较高的Al₂O₃、TiO₂、(K₂O + Na₂O)且 Na₂O > K₂O、FeO + Fe₂O₃、 REE 和富集大离子亲石元素,低的 MgO。稀土元素特征表现为:稀土总量较 高,轻稀土高度富集,稀土配分曲线为右 倾型。微量元素特征及其比值显示了板

内玄武岩特点。 ε_{Nd}(t)值较高,为4.30~4.90, ε_{Sr}(t)变化于一0.1~7.1之间,在 ε_{Nd}(t)—— ε_{Sr}(t)图 解中(图5),样品落入地幔线附近,显示了略亏损的地幔源区特征,Nd、Sr 相关性指示可能受 到来自富集地幔物质的影响。在2Nb—— Zr/4—— Y 图解中(图6)样品全部落入板内碱性玄 武岩区。在TiO₂/100—— Zr—— 3Y 图解(图7)中,样品全落人板内玄武岩区。

左支——失多莫卜辉长岩带侵入于具有初始裂谷特征的早二叠世火山岩^[4-5],其岩石 化学及地球特征与早二叠世火山岩相似,二者岩浆可能具同源特征,左支——失多莫卜辉长 岩带应是早二叠世初始裂谷火山岩的伴随侵入体。

综上所述, 左支—— 失多莫卜辉长岩带岩浆来源于弱亏损的地幔源区, 可能受到来自富 集地幔物质的影响, 形成于板内伸展扩张构造环境。

8 结论及意义

(1)左支——失多莫卜辉长岩带由单一辉长岩组成,岩石富碱,Na2O>K2O 为钙碱性系

列,微量元素特征表现为大离子亲石元 素(LILE)富集,高场强元素分异,显示板 内玄武岩特征;轻稀土元素高度富集, δEu 不显亏损,为弱负异常到正异常; (⁸⁷Sr/⁸⁶Sr)i 较低,变化于 0.70419~ 0.70471 之间, ENd(1) 值较高, 变化于4.3~ 4.9之间。显示了略亏损的地幔源区特 征。形成于板内伸展扩张构造环境。

(2)20世纪80年代以来,地质矿产 部高原地质调查大队以及西藏地矿局在 研究区西部同一构造带上的茶布——双 湖地区进行工作时,首次提出该区晚古 ^{Fig.6} 2 Nb-Zr/4-Y discrimination diagram of gabbros 生代发育了一条"陆间裂谷"[6-8],尹集 祥,邓万明等^[9]认为该区在中二叠世曾发_{MORB和火山弧玄武岩} 育了一条板内初始裂谷,到晚二叠世裂 谷已经停止发育。在西南三江地区吉义 独一带也发现了代表裂谷火山岩的石炭 纪玄武岩[10-11]。昌宁——孟连带火山岩 则表明这个带从泥盆纪开始拉开,一直 延续到中二叠世晚期^[12],董云鹏,朱炳泉 等[13](2002)在滇东师—— 宗弥带上也发 现了形成于晚古生代裂谷环境的火山 岩,并认为华南大陆内部存在连通滇西 特提斯的裂谷型深水海道。测区位于双 湖地区与三江地区之间,本次工作发现 了早二叠世的裂谷型火山岩[+-5]及具板 内伸展扩张构造特征的晚二叠世辉长岩 带,说明晚古生代在羌塘盆地中部从西 带再到东端的三江地区存在一条巨型裂 MORB;C-岛弧钙碱性玄武岩;D-板内玄武岩 谷带,这条裂谷带向东南连通了华南大

AI-板内碱性玄武岩;AI-板内碱性玄武岩和板内拉斑玄武 岩:B-E型MORB:C-板内拉斑玄武岩和火山弧玄武岩;D-N型

Fig. 7 Ti-Zr-Y discrimination diagram of gabbros 端的茶布——双湖地区到中段的治多一 A-岛弧拉斑玄武岩;B-岛弧拉斑玄武岩,岛弧钙碱性玄武岩和

陆,使古特提斯和华南海域相连,形成了贯通东西的晚古生代初始裂谷。

参加野外工作的还有甘金木,何龙清,卜建军,曾波夫,段万军等

参考文献

- [1] Condie K C. Geochemical changes in basalts and andesitic across the Archaean-Proterozoic boundary: identification and significance [J]. Lithos, 1989 (23): 1-18.
- [2] Wilson M., Igneous Petrogenesis[M]. London: Unwin Hyman, 1989. 1-466.
- [3] 孙书勤,汪云亮,张成江.玄武岩类岩石大地构造环境的 Th、Nb、Zr 判别[J].地质论评,2003,49

172

(1): 40-47.

- [4] 段其发,杨振强,王建雄,等. 青藏高原北羌塘盆地东部二叠纪高 Ti 玄武岩的地球化学特征[J] 地质 通报,2006,25(1-2);156-162.
- [5] 马丽艳,牛志军,白云山,等,青海南部二叠纪火山岩 Sr、Nd、Pb 同位素特征及地质意义[J]. 地球科 学,2007,32(1):42-46.
- [6] 王成善,胡承祖,张懋功,等. 西藏北部查桑茶布裂谷的发现及其地质意义[J]. 成都地质学院学报, 1987,14(2):33-45.
- [7] 胡承祖.从雅魯藏布江缝合带和茶布-茶桑裂谷的发育讨论西藏板块的演化[A]. 青藏高原地质文集 (9)[C].北京:地质出版社,1986,111-121.
- [8] 张懋功,胡承祖,吴瑞忠,等. 藏北香琼-茶布基性火山岩带的岩石化学特征与构造环境[A]. 青藏高原 地质文集(9)[C].北京:地质出版社,1986:57-68.
- [9] 尹集祥,邓万明,文世宣,等,青藏高原及邻区中间过渡陆块前侏罗纪构造演化[A]. 潘裕生,孔祥儒 (主编),青藏高原岩石圈结构演化和动力学[C]. 广州:广东科学技术出版社,1998:217-332.
- [10] 莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版社,1993:65-104.
- [11] 莫宣学,犹上越,朱勤文,等.三江中南段火山岩-蛇绿岩与成矿[M].北京:地质出版社,1998:86-107.
- [12] 丁林,钟大费. 滇西-昌宁孟连带古特提斯洋硅质岩稀土元素和铈异常特征[J]. 中国科学(D)1995,25 (1):93-100.
- [13] 董云鹏,朱炳泉,向阳常,等. 滇东师宗-弥勒带东段基性火山岩地球化学及其对华南大陆构造格局的 制约[J]. 岩石学报,2002,18(1):37-46.

Geochemical characteristics and tectonic significance of gabbros from Zuozhi-Shiduomobu area of Zhiduo County of eastern Qiangtang in the Qinghai-Tibet Plateau

LI Li, BAI Yun-shan, NIU Zhi-jun, DUAN Qi-fa, WANG Jian-xong

(Yichang Institute of Geology and Mineral Resources, Yichang, 443005, China)

Abstract

Located in Zhiduo County, eastern Qiangtang, Qinghai-Tibet Plateau, and formed in the Late Permian, the Zuozhi-Shiduomobu gabbros belt is consisted simply of gabbros. The gabbros are rich in alkaline with Na₂O high than K₂O, being the rocks of calc-alkaline series. Their trace elements are characterized by enrichment of large-ion-lithophile elements (LILE) and fractionation of high-field-strength elements (HFSE), displaying typical characteristics of within-plate basalts. Light rare earth elements are significantly enriched with δ Eu values varying from slightly negative to positive. (87 Sr/ 86 Sr); ratios are relatively low, ranging from 0. 70419 to 0. 70471; ϵ_{Nd} (t) values are relatively high, ranging from 4. 3 to 4. 9, showing that the gabbros are derived from a slightly depleted mantle source. It is believed that the gabbros from the Zuozhi-Shiduomobu area are formed in a within-plate extensive tectonic environment.

Key words: Zuozhi-Shiduomobu gabbros belt; lithogeochemistry; isotope-geochemistry; tectonic significance; Qinghai-Tibet Plateau