河南栾川赤土店铅锌矿床特征及成因探讨

刘国印^{1,2}, 燕长海^{1,2}, 宋要武², 段士刚¹ (1.中国地质大学(北京),北京100083;2.河南省地质调查院,郑州450007)

摘要:在地质调查的基础上,介绍了华北陆块南缘近期发现的栾川赤土店Zn-Pb矿床地质特征,测定了矿床 S、Pb、H、O等同位素、稀土元素、流体包裹体成分和温度。研究表明矿床具有鲜明的层控特征,含矿地层为新元古界 栾川群煤窑沟组,矿体产在碎屑岩与碳酸盐岩转换部位,总体呈层产出,并与含矿地层形成同步褶皱,附近又有桶 柱状矿体与层状矿体相连,矿石成分层明显,矿石为块状-层纹状构造,矿体底板蚀变强烈。作者认为该矿床应属 于 SEDEX型矿床。

关键词: 栾川赤土店;SEDEX 铅锌矿床;新元古代;层控铅锌矿;华北陆块南缘

中图分类号: P61842;618.43 **文献标识码:** A

文章编号:1672-4135(2007)04-0263-08

中 - 新元古代在华北陆块南缘南侧的大陆 斜坡上形成官道口群稳定的滨海相陆缘碎屑岩 - 浅海相富硅镁质碳酸盐岩沉积,而南侧形成新 的裂谷系、形成了以栾川群为主的一套浅海相 沉积,并伴有碱性火山活动及碱性侵入岩和基 性岩墙群。以后区域上经历了早古生代板块拼 合、晚古生代再次碰撞、拼合及中生代晚期 - 新 生代碰撞后伸展,形成以白垩纪花岗岩为主的 岩体侵位、拆离伸展构造。栾川赤土店铅锌矿位 于华北陆块南缘卢氏 - 栾川钼铅锌多金属成矿 带,栾川钼钨铅锌矿集区南部,黄背岭-石宝沟 背斜近轴部。不少学者认为南泥湖外围的铅锌 矿为与岩浆热液有关的成矿系列[1~4],或与小岩 体有关的热液脉型铅锌矿[5-6]。可见,对本区铅 锌矿成因的认识存在许多分歧。近来地质调查 工作发现矿区主要矿体层控特征明显,矿石及 其稀土元素等特点具有热水沉积的特征,综合 反映了矿床早期为 SEDEX 矿床的成因特点。不 同成因观点将对矿床的理论认识和找矿工作 部署产生重大影响。

1 矿区地质特征

赤土店矿床分布的地层有新元古代栾川群三 川组、煤窑沟组、大红口组和中元古界官道口群白 术沟组。栾川群主要为一套陆缘碎屑-碳酸盐岩夹

碱性火山岩沉积建造四,大红口组为浅海 - 近深海 相火山 - 沉积岩建造,其中的火山杂岩与辉长岩一 起构成双峰式火山 - 侵入岩,栾川群变碎屑岩通过 Rosert 和 Korsch 的 SiO₂-K₂O/Na₂O 图解判别, 形成 于被动大陆边缘构造环境。区内主要含矿地层为 三川组及煤窑沟组中、上段,北部有竹园沟断裂带 与官道口群分界,竹园沟断裂可能具有同生断裂的 性质;岩浆岩比较发育,主要有前加里东期变正长 斑岩、辉长岩和燕山期二长花岗岩。变正长斑岩、辉 * 长岩受区域断裂影响,地表片理较为发育,北西 -北西西向侵入于地层及构造带中,多呈岩墙、岩床、 岩株状产出。黑云母二长花岗岩分布于黄背岭-石 宝沟背斜核部,侵入于白术沟组、三川组炭质千枚 岩、大理岩中,与围岩接触面产状为南北陡,东西 缓,水平方向上岩性变化主要表观为边缘粒度变 细,黑云母及斑晶减少,岩体东西两端边缘相硅化 伴随有辉钼矿化。

2 矿体特征

该矿床主要由 S139、S130、S01、S896 和 S038 等矿体组成(图 1)。主要矿体产于黄背岭倒转背斜 两翼,呈层状平行展布,靠近竹园沟断裂带(官道口 群与栾川群之间的断裂,具有同生断裂的部分特 点),在 S130、S139、S01、S896 等主矿体下部发现有 桶柱状厚大矿体,其中 S896 与岩层整合接触的透

收稿日期: 2007 – 11 – 15 责任编辑: 刘新秒

基金项目:国土资源大调查项目:河南卢氏 - 栾川地区铅锌银矿评价(199910200227) 作者简介:刘国印(1963-),男,教授级高级工程师,在读博士生,现从事地质勘查和科研工作。

镜状矿体下部又有 2 ~ 3 层平行矿体和 1 ~ 2 个 穿切地层的桶状矿体, S01 矿体局部与 S896 相连, 并与 S04 柱状矿体(长 30 m,宽 26 m)有上下位置关 系。

通过区域地层与已知工程对比,区内黄背岭-石宝沟倒转背斜两侧的煤窑沟组应为同一地层,赋 存于该地层中的 S01、S130 矿化带为同一矿化层。 西段矿体赋存于栾川群三川组碎屑岩与碳酸盐岩 岩性转换部位的碎屑岩一侧,成矿元素组合以锌、 硫为主,次有铅、铜,矿石构造主要为纹层状、条带 状、块状和网脉状,这些纹层和条带与围岩层理和 接触界线一致;矿体与地层呈明显的同步褶皱现 象,胶状黄铁矿发育,热水沉积硅质岩与矿体紧密 共生;东段矿体呈层状、似层状赋存于栾川群煤窑 沟组的碎屑岩内,与地层产状一致,空间上与含炭 质黑色页岩有关,发育有热水沉积岩(纹层状硅质 岩、中 - 粗晶菱铁矿和含炭质黑色页岩层等),涂光 炽网认为,当黑色页岩与较典型的热水沉积物(燧 石、碧玉和硅质岩)共同出现时,也可以作为热水作 用的标志。

其中 S130 矿化层赋存于煤窑沟组上段底部与 中段接触部位,沿背斜北东翼顺层展布,走向北西, 倾向北东,倾角 30°~70°。矿化带长 1 600 m,宽 3~25 m。矿体长 1 100 m,平均 1.80 m,呈似层状、 脉状,局部为透镜状产出,顶板围岩以炭质板岩为 主,局部夹少量绢云片岩;底板为白云石大理岩,局 部硅质含量较高。矿体地表矿化连续性较差,深部 矿化较好,含 Pb 1.32%~29.08%,平均 7.80%;Zn 0.62%~22.11%,平均 10.49%;Ag (16.66~847.84) ×10⁶,平均 407.94×10⁻⁶。深部矿体中多处可见厚 0.32~0.62 m 的致密块状黄铁矿石。矿体呈缓~ 陡-缓-陡的舒缓波状,产状越缓,厚度越大,品位 越高,缓倾斜矿体常出现在褶皱弯曲的下部(图 2)。

S896 矿层为 S01 矿化层之下的隐伏矿体,走向 北西,倾向一般 25°左右;倾角平均 15°。容矿围 岩为含炭质千枚岩、白云岩化大理岩,底板蚀变硅

Fig 2. Cross section of S130 ore body in Chitudian lead-zinc deposit

化,白云石化强烈。矿体长 530 m,控制斜深 172 m。 矿体为一上凸下平的透镜状,厚 1.15 ~ 12.75 m,平 均 5.68 m。中部见桶柱状矿体与 S896 相连,剖 面上矿体具有明显的成分层(图 3),自下而上分 别为黄铁矿层、黄铁闪锌矿、方铅闪锌矿,矿石 品位铅平均 9.70%; 锌平均 7.77%;银平均 171.49 × 10⁻⁶。

3 矿石特征

矿石矿物以方铅矿、闪锌矿、黄铁 矿为主,次为黄铜矿、磁黄铁矿、纤闪 石、褐铁矿、赤铁矿、硬锰矿、软锰矿 等,局部见有菱锌矿、磁铁矿、黝铜矿、 异极矿、铅矾、辉银矿等,占总矿物含 量的50%,深部矿体常见菱铁矿,S896 矿体局部菱铁矿厚达0.5 m;脉石矿物 主要有石英、白云石、方解石,其次为 绢云母、白云母等,局部可见少量钾 长石、重晶石、磷灰石、绿泥石、绿帘 石、毒砂、锆石等。其中石英条纹条带 与闪锌矿条带及黄铁矿条带(断续)相 间分布,硫化矿物呈层状-浸染状分 布于矿石中。

主要矿化层方铅矿、闪锌矿、黄 铁矿等金属硫化物呈半自形 - 自形 粒状结构,部分它形粒状结构、交代 残余结构、碎裂结构。闪锌矿粒径为 0.1~1.5 mm,以0.1~0.5 mm为 主,呈稀疏浸染状、团块状产出,可 见部分闪锌矿被脉石矿物穿插交 代,呈残余晶,在闪锌矿晶体中见有 少量乳滴状、纺锤状黝铜矿、黄铜 矿、磁黄铁矿的分泌物。黄铁矿粒径 0.1~1.20 mm, 呈脉状 - 浸染状、 条带状产出,少数为自形粒状,粒径 0.1~0.15 mm,可见闪锌矿、方铅 矿交代黄铁矿。方铅矿粒径 0.05~ 0.20 mm, 呈浸染状、星点状分布, 可 见穿插交代早形成的硫化物。菱锌 矿半自形粒状,0.05 ~ 0.10 mm,多 被方解石交代成残余晶。辉银矿(硫 锑铜银矿) 它形粒状,0.05~0.10 mm, 分布于方铅矿与闪锌矿晶体间

隙中;氧化矿石以皮壳状、土状、粉末状结构为 主。矿石构造以块状为主,次有条(纹)带状、细脉 状、浸染状构造。条(纹)带与地层层理产状一致, 表现出沉积特点。

矿物生成顺序:(锆石 - 磷灰石 - 块状白云石、 长石)-黑云母 - 白云母 - 重晶石 - (磁黄铁矿)早期 黄铁矿 - 闪锌矿 - 黄铜矿 - 黝铜矿 - 纤闪石 - 绿 帘石、绿泥石 - 晚期黄铁矿 - 方铅矿 - 菱锌矿 - 脉 状白云石、方解石。

4 围岩蚀变特征

近矿围岩以白云石大理岩、含炭质千枚岩(局 部为火山碎屑岩,其中的石英、白云母和长石等 成分镜下有酸性火山岩的特征)为主,顶板有炭质 板岩,夹细砂岩,底板以白云石化大理岩为主,局 部变为纯白云岩,S896 矿体围岩中菱铁矿含量 2%~10%,最高 25%,在 S130 矿层顶板见透镜 状硅质岩(已变为石英岩)夹层,多数石英颗粒为 不规则状,彼此接触,其中见有少量柱状磷灰石 包体。

在矿体顶底板均有围岩蚀变,但底板蚀变相对 强烈且蚀变复杂,主要有硅化、绿泥石化、白云石 化、云英岩化、透闪石化,其中白云石化、云英岩化、 硅化主要发生在矿体底板,这与栾川百炉沟铅锌矿 床¹⁸不同。后期石英、毒砂交代闪锌矿,磁黄铁矿石 脉穿插于早期围岩及早期矿化层之中。在燕山晚期 花岗岩(花岗斑岩)附近的矿体及围岩往往有强烈的 矽卡岩化及钨钼矿化,磁铁矿化、透辉石、石榴石化 等明显叠加在早期矿化和蚀变之上,呈面状分布, 一般在铅锌矿体顶底板均能见到,而远离岩体这些 蚀变则逐渐减弱。

5 矿床地球化学特征

栾川群含矿的硅质岩,常量元素含量及比值 介于大厂矿区硅质岩与阿尔泰矿区硅质岩之间,稀 土元素分析(表 1)表明:ΣREE 值为(2.1~162.21) ×10⁻⁶,平均为 37.46×10⁻⁶; δ Ce 为 0.75 ~ 1.42,总 体为负异常, δ Eu 为 1.03 ~ 14.16,具有明显的正 异常; (La/Yb)_N 值 0.5 ~ 2,LREE/HREE 值 4.28 ~ 10.47,部分样品的稀土配分模式稍微左倾(图 4)。与 其它各地的热水沉积岩相比,都具有正 Eu 异常、较 低稀土总量等特征,显示为大陆斜坡和边缘海环境 形成的热水沉积岩。

矿床的 δD_{SMOW} 值为 -62% ~ -90%,δO_{SMOW} 值为 -4.67% ~ 17.80%,基本属于热卤水范围(表 2),S 同位素 δ³⁴S_{CDT} 值范围较大,为 0.32% ~ 9.20%,并在 2% ~ 4‰和 4% ~ 6%内集中(表 3), 说明硫可能与地层和后期侵入的岩浆热液有关。

矿床的矿石铅演化趋势线比围岩平缓(图 5), 结合铅同位素演化趋势图和 μ 值、Th/U值,可以 发现赤土店的铅源为下地壳和地幔混合来源。铅同 位素都具有很好线形关系,表明中间无异常铅存 在,可以计算铅同位素模式年龄。按 Doe 单阶段铅 演化曲线计算,模式年龄绝大部分为正值,剔除几 个负值后,其模式年龄数值表现出两期成矿特征, 早期集中在 600~700 Ma,晚期集中在 300~400 Ma (表 4)。

矿床流体包裹体组成比较复杂,大致可以分为 单相包裹体(L_{teo} 或 V_{Heo}),两相包裹体($L_{teo}+V_{teo}$ 、含 CO_2 或 CH₄的 $L_{teo}+V_{teo}$ 、 $L_{co2} + V_{co2}$), 三相包裹体 ($L_{teo}+L_{co2}+V_{co2}$)等。包裹体大小不一,变化范围较 大,为2~35µm。两相包裹体的盐度在 10.5~16.4 wt%之间,与 MVT 矿床的盐度值相似;三相包裹体 盐度在 8.1~12.0 wt%之间。均一温度可分为二组 150~160℃和 320~340℃,也大致反映了成矿分为 两期。

图 4 赤土店矿床围岩(A)矿石(B)稀土元素配分模式

Fig. 4 REE paterns for both the the host rocks(A) and ores(B) in Chitudian lead-zinc deposit

,	Table 1 Analysis data for the REE of both the ores and the host rocks in Chitudian lead-zinc deposit									
	样号	CM13010-K5	S139-3	S139-4	MD896-K3	MD896-K6	20046	20043b	200426	LBb-23
	La	1.68	11.00	3.60	4.45	8.28	1.07	4.93	10.40	0.23
БÌ.	Ce	2.70	23.00	4.67	7.33	8.32	1.62	10.64	21.50	1.00
	Pr	0.34	3.07	0.59	0.90	0.99	0.20	2.73	2.56	0.11
	Nd	1.08	13.40	2.36	3.78	3.09	0.70	4.69	9.79	0.32
	Sm	0.10	3.29	0.60	0.78	0.74	0.13	0.94	2.03	0.08
	Eu	0.07	0.94	0.13	0.41	2.35	0.03	0.20	0.46	0.02
, 体	Gd	0.39	2.66	0.59	0.81	0.81	0.13	0.64	1.59	0.09
围	Тb	0.11	0.52	0.09	0.14	0.09	0.03	0.12	0.32	0.02
岩	Dy	0.19	2.92	0.47	0.83	0.81	0.16	0.70	1.49	0.10
	Но	0.03	0.84	0.11	0.16	0.16	0.03	0.12	0.29	0.02
	Er	0.03	1.75	0.30	0.44	0.44	0.10	0.38	0.73	0.05
	Tm	0.04	0.27	0.06	0.06	0.08	0.01	0.04	0.09	0.01
	Yb	0.14	1.89	0.29	0.32	0.39	0.09	0.40	0.73	0.04
	Lu	0.04	0.37	0.05	0.06	0.06	0.02	0.05	0.10	0.01
	SREE	6.94	65.90	13.90	20.47	26.60	4.32	26.60	52.10	2.10
	样号	СМ13010-К8	MD896-K2	LBb-23	200421	20046	20049	200438	S116-1	S139-4
	La	9.99	0.77	0.23	227.00	1.07	53.00	24.00	18.70	3.60
	Ce	15.70	0.73	1.00	427.00	1.62	91.00	49.00	31.40	4.67
	Pr	2.07	0.11	0.11	45.00	0.20	11.60	6.20	3.78	0.59
	Nd	7.91	0.56	0.32	143.00	0.70	45.00	25.00	13.93	2.36
	Sm	1.59	0.16	0.08	18.50	0.13	8.50	4.49	2.41	0.60
	Eu	0.35	0.02	0.02	3.45	0.03	1.47	0.79	0.51	0.13
矿	Gd	1.77	0.14	0.09	18.20	0.13	7.56	4.24	2.31	0.59
石	Тb	0.32	0.02	0.02	2.34	0.03	1.00	0.74	0.32	0.09
	Dy	1.76	0.14	0.10	9.07	0.16	4.13	5.64	1.48	0.47
	Ho	0.32	0.03	0.02	1.97	0.03	1.02	0.86	0.31	0.11
	Er	0.92	0.08	0.05	5.53	0.10	2.75	2.57	0.87	0.30
	Tm	0.14	0.01	0.01	0.80	0.01	0.41	0.40	0.12	0.06
	Yb	0.88	0.08	0.04	5.72	0.09	3.02	3.54	0.97	0.29
	Lu	0.14	0.01	0.01	0.78	0.02	0.45	0.33	0.12	0.05
	SREE	43.90	2.87	2.10	908.00	4.32	230.00	127.80	77.20	13.90

表 1 赤土店矿床围岩和矿区围岩稀土元素分析结果表

注:样品由国土资源部中南矿产资源监督检测中心测试,2004~2007

表 2 赤土店矿床氢、氧同位素组成

Table 2 Analysis data for H, O and C isotopes in the Chitudian lead-zinc deposit

样品号	测试对象	δD _{SMOW}	δ ¹⁸ 0 _{SMOW}	样品号	测试对象	δD _{SMOW}	δ ¹⁸ 0 _{SMOW}
CM13010-K5	石英	-76.8	-4.67	MD896-K6	方铅矿	-82.00	10.07
CM13010-K10	石英	-62.1	-2.70	¥5	白云石		10.50
YCM2-K5	黄铁矿	-71.6	4.48	¥21	含矿大理岩		15.70
MD896-K2	黄铁矿	-87.2	7.38	L41	钙质石英片岩		17.80
MD896-K5	黄铁矿	-97.4	-2. 23				

注:样品由国土资源部中南矿产资源监督检测中心测试,2007

6 矿床成因探讨

产于元古代的 Sedex 矿床主要分布于澳大利亚 中部、加拿大西南部、中朝板块的北部、印度地台的 西部和非洲地台的西南部等如澳大利亚 Broken Hill,加拿大 Sullivan,西德的 Meggen 与 Rammelsberg 矿床、朝鲜 Komdok 和中国的东升庙矿床等, Sedex 型矿床形成于海底热液对流系统中。海底热 液对流模式成功地解释了成矿前矿化作用以及某 些矿床于盆地发展旋回早期形成等。

· · · · · · · · · · · · · · · · · · ·								
序号	样品号	测定对象	d ³⁴ S _{CDT} %0	序号	样品号	测定对象	d ³⁴ S _{CDT} ‰	
1	S116-2	黄铁矿	1.3	10	СМ13010-К10	黄铁矿	6.84	
2	Sct-21	方铅矿	4.2	11	СМ13010-К11	黄铁矿	6.86	
3	Sct-22	黄铁矿	6.8	12	YCM2-K4	黄铁矿	3.88	
4	Sct-23	闪锌矿	7.2	13	YCM2-K5	黄铁矿	6.64	
5	Sct1-1	方铅矿	5.7	14	MD896-K2	黄铁矿	2.44	
6	Sct1-3	闪锌矿	7.2	15	MD896-K3	黄铁矿	6.43	
7	CM15001-K4	黄铁矿	9.2	16	MD896-K5	黄铁矿	2.22	
8	CM13010-K4	方铅矿	3.08	17	MD896-K6	方铅矿	-0.32	
9	СМ13010-К6	方铅矿	3.73					

表 3 赤土店矿区硫同位素分析结果

Table 3 Analysis data for the S isotope in Chitudian lead-zinc deposit

注:样品由国土资源部中南矿产资源监督检测中心测试,2007.

表 4 赤土店矿区岩石、矿石铅同位素分析结果

Table 4 Analysis data for Pb isotope in the Chitudian lead-zinc deposit

样品号	测定对象	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	模式年龄(Ma)	μ	Th/U
200439	全岩	18.868	15.685	38.303	-60	9.59	3.47
200416	全岩	18.215	15.648	38.35	365	9.58	3.81
200418	全岩	19.249	15.684	41.104	-346	9.56	4.35
200421	全岩	17.998	15.560	38.979	417	9.43	4.19
200438	全岩	18.217	15.635	38.598	349	9.55	3.91
\$139-3	全岩	17.694	15.525	38.692	593	9.41	4.23
СМ13010-К3	黄铁矿	17.953	15.470	38.884	341	9.26	4.15
СМ13010-К4	方铅矿	17.882	15.466	38.787	388	9.26	4.15
СМ13010-К6	方铅矿	17.870	15.467	38.77	398	9.26	4.15
СМ13010-К10	黄铁矿	17.911	15.479	38.897	383	9.28	4.19
CM13010-K11	黄铁矿	17.949	15.507	39.035	389	9.33	4.23
YCM2-K3	方铅矿	17.690	15.437	38.494	494	9.23	4.13
YCM2-K4	黄铁矿	17.609	15.450	38.461	568	9.26	4.17
YCM2-K5	黄铁矿	17.685	15.490	38.665	559	9.33	4.22
YCM2-K7	黄铁矿	17.005	15.430	37.948	976	9.33	4.30
MD896-K2	黄铁矿	17.570	15.498	38.439	651	9.37	4.19
MD896-K3	黄铁矿	17.636	15.430	38.196	525	9.22	4.03
MD896-K5	黄铁矿	17.586	15.469	38.388	606	9.31	4.15
MD896-K6	方铅矿	17.537	15.490	38.422	665	9.36	4.20

注:样品由国土资源部中南矿产资源监督检测中心测试,2004~2007

赤土店铅锌矿产于华北陆块南缘卢氏 - 栾 川钼铅锌多金属成矿带上,内蒙古东升庙铅锌 矿床产在华北陆块北缘西段裂陷槽(裂谷带)内, 狼山 - 渣尔泰山中元古代成矿带,成矿构造地 质背景分别处在华北陆块南、北缘,是具备大型 - 超大型矿床¹⁰的成矿条。其主要特征可进行对 比(表 5)。

分析认为,华北陆块南缘早期在官道口群沉 积盆地基础上新元古代发生裂陷,并接受栾川群 碎屑岩夹碳酸盐岩沉积,而在沉积盆地边缘存在 一条同生断裂^[11](竹园沟断层),起着成矿热液通 道的作用,当海底火山活动发生时,含矿热液沿 该通道上升 - 喷流 - 对流¹¹²¹,并在围岩中沉积形 成了原始的铅锌银矿体。中生代晚期又被大规模 侵入的酸性岩浆岩改造 - 叠加,使得矿体进一步 变富并加入了钼等其它组分,提高了矿床的经济 利用价值。

Sedex 型矿床是全世界经济上重要的铅、锌、银 矿资源,仅 500 万吨以上超大型矿床统计储量所占 比例为 47%^①。可见,研究 Sedex 型矿床的成因与分 布对于今后矿产预测、提高资源储量等方面具有重 大的理论价值和经济意义。

①吕志成. 国内外铅锌矿床成矿理论与找矿方法,中国地质调查局发展研究中心,2004.

15.9

图 5 赤土店及百炉沟矿床矿石与围岩铅同位素演化趋势图解(底图依据 Zartman 等, 1988) Fig. 5 Evolution of lead isotope for both the ores and host rocks of Bailugou deposit in Chitudian

		赤土店铅锌矿床	东升庙Sedex型铅锌矿床 ①			
沉积-古构造环境		中元古大陆边缘裂陷槽南侧的 盆地(滨、浅海)	元古宙古大陆边缘裂陷槽南侧的三级(裂谷) 盆地(滨、浅海)			
容矿岩	岩组	栾川群煤窑沟组				
	时代	主要为新元古代Pt ₃	主要为中元古代Pt ₂			
容矿主岩岩岩性		白云石大理岩、白云岩、炭质白云石大理岩 、炭质板岩(或石煤) 白云岩大理岩、炭质白云石大理岩、炭质千 云母炭质千枚岩				
同位素	年龄	铅同位素早期模式年龄集中在600~700Ma, 晚期集中在300~400Ma	各种硫化物的铅模式年龄为1400~1600 Ma			
主要矿	石矿物	黄铁矿、磁黄铁矿、闪锌矿、方铅矿	黄铁矿、磁黄铁矿、闪锌矿、方铅矿、黄铜矿			
矿石	结构	半自形-自形粒状结构,部分它形粒状结构、 交代残余结构、碎裂结构。	以变晶结构为主,另可见到交代结构、变余胶状 结构、变余斑状结构			
矿石	构造	以块状为主,次有条带状、细脉状、浸染状 构造、条带与层理产状一致	以块状矿石为主,另有条带状、纹层状、角砾状、 浸染状、网脉状			
矿体	形态	以层状矿体为主,另有似层状、透镜状矿 体,与围岩产状一致、同步褶曲等现象	以层状矿体为主,另有似层状、透镜状矿体,总体 与围岩产状一致			
金属	分带	垂向方向: (Cu)Zn-CuPbZn-PbZn(上); 水 平方向: CuPbZn-SPbZn-SZn-(菱)Fe	垂向方向:由(下)Cu-CuZn-CuPbZn-PbZn(上); 水平方向:由CuPbZn-PbZn-Zn-(菱)Fe			
硫同	立素	d ³⁴ S‰值范围较大,为0.32 ‰ ~ 9.20‰	重硫富集型:各种硫化物的d ³⁴ S‰=(多为)14.4~41.84			
同生断层		主要为竹园沟断层?在含矿岩组与矿石局部 可见到角砾状矿石	发育,在含矿岩组与矿石中可见到滑塌角砾岩 与角砾状矿石等			
同沉积期火山岩		大红口组火山岩与辉绿岩共生构成典型的 双峰系列	双峰式火山岩夹层与凝灰岩夹层			
变质和	呈度	低绿片岩相	总体为绿片岩相、局部达角闪岩相			
矿床排	见模	大型: Zn、Pb、Ag矿体	超大型:S矿与Zn、Pb、Cu矿体、菱铁矿体			

庙 Sedex 型铅锌矿床特征对比
庙 Sedex 型铅锌矿床特征对比

Table 5	Correlation	of the characteristics	s of Chitudian	and Dongshend	miao SEDEX deposit

赤土店 Sedex 型铅锌矿床的发现,指导今后找 矿工作要针对栾川群煤窑沟组地层展开,而不仅仅 围绕小岩体、小断裂去部署找矿选区,这样就大大

地拓宽了华北陆块南缘铅锌银找矿思路,也必将取 得更好的找矿效益。

①吕志成. 国内外铅锌矿床成矿理论与找矿方法,中国地质调查局发展研究中心,2004.

参考文献

- [1] 吕文德,赵春和,孙卫志,等.河南栾川地区矽卡岩型铅锌矿 地质特征[J]. 地质调查与研究,2005,28(1):26-31.
- [2] 吕文德,赵春和,孙卫志,等.豫西南泥湖多金属矿田铅锌矿 地质特征与成因研究 [J]. 矿产与地质,2006.20(3):
 219-227.
- [3] 徐文超, 庞振山, 周奇明,等. 河南省栾川县南泥湖钼(钨)矿 田外围银铅锌多金属成矿地质条件分析及找矿前景[J]. 矿 产与地质, 2003, 17(3):199-202.
- [4] 吕文德, 孙卫志. 卢氏 栾川地体铅锌矿成矿地质条件分析及找矿远景[J].矿产与地质, 2004, 18(6):507-516.
- [5] 王长明,邓 军,张寿庭,等,河南南泥湖 Mo-W-Cu-Pb-Zn-Ag-Au 成矿区内生成矿系统 [J]. 地质科技情报.2006,25 (6): 47-52.
- [6] 叶会寿,毛景文,李永峰,等,豫西南泥湖矿田钼钨及铅锌 银矿床地质特征及其成矿机理探讨[J].现代地质,2006.20

(1):165-174.

- [7] 燕长海.东秦岭铅锌银成矿系统内部结构[M]. 北京:地质 出版社. 2004.
- [8] 燕长海,宋要武,刘国印,等,河南栾川杨树凹-百炉沟 MVT 铅锌矿带地质特征 [J].地质调查与研究. 2004:27 (4):249-255
- [9] 涂光炽.中国层控矿床地球化学[M]. 北京:北京科学技术 出版社,1988.
- [10] 翟裕生,张湖,宋鸿林,等.大型构造与超大型矿床[M],北 京:地质出版社,1996.
- [11] 彭润民,翟裕生,王志刚.内蒙古东升庙、甲生盘中元古代 SEDEX 矿床同生断裂活动及其控矿特征[J].地球科学, 2000, 25 (4):404-411.
- [12] LAURENCE ROBB. Introduction to ORE-FORMING PROCESSES[M]. Blackwell publishing.2005,153 ~ 166.

Characteristics and Genesis of Chitudian Lead-zinc Deposits in Luanchuan County

LIU Guo-yin^{1,2}, YAN Chang-hai^{1,2}, SONG Yao-u² and DUAN Shi-cang¹

(1. China University of Geosciences, Beijing, 100083, China; 2. Henan Institute of Geological Survey, Zhengzhou, 450007, China)

Abstract: This paper gives an introduction of the geological characteristics of the Chitudian Lead-zinc- (silver) deposit in Luanchuan County, Henan Province, which is located in the South Margin of North China Craton and discovered recently. It also presents the data of S, Pb, H, O isotopes, trace elements, and chemical compositions and microthermometry of fluid inclusions of the deposit. It's suggested that the ore body is strata-bounded, and the host strata is Meiyaogou Formation of Luanchuan Group in Neoproterozoic. The ore body, Which is stratum-like, is located where the clastic rocks converted to carbonate rocks, and sin-folded with the host rock. And also there is a column-like ore bodies jointed with the stratum-like ones. And in view of the fact that minerals form different assemblage layers, ore is massive to bedded structure and strongly altered footwall. We proposed that it is a SEDEX type ore deposit.

Key word: SEDEX type deposit; Neeproterozoic; strata-bounded lead-zinc deposits; South Margin of North China Craton