doi:10.3969/j.issn.2097-0013.2024.01.002

大别造山带汤池早白垩世富碱侵入岩成因及地质意义

朱志鹏,王连训*,朱煜翔,李乐广,马昌前

ZHU Zhi-Peng, WANG Lian-Xun*, ZHU Yu-Xiang, LI Le-Guang, MA Chang-Qian

中国地质大学地球科学学院, 湖北 武汉 430074 School of Earth Science, China University of Geosciences, Wuhan 430074, Hubei, China

摘要:本文对大别造山带北淮阳东段汤池地区早白垩世富碱侵入岩进行岩石学、锆石U-Pb年代学、岩石地球化学及锆石Lu-Hf同位素分析,揭示其成因及地质意义。该套岩石主要由正长花岗岩、石英正长岩和正长斑岩组成,伴有辉绿玢岩发育。锆石U-Pb定年结果显示,辉绿玢岩、正长花岗岩和正长斑岩分别形成于130.3±1.7 Ma、128.4±1.7 Ma和122.3±1.5 Ma,为早白垩世岩浆活动的产物。汤池辉绿玢岩相对贫硅(SiO_=45.23~56.92 wt.%)和富碱(Na₂O+K₂O=5.24~8.04 wt.%),Mg*值较高(平均值为48);而其他岩类具有高硅(SiO_=62.44~77.25 wt.%)、高碱(Na₂O+K₂O=7.97~10.35 wt.%)、低CaO含量以及较高的Ga/Al和FeO^T/MgO比值,与典型的A型花岗岩化学特征相似。辉绿玢岩大多数锆石ε_H(t)值变化范围为-6.4~2.9,全岩Nb/Ta比值17.1~22.0(接近地幔Nb/Ta值17.5),表明其为富集地幔部分熔融的产物。汤池A型花岗岩具有更富集的Hf同位素组成,ε_H(t)为-23.3~3.5,以及更低的全岩Nb/Ta比值(11.2~22.7,平均值为16.5),暗示它们是由幔源玄武质岩浆底侵诱发下地壳部分熔融产生的长英质岩浆经历分异演化的产物。结合区域资料分析认为,大别造山带北淮阳地区在早白垩世碰撞挤压作用结束,开始进入后碰撞伸展阶段。 关键词:大别造山带;汤池;早白垩世;A型花岗岩;辉绿玢岩;地球化学 **中图分类号:**P581 **文**载标识码:A

Zhu Z P, Wang L X, Zhu Y X, Li L G and Ma C Q. 2024. Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen. *South China Geology*, 40(1): 28–55.

Abstract: An integrated study, involving petrology, zircon U-Pb geochronology, and lithogeochemistry and zircon Lu-Hf isotope, was conducted on the Early Cretaceous alkaline rocks in the Tangchi area of the eastern Beihuaiyang of the Dabie orogen, aiming to constrain its petrogenesis and tectonic implications. The alkaline rock suites consist of syenogranite, quartz syenite, and syenite porphyry, accompanied by dolerite. Zircon U-Pb dating reveals that dolerite, syenogranite, and syenite porphyry were formed at 130.3 ± 1.7 Ma, 128.4 ± 1.7 Ma and 122.3 ± 1.5 Ma, respectively, indicating that these rocks were products of Early Cretaceous magmatism. The dolerite exhibits low SiO₂ ($45.23\sim56.92$ wt.%) and high Na₂O+K₂O contents ($5.24\sim8.04$ wt.%) and relatively high Mg[#] values (average of 48). Other rock types are characterized by high SiO₂ ($62.44\sim77.25$ wt.%) and Na₂O+K₂O contents ($7.97\sim10.35$ wt.%), along with low CaO concentrations, as well as elevated Ga/Al and FeO^T/MgO ratios, similar to typical A-type granites. The zircon $\varepsilon_{\text{Hf}}(t)$ values of the dolerite range

收稿日期:2023-11-4;修回日期:2023-11-27

基金项目:国家自然科学基金项目(No. 42072082)和湖北省自然科学基金项目(2022CFB116)

第一作者:朱志鹏(1998—),男,硕士研究生,主要从事碱性岩岩石学研究,E-mail: zzp15007185471@163.com

通讯作者:王连训(1983—),男,教授,博士生导师,主要从事岩浆岩岩石学研究与教学,E-mail: lianxunwang@cug.edu.cn

from -6.4 to -2.9, with whole rock Nb/Ta ratio of 17.1~22.0 (close to the mantle value of 17.5), indicating that these rocks were formed via partial melting of an enriched mantle. The Tangchi A-type granites yield richer Hf component and much lower $\varepsilon_{\text{Hf}}(t)$ values (-23.3 ~ -3.5) and whole rock Nb/Ta ratio (11.2~22.7, average of 16.5), suggesting that the A-type alkaline magmas have been produced primarily by partial melting of the lower crust caused by the emplacement of the mantle-derived mafic magmas. Together with regional data, it is proposed that the Dabie orogeny was in transition from the collisional extrusion during the Early Cretaceous to subsequent post-collisional extension.

Key words: Dabie orogen; Tangchi; Early Cretaceous; A-type granites; dolerite; geochemistry

A型花岗岩最初由Loiselle and Wones(1979) 提出,代表在非造山构造环境中形成的碱性、贫水 花岗岩。随着对A型花岗岩的研究不断深入,其在 岩石类型上逐渐扩展,包括了正长花岗岩、石英正 长岩和更长环斑花岗岩等铝质岩石(Eby, 1990, 1992; Nardi and Bonin, 1991)。鉴于A型花岗岩在 化学成分上存在较大变化,其形成机制仍然备受争 议(Duchesne and Wilmart, 1997; 贾小辉等, 2009; Kamaunji et al., 2020; Zhu Y X et al., 2022; Condie et al., 2023)。目前存在以下三种成因模式:(1) 交代岩石圈地幔部分熔融(Shellnutt and Zhou M F, 2007);(2)碱性玄武质岩浆结晶分异(Loiselle and Wones, 1979; Eby, 1992; Zhu Y X et al., 2020); (3) 幔源岩浆底侵诱发下地壳发生部分熔融 (Whalen et al., 1987; Wu F Y et al., 2002; Martin, 2006; Dai F Q et al., 2017)。尽管 A 型花岗岩的成因 和性质仍存在许多争议,但其在探讨地球动力学方 面具有独特的科学意义。根据产出的构造背景和化 学成分, Eby(1992)将A型花岗岩划分为两类: Ai 型和A₂型。其中,碱性-过碱性的A₁型花岗岩代表 了裂谷或板内非造山环境,而富铝的A2型花岗岩 则形成于后碰撞伸展环境(Eby, 1990; 王德滋等, 1995; King et al., 1997; 许保良等, 1998; Wu F Y et al., 2002; Jiang X Y et al., 2018).

早白垩世大别造山带经历了强烈的岩浆活动, 形成了巨量与俯冲碰撞相关的造山带花岗岩。这些 花岗岩总体可分为两个阶段:早期阶段(143~130 Ma)花岗岩呈现类似于埃达克质岩的高Sr、低Y、 低重稀土特征,为加厚下地壳部分熔融的产物;晚 期阶段(130~112 Ma)花岗岩具有低Sr/Y比值,呈 现Eu负异常,为减薄后下地壳部分熔融或壳幔相 互作用的产物(马昌前等, 1999; 王强等, 2000; 王爱 枝, 2009; 谢玉玲等, 2015; 尤静静等, 2019)。然而, 目前关于大别造山带白垩纪花岗岩成岩构造环境 还存在争议,一种观点认为其形成于后碰撞造山环 境(周红升等, 2009a, 2009b; 陈芳等, 2016; 吴齐等, 2016; 鹿献章等, 2017; 万俊等, 2017; 吴皓然等, 2020),另一种观点则认为其与古太平洋西向俯冲 有关(陈玲等, 2012)。大别造山带广泛发育 A₁和 A₂ 型花岗岩,因此深入研究其成因和构造环境可以限 定大别地区造山作用结束的具体时间,并对探讨该 区域幔源岩浆底侵作用及壳幔混合作用等科学问 题具有重要意义(杨义忠等, 2018)。

近期,笔者在大别造山带东段的北淮阳汤池地 区识别出一套早白垩世A型花岗岩-辉绿玢岩组 合,并开展了详细的野外地质调查,对其进行了岩 石学、岩相学、锆石U-Pb年代学、岩石地球化学以 及锆石Lu-Hf同位素等分析。我们初步讨论了汤池 A型花岗岩-辉绿玢岩组合的源区性质、岩石成因 和构造环境,旨在为大别造山带中生代岩浆活动及 陆-陆碰撞伸展转换时限提供依据。

1地质背景

大别造山带位于华北板块与华南板块之间 (图 la),形成于三叠纪华南板块向华北板块的俯冲 碰撞(Zheng Y F, 2008)。该造山带为经历了多期次 造山运动的复合型造山带,是全球陆-陆碰撞后岩 浆活动最强烈的地区之一(郑永飞, 2008; Dong Y P and Santosh, 2016)。其北部以栾川-明港-固始断 裂为界,南部以襄樊-广济断裂为界,西部以南阳盆 地为界与秦岭造山带相连,东部以郯庐断裂与苏鲁 造山带隔开。

北淮阳地区位于大别造山带东北缘,整体上呈现为一条断裂褶皱带(图1b)(徐树桐等,1992)。在区域上,北淮阳构造带呈近东西向延伸,其东以郯庐断裂带与长江凹陷带相接,西至南阳盆地,北临华北板块,南与北大别高压-超高压变质带毗邻。该构造带基底主要由四个岩石地层单元组成,即中元

古界卢镇关群(苏家河群、红安群)、新元古界-下古 生界佛子岭群(信阳群)、上古生界杨山群和中新生 界陆相盆地沉积(张怀东等,2012)。北淮阳地区白 垩纪碰撞后岩浆岩广泛发育,主要由中酸性侵入岩 (花岗岩、正长岩)和火山岩(如响岩、粗面岩、安山 岩和英安岩等)组成,同时还有少量镁铁-超镁铁质 岩脉或岩株出露(Cong B L et al., 1994; 周泰禧等,

 图1 大别-苏鲁造山带地质简图(a)、北淮阳和北大别晚中生代后碰撞火成岩分布图(b)和汤池岩体地质简图(c)
 Fig. 1 Geological sketch map of the Dabie-Sulu orogenic belt (a), distribution of Late Mesozoic post-collisional igneous rocks in Beihuaiyang (b) and simplified geological map of Tangchi complex (c)
 图 a 和图 b 据刘晓强等(2018)修改; 图 c 据安徽省地矿局 313 地质队(1995)修改

1995; Dai F O et al., 2016, 2017; 张徐等, 2019)。根 据安徽省地质调查院(2011)的研究,区内中酸性侵 入岩主要分布于汤汇、古碑、凌家冲和河棚四个超 单元内。岩石类型为石英闪长岩、花岗闪长岩、二长 闪长岩、霞石正长岩、石英正长岩、正长花岗岩、二 长花岗岩等,主要为I型花岗岩,并含有少量A型花 岗岩(吴皓然等, 2020)。

2 野外地质及岩相学特征

要由正长花岗岩组成,其东北部及东部以石英正长 岩为主,两者呈渐变过渡接触。辉绿玢岩呈小岩株 分布在二者接触带附近及岩体的北部,正长斑岩呈 岩脉状广泛分布于整个岩体中。在野外见辉绿玢岩 小团块与正长花岗岩相互包裹(图2a),以及辉绿玢 岩脉切割石英正长岩(图2b),而正长斑岩与正长 花岗岩之间为渐变过渡接触(图2c)。

辉绿玢岩呈青灰色、灰黑色,块状构造。斑晶含 量约10%,主要为斜长石和辉石,斜长石斑晶表面 普遍因绿泥石化而浑浊;辉石斑晶呈半自形粒状, 汤池岩体位于舒城县汤池镇一带,北淮阳构造 粒径约0.5~1.0 mm,发生了轻微蚀变(图2d)。基质 带东段,整体呈NW向延伸(图1c)。岩体西南部主 以斜长石(约40%)、辉石(约35%)和隐晶质矿物

图2 汤池岩体野外露头和正交偏光镜下照片

Fig. 2 Field outcrop photos and photos under orthogonal polarized microscope of Tangchi complex a. 正长花岗岩与辉绿玢岩相互包裹; b. 辉绿玢岩与石英正长岩接触界线明显; c. 正长斑岩与正长花岗岩为渐变过渡接触; d. 辉绿玢岩中 辉石斑晶; e. 正长花岗岩中石英蠕虫结构; f. 石英正长岩中轻微蚀变; g. 正长斑岩中钾长石斑晶 矿物缩写: Cpx-单斜辉石; Bt-黑云母; Qz-石英; Kfs-钾长石; Pl-斜长石; Ttn-榍石

(约15%)为主。

正长花岗岩呈浅肉红色,具典型的花岗结构, 呈块状构造。岩石主要由钾长石(40%~50%)、石英 (30%~35%)、斜长石(10%~15%)和黑云母(3%~ 5%)组成。钾长石呈半自形板状,粒径约1~2 mm; 石英呈它形粒状,可见蠕虫结构(图2e);斜长石呈 半自形板状,粒径约0.1~2 mm,边部往往发育较强 绢云母化;黑云母呈半自形片状,多色性明显,呈浅 褐色-深棕色。

石英正长岩呈浅黄褐色,中细粒结构,块状构 造。其矿物组合包括钾长石(60%~65%)、石英(15% ~20%)、斜长石(5%~10%)和黑云母(1%~5%)等 (图 2f)。钾长石呈半自形板状,粒径约0.5~2 mm; 石英呈它形粒状;斜长石呈半自形板状,粒径约 0.5~1.5 mm;黑云母呈半自形片状,浅绿色-深棕 色,其边部普遍发生绿泥石化。

正长斑岩呈浅肉红色,斑状结构,块状构造。斑 晶含量约40%,主要为钾长石、石英和斜长石。钾长 石斑晶呈半自形板状,粒径约0.5~3 mm,部分表面 因高岭土化而较浑浊(图 2g);石英斑晶呈它形粒 状,粒径约0.5~2 mm;斜长石斑晶呈半自形板状, 粒径约0.5~3 mm,表面普遍发生蚀变。基质含量约 60%,以长英质矿物为主。

3分析方法

本研究在北淮阳东段汤池地区的不同位置采 集了14件样品,包括4件辉绿玢岩、6件正长花岗 岩、2件石英正长岩和2件正长斑岩。对19TC20-1 (正长花岗岩)、19TC16-1(辉绿玢岩)及19TC21-1 (正长斑岩)三件样品进行了锆石U-Pb定年和微量 元素分析。锆石透射光、反射光和阴极发光(CL)图 像在武汉上谱分析科技有限责任公司拍摄。在进行 锆石U-Pb同位素分析之前,通过透反射图像以及 CL图像对锆石的晶体形貌和内部结构特征进行了 详细研究,并挑选出最佳测试点以满足原位同位素 分析要求。锆石 U-Pb 同位素定年和微量元素含量 在武汉上谱分析科技有限公司同时分析完成。Geo-LasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm 准分子激光器和 MicroLas 光学系统组成, ICP-MS 形, 以短柱状或不规则粒状为主, 长度 50~120 µm,

型号为Agilent 7700。每个数据包括 20~30 s 的空白 信号和50s的样品信号。激光剥蚀斑束直径和深度 分别为32 µm和20~40 µm。采用锆石标准91500作 为外标校正锆石年龄,元素含量采用美国国家标准 物质局人工合成硅酸盐玻璃NIST610作为外标, ²⁹Si 作为内标元素进行校正。使用 ICPMSData Cal 10.7程序(Liu Y S et al., 2008)进行离线数据处理, 使用 Isoplot3.0 程序生成锆石年龄谐和图和加权平 均年龄图。基于在锆石CL图像和U-Pb定年测试结 果,在武汉上谱分析科技有限责任公司利用激光剥 蚀多接收杯等离子质谱仪(LA-MC-ICP-MS)进行了 锆石Lu-Hf原位同位素分析。激光能量为70 mJ/cm², 剥蚀频率为8Hz,束斑直径为44μm。通常每分析 10个点后分析2个91500标样。详细的仪器参数和 操作流程参考HuZC et al. (2012)。

全岩主量元素分析在广州澳实分析检测有限 公司完成,测试方法为X射线荧光光谱法(XRF),详 细的仪器参数和操作流程等见 Ma Q et al. (2012)。 一般每分析8个样品后分析一次标准物质,所用的 监控标样是美国地质调查局的AGV-2标样和中国 国家标样GSR-1和GSR-7。主量元素测试结果精度 好于4%,准确性好于3%。全岩微量元素测定在武 汉上谱分析科技有限责任公司运用电感耦合等离 子体质谱仪(ICP-MS)完成,型号为Agilent 7700e, 具体的实验流程和操作步骤见Liu Y S et al. (2008)。元素准确度由国际标准物质AGV-2、BH-VO-2和BCR-2以及国家岩石标样RGM-2等确定。 其中,Nb、Ta、Zr、Hf、Ni、Ga、Rb、Y及轻稀土元素的 分析精度优于5%,其它微量元素的精度优于12%。 全岩地球化学图解利用Origin 8.5软件制作。

4 测试结果

4.1 锆石 U-Pb 年龄及微量元素

辉绿玢岩、正长花岗岩和正长斑岩的锆石微量 元素和U-Pb同位素结果详见表1和表2。正长花岗 岩和正长斑岩中锆石颗粒为半自形-自形,晶形较 为完整,呈长柱状或短柱状,长度40~190 µm,长宽 比约1:1~3:1。辉绿玢岩中锆石颗粒为半自形-他

表1 汤池岩体LA-ICP-MS锆石微量元素分析结果(×10 ^{-*})及相关参数	1 LA-ICP-MS zircon trace element contents ($\times 10^{-6}$) of the Tangchi complex and Related parameters
	Table

19TC16-1	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
La	0.01	0.04	0.02	19.71	0.08	0.01	0.01	0.00	108	0.05	0.02	0.07	0.00	0.06	0.03	0.17	0.06	0.00	0.09	0.14
Ce	102	54.6	54.9	132	65.7	77.6	19.9	20.6	370	52.1	139	58.5	17.4	26.6	23.9	74.0	21.2	33.1	19.4	176
Pr	0.27	0.26	0.04	4.67	0.11	0.08	0.16	0.26	35.1	0.04	0.31	0.17	0.07	0.63	0.39	0.19	0.55	0.03	0.55	0.89
Nd	3.67	3.89	0.47	28.7	1.60	0.92	3.37	4.62	132	0.59	5.51	3.36	0.88	8.04	6.78	3.09	7.12	1.15	7.68	11.6
Sm	7.59	6.62	1.27	24.7	3.16	2.02	6.68	6.81	21.9	1.16	9.24	4.90	2.26	10.9	10.2	4.33	9.30	3.29	9.64	19.5
Eu	1.32	2.13	0.34	4.01	1.04	0.35	0.85	0.80	2.46	0.34	1.61	1.03	0.25	1.03	1.07	1.75	1.16	0.28	1.04	3.22
Gd	39.3	27.1	8.76	83.2	15.8	10.1	29.7	29.7	34.3	7.71	52.6	29.2	10.9	45.1	38.8	22.2	40.0	17.0	39.6	94.5
Tb	13.4	8.08	3.62	22.3	5.71	4.22	9.74	9.31	8.94	2.93	18.4	11.0	3.76	14.9	11.8	6.79	13.16	6.40	12.2	31.8
Dy	150	85.4	52.9	227	68.7	63.5	107	110	92.8	41.7	225	142	45.0	177	134	77.5	151	84.6	134	363
Но	57.8	31.6	25.8	77.9	27.9	32.8	39.5	40.5	32.4	19.0	86.1	59.5	17.8	8.99	50.6	30.4	57.3	34.5	49.7	139
Er	260	141	150	337	136	206	176	184	141	105	383	300	85.9	315	235	137	261	180	220	626
Tm	53.5	30.9	40.6	69.5	31.2	57.1	37.5	40.5	29.3	27.5	80.0	67.9	19.6	67.7	49.2	30.4	54.9	44.4	46.6	130
Чb	478	277	454	647	310	639	350	379	264	308	691	644	194	620	465	289	506	451	432	1135
Lu	95.8	58.7	112	123	67.0	156	71.5	78.0	53.3	73.2	136	132	41.6	127	96.8	61.0	104	7.66	88.9	224
Th	190	383	163	1011	515	241	169	197	587	175	225	209	95.0	432	273	620	322	342	207	554
U	128	152	181	409	318	268	132	162	242	163	148	164	102	308	214	337	216	519	141	286
Nb	6.20	1.80	9.90	2.00	5.60	13.10	1.00	1.00	3.20	5.00	10.00	4.40	1.40	2.30	1.40	4.10	1.40	5.60	1.20	11.70
Та	1.55	0.68	2.21	0.83	1.58	2.61	0.50	0.56	1.25	1.33	2.33	1.19	0.44	1.09	0.69	1.54	0.83	3.70	0.51	2.03
Ηf	7240	8552	6696	7606	10700	8872	9390	10073	8907	10488	6956	7927	9661	8925	9984	10049	8391	13852	8562	7520
Υ	1690	964	922	2413	928	1227	1179	1210	971	656	2483	1947	563	2026	1538	924	1729	1102	1465	4207
Ti	15.2	15.1	4.00	10.5	4.50	6.00	18.1	15.8	16.7	7.90	14.1	4.90	20.5	19.7	18.9	15.8	21.5	5.70	24.9	10.6
Th/U	1.49	2.52	06.0	2.47	1.62	06.0	1.28	1.21	2.43	1.08	1.52	1.28	0.93	1.41	1.27	1.84	1.49	0.66	1.47	1.94
ΣREE	1263	728	904	1800	734	1249	853	904	1326	639	1827	1455	439	1480	1123	738	1226	956	1061	2956
$(Sm/La)_N$	1083	246	129	1.94	64.8	211	693	0.00	0.31	34.1	588	108	703	286	539	39.9	236	0.00	161	222
Ce/Ce*	114	60.7	386	3.25	142	287	36.2	25.0	1.47	248	134	90.5	70.9	12.7	18.7	89.6	11.5	355	10.2	57.8
$T_{z_r}(^{\circ}C)$	856	855	747	820	754	773	874	860	866	796	848	760	888	884	879	860	893	770	910	821

33

续表1																				
19TC20-1		5	ε	4	5	9	2	∞	6	10	H	12	13	14	15	16	17	18	19	20
La	3.16	0.60	0.53	119	0.01	0.07	0.35	3.64	74.1	0.35	0.02	0.20	0.02	0.02	0.21	0.03	0.10	0.41	0.01	0.04
Ce	104	119	94.8	491	43.5	91.6	93.4	112	237	110	87.6	245	77.4	102	170	64.3	83.9	113	48.3	92.9
Pr	1.97	0.66	0.48	25.26	0.04	0.16	0.22	1.68	13.5	0.34	0.06	1.30	0.11	0.18	1.30	0.14	0.14	0.86	0.09	0.38
Nd	9.24	6.54	3.35	121	0.33	1.68	3.35	9.17	59.7	4.31	1.59	20.5	1.59	1.67	20.7	2.76	1.42	12.2	1.56	7.68
Sm	5.29	9.02	2.96	59.3	1.16	2.15	5.86	7.91	20.8	6.60	2.33	27.6	3.00	2.90	28.8	4.50	2.56	18.5	2.25	11.6
Eu	0.97	1.94	0.62	13.8	0.22	0.74	1.18	1.77	5.10	1.75	0.36	8.94	0.93	0.63	6.82	0.45	0.91	4.49	0.99	2.54
Gd	16.2	46.5	12.4	167	5.55	13.0	26.1	29.0	57.3	33.0	11.2	104	17.5	15.5	119	25.0	13.9	80.3	9.79	57.9
Tb	5.30	16.0	4.54	43.5	2.31	4.70	8.25	8.95	14.4	10.5	4.20	28.7	5.91	6.18	33.6	10.2	5.19	23.9	3.07	18.4
Dy	66.8	200	69.4	401	31.7	58.6	95.4	108	139	120	60.7	279	72.7	87.8	352	142	69.1	263	34.0	207
Но	29.6	77.5	33.9	131	15.3	25.5	38.0	43.3	45.5	45.3	29.4	93.1	29.9	41.0	123	66.6	33.2	95.5	16.3	78.4
Er	162	368	212	513	86.2	151	173	203	195	206	166	384	152	234	527	351	194	409	86.2	340
Tm	44.9	80.1	58.6	100	23.0	40.2	38.6	45.8	38.8	42.8	44.6	74.7	34.2	58.3	106	84.1	51.0	85.8	22.3	70.2
Чþ	500	727	675	859	256	456	360	459	358	399	491	660	341	629	918	843	581	761	256	616
Lu	120	149	173	165	62.5	111	75.3	96.3	75.6	80.2	115	131	76.0	144	180	183	146	151	9.99	124
Th	1419	765	921	968	141	1407	455	932	485	985	380	1076	328	439	763	414	738	657	190	461
U	740	366	657	261	137	768	222	300	181	333	303	273	192	319	259	302	504	284	145	212
Nb	90.7	24.4	21.2	10.0	4.30	9.60	7.20	97.7	4.90	16.1	9.40	8.20	4.20	13.8	6.80	6.80	8.00	12.90	1.70	5.90
Та	2.18	2.29	1.91	1.41	1.09	1.66	1.54	1.69	0.94	2.04	2.05	1.69	1.15	2.43	1.33	1.78	0.97	1.38	0.37	1.33
Hf	11384	10264	13305	8889	10840	13002	10115	9158	11440	9462	9487	8466	10598	8621	8789	9953	10399	9703	9294	9583
Y	1152	2488	1345	3723	531	1015	1187	1526	1388	1422	1067	2720	1036	1468	3761	2250	1260	2897	586	2347
Ti	7.48	6.96	5.28	15.5	4.42	3.95	11.7	12.1	9.09	9.15	5.69	15.8	6.06	7.86	10.9	4.28	3.22	20.7	7.31	7.98
Th/U	1.92	2.09	1.40	3.71	1.03	1.83	2.05	3.10	2.68	2.96	1.25	3.94	1.71	1.38	2.95	1.37	1.46	2.31	1.31	2.17
<i>SREE</i>	1069	1802	1341	3209	528	956	919	1129	1333	1061	1015	2058	812	1323	2586	1777	1182	2019	548	1627
$(Sm/La)_N$	2.59	23.3	8.7	0.77	142	48.5	26.2	3.37	0.44	29.0	236	209	186	229	211	243	38.2	70.2	249	469
Ce/Ce*	9.93	41.2	42.7	2.09	278	153	79.8	11.0	1.70	71.3	385	54.9	194	172	38.2	129	141	34.0	162	73.2
$T_{z_r}(^{\circ}\mathrm{C})$	802	796	LLL	864	767	760	838	841	817	817	782	866	787	805	832	765	750	894	800	806

34

华南地质

2024 年

La 001 16.28 0.05 0.01 0.05 0.01 0.05 0.01 0.13 0.00 1.12 Ce 299 97.6 122 105 399 51.1 749 57.5 79.0 Nd 0.79 13.8 5.18 3.06 1.14 4.40 2.33 2.63 2.84 Nd 0.79 13.8 5.18 3.06 1.14 4.40 2.33 2.63 2.84 Sin 2.25 4.48 7.50 5.84 2.49 5.91 4.12 4.30 5.33 2.83 4.08 Gd 144 16.0 31.5 5.24 1.13 2.75 5.23 1.91 18.1 Dy 551 52.1 25.3 13.1 27.6 23.3 29.1 33.6 Dy 531 132 551 351 352 4.13 33.6 Dy 332 541 133 27.6 23.3	0.01 0.05 105 39.9 0.19 0.08 3.06 1.14 5.84 2.49 1.37 0.62 29.3 13.1 10.0 4.45 11.0 4.45 10.0 4.45 10.1 2.55.1 22.1 22.7 52.1 22.7 52.1 22.7 52.1 22.7 52.1 22.7 53.7 26.6 55.7 26.3 115 59.5 53.7 26.6 53.7 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10	0.02 51.1 0.24 4.40 5.91 1.98 5.6 95.6 95.6 95.6 184 184 133.7	0.18 74.9 0.14 2.33 4.12 1.52 22.3 7.05 78.5 30.3 140 140 29.4	0.00 57.5 0.18	1.12 79.0	0.02	0.02	0 00			100	1 70	000	•		
Ce 29.9 97.6 122 105 39.9 51.1 74.9 57.5 79.0 Pr 0.06 3.30 0.37 0.19 0.08 0.24 0.14 0.18 0.31 Nd 0.79 13.8 5.18 3.06 1.14 4.40 2.33 2.63 2.87 Sm 2.25 4.48 7.50 5.84 2.49 5.91 4.12 4.28 4.08 Gd 14.4 16.0 33.6 2.93 13.1 27.6 2.33 19.1 18.1 Gd 14.4 16.0 33.6 2.93 13.1 27.6 2.33 19.1 18.1 Dy 63.8 61.6 131 125 55.1 37.7 30.3 19.1 18.1 Ho 26.9 57.1 27.5 57.1 37.7 30.3 19.1 33.6 Th 32.1 25.1 25.7 37.7 30.3 19.1	105 39.9 0.19 0.08 3.06 1.14 5.84 2.49 1.37 0.62 1.37 0.62 1.37 0.62 1.37 0.62 1.37 0.62 1.37 0.62 1.37 0.62 10.0 4.45 10.1 4.45 10.2 55.1 264 115 264 115 557 263 5337 150 208 3.10 9.80 3.10	 51.1 0.24 4.40 5.91 1.98 5.7.6 95.6 95.6 37.7 184 184 43.3 106 	74.9 0.14 2.33 4.12 1.52 7.05 7.05 78.5 30.3 140 140 29.4	57.5 0.18 2.62	79.0	L 9L		>>>>	0.30	0.07	0.04	4./0	0.00	0.02	0.03	0.01
Pr 0.06 3.30 0.37 0.19 0.08 0.24 0.14 0.18 0.33 Nd 0.79 13.8 5.18 3.06 1.14 4.40 2.33 2.63 2.87 Sm 2.25 4.48 7.50 5.84 2.49 5.91 4.12 4.28 4.08 Gd 14.4 16.0 33.6 29.3 13.1 27.6 2.33 18.1 18.1 Uby 5.16 5.20 10.9 10.0 4.45 8.34 7.05 5.20 6.38 Dy 63.8 61.6 131 125 55.1 95.6 7.05 5.20 6.38 Dy 63.8 61.6 131 125 55.1 95.6 7.05 5.20 6.38 Tm 32.7 29.0 62.1 131 125 57.6 5.20 6.38 Tm 32.5 56.4 115 184 140 85.0 181 </td <td>0.19 0.08 3.06 1.14 5.84 2.49 1.37 0.62 1.37 0.62 1.37 0.62 1.37 0.62 29.3 13.1 10.0 4.45 125 55.1 254 115 52.1 22.7 264 115 58.7 26.6 58.7 26.6 5337 150 121 59.5 3337 150 9.80 3.10 200 0.90</td> <td>0.24 4.40 5.91 1.98 1.98 8.34 95.6 95.6 184 184 133.7</td> <td>0.14 2.33 4.12 1.52 1.52 22.3 7.05 78.5 30.3 140 140 29.4</td> <td>0.18</td> <td></td> <td>1.0.1</td> <td>109</td> <td>58.0</td> <td>84.6</td> <td>63.3</td> <td>144</td> <td>159</td> <td>48.2</td> <td>82.3</td> <td>65.7</td> <td>59.6</td>	0.19 0.08 3.06 1.14 5.84 2.49 1.37 0.62 1.37 0.62 1.37 0.62 1.37 0.62 29.3 13.1 10.0 4.45 125 55.1 254 115 52.1 22.7 264 115 58.7 26.6 58.7 26.6 5337 150 121 59.5 3337 150 9.80 3.10 200 0.90	0.24 4.40 5.91 1.98 1.98 8.34 95.6 95.6 184 184 133.7	0.14 2.33 4.12 1.52 1.52 22.3 7.05 78.5 30.3 140 140 29.4	0.18		1.0.1	109	58.0	84.6	63.3	144	159	48.2	82.3	65.7	59.6
Nd 0.79 138 5.18 3.06 1.14 4.40 2.33 2.63 2.83 Sm 2.25 4.48 7.50 5.84 2.49 5.91 4.12 4.28 4.08 Fu 0.80 0.88 2.43 1.37 0.62 1.98 1.45 1.01 Gd 144 16.0 33.6 29.3 13.1 27.6 22.3 19.1 181 Dy 63.8 61.6 131 125 55.1 95.6 78.5 54.1 79.1 Ho 26.9 56.0 57.1 25.7 37.7 30.3 194 33.6 Tm 26.9 56.1 131 125 55.1 35.7 37.7 30.3 194 33.6 Tm 26.9 57.1 26.6 43.3 26.4 16.0 54.1 705 54.1 705 Tm 26.9 53.1 27.6 53.3 29.4 16.6 <td>3.06 1.14 5.84 2.49 1.37 0.62 1.37 0.62 29.3 13.1 10.0 4.45 10.1 4.45 10.2 55.1 22.1 22.7 52.1 22.7 52.1 22.7 52.1 22.7 53.7 26.6 557 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10</td> <td>4.40 5.91 1.98 1.98 8.34 95.6 95.6 184 184 184</td> <td>2.33 4.12 1.52 7.05 78.5 30.3 140 140 29.4</td> <td>7 62</td> <td>0.31</td> <td>0.21</td> <td>0.28</td> <td>0.06</td> <td>0.24</td> <td>0.05</td> <td>0.39</td> <td>1.2</td> <td>0.09</td> <td>0.15</td> <td>0.19</td> <td>0.09</td>	3.06 1.14 5.84 2.49 1.37 0.62 1.37 0.62 29.3 13.1 10.0 4.45 10.1 4.45 10.2 55.1 22.1 22.7 52.1 22.7 52.1 22.7 52.1 22.7 53.7 26.6 557 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10	4.40 5.91 1.98 1.98 8.34 95.6 95.6 184 184 184	2.33 4.12 1.52 7.05 78.5 30.3 140 140 29.4	7 62	0.31	0.21	0.28	0.06	0.24	0.05	0.39	1.2	0.09	0.15	0.19	0.09
Sm 2.25 4.48 7.50 5.84 2.49 5.91 4.12 4.28 4.08 Eu 0.80 0.88 2.43 1.37 0.62 1.98 1.52 1.46 1.11 Gd 14.4 160 33.6 29.3 13.1 27.6 22.3 19.1 181 Tb 5.16 5.20 10.9 10.0 4.45 8.34 7.05 5.20 6.38 Dy 63.8 61.6 131 125 55.1 95.6 78.5 54.1 79.1 Ho 26.9 26.0 55.6 52.1 22.7 37.7 30.3 19.4 33.6 Tm 32.7 29.0 62.1 58.7 26.6 43.3 33.6 43.7 Tm 33.0 29.1 63.1 13.1 29.4 16.5 43.2 Tm 33.0 29.1 53.7 20.4 16.5 43.2 Tm 33.0 </td <td>5.84 2.49 1.37 0.62 29.3 13.1 10.0 4.45 1125 55.1 52.1 22.7 52.1 22.7 264 115 58.7 26.6 58.7 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10</td> <td>5.91 1.98 27.6 8.34 95.6 37.7 184 43.3 442</td> <td>4.12 1.52 7.05 78.5 30.3 140 29.4</td> <td>CU.7</td> <td>2.87</td> <td>3.45</td> <td>4.72</td> <td>1.49</td> <td>2.35</td> <td>0.81</td> <td>5.86</td> <td>8.66</td> <td>1.35</td> <td>2.57</td> <td>3.15</td> <td>1.41</td>	5.84 2.49 1.37 0.62 29.3 13.1 10.0 4.45 1125 55.1 52.1 22.7 52.1 22.7 264 115 58.7 26.6 58.7 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10	5.91 1.98 27.6 8.34 95.6 37.7 184 43.3 442	4.12 1.52 7.05 78.5 30.3 140 29.4	CU.7	2.87	3.45	4.72	1.49	2.35	0.81	5.86	8.66	1.35	2.57	3.15	1.41
Eu 0.80 0.88 2.43 1.37 0.62 1.98 1.52 1.46 1.11 Gd 14.4 16.0 33.6 29.3 13.1 27.6 22.3 19.1 8.1 Tb 5.16 5.20 10.9 10.0 4.45 8.34 7.05 5.20 6.38 Dy 63.8 61.6 131 125 55.1 95.6 78.5 54.1 79.1 Ho 26.9 26.0 55.6 52.1 25.7 37.7 30.3 19.4 33.6 Ho 26.9 26.0 55.6 52.1 22.7 37.7 30.3 19.4 33.6 Tm 22.7 26.0 55.6 52.1 22.7 37.7 30.3 19.4 33.6 Yb 330 281 537 26.4 115 18.4 140 85.0 6.33 Yb 330 281 587 26.6 43.3 29.4 16.5 43.2 Yb 330 281 587 26.6 43.3 29.4 16.5 477 Yb 330 281 587 560 18.6 6.30 100 Yb 25.6 417 367 550 417 609 100 Yb 25.6 417 367 273 267 402 369 Yb 25.6 1.20 1.30 2.94 126 475 470 170 Yb 420 2.50	1.37 0.62 29.3 13.1 10.0 4.45 10.1 4.45 52.1 22.7 52.1 22.7 52.1 22.7 52.1 22.7 53.7 26.6 58.7 26.3 53.7 26.3 115 59.5 53.7 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10	1.98 27.6 8.34 95.6 37.7 184 43.3 442	1.52 22.3 7.05 78.5 30.3 140 140 29.4	4.28	4.08	6.84	8.02	2.77	3.37	1.02	10.1	8.99	2.61	4.67	4.88	2.79
Gd 14.4 16.0 33.6 29.3 13.1 27.6 22.3 19.1 18.1 Tb 5.16 5.20 10.9 10.0 4.45 8.34 7.05 5.20 6.38 Dy 63.8 61.6 131 125 55.1 95.6 78.5 54.1 79.1 Ho 26.9 26.0 55.6 52.1 22.7 37.7 30.3 19.4 33.6 Fr 134 130 273 26.4 115 184 140 85.0 181 Tm 32.7 29.0 62.1 58.7 26.6 43.3 29.4 165 43.2 Tm 32.7 281 587 26.6 44.2 265 152 447 Tm 32.7 281 133 121 89.6 103 103 Tm 82.2 61.0 133 121 59.6 442 56 36.9 369	29.3 13.1 10.0 4.45 125 55.1 52.1 22.7 264 115 264 115 58.7 26.6 557 263 121 59.5 337 150 9.80 3.10 200 0.90	27.6 8.34 95.6 37.7 184 43.3 442	22.3 7.05 78.5 30.3 140 29.4	1.46	1.11	1.95	3.18	0.96	0.85	0.23	3.27	2.60	1.04	1.80	1.34	0.91
Tb 5.16 5.20 10.9 10.0 4.45 8.34 705 5.20 6.38 Dy 63.8 61.6 131 125 55.1 95.6 78.5 54.1 79.1 Ho 26.9 26.0 55.6 52.1 22.7 37.7 30.3 19.4 33.6 Er 134 130 273 264 115 184 140 85.0 181 Tm 32.7 29.0 62.1 58.7 26.6 43.3 29.4 16.5 43.2 Yb 330 281 598 557 26.6 43.3 29.4 16.5 43.2 Yb 330 281 598 557 263 442 265 152 447 U 82.2 61.0 133 121 59.5 106 54.3 31.9 103 U 2580 417 367 337 150 475 451 86.9 517 U 2580 121 367 337 150 475 451 86.9 517 U 2580 123 327 266 417 367 337 106 850 850 Vb 4.20 4.10 5.60 1.20 0.90 0.80 1.40 850 Vb 4.20 4.00 5.60 1.20 0.90 0.80 1.70 8.74 Vb 4.20 8.916 1.00 8.924 8.14 <	10.0 4.45 125 55.1 52.1 22.7 52.1 22.7 264 115 58.7 26.6 58.7 26.3 537 26.3 121 59.5 337 150 9.80 3.10 9.80 3.10	8.34 95.6 37.7 184 43.3 442	7.05 78.5 30.3 140 29.4	19.1	18.1	30.3	39.2	18.6	16.9	7.01	41.6	45.7	16.7	24.8	22.0	14.7
Dy 63.8 61.6 131 125 55.1 95.6 78.5 54.1 79.1 Ho 269 26.0 55.6 52.1 22.7 37.7 30.3 194 33.6 Fr 134 130 273 264 115 184 140 85.0 181 Tm 32.7 29.0 62.1 58.7 26.6 43.3 29.4 165 43.2 Tm 32.7 29.0 62.1 58.7 26.6 43.3 29.4 16.5 43.2 Tm 32.7 29.0 62.1 58.7 26.6 43.3 29.4 16.5 43.2 U 82.2 61.0 133 121 59.5 106 54.3 31.9 103 U 258 237 357 265 451 86.9 517 U 258 257 263 126 31.2 255 460 1.00	125 55.1 52.1 22.7 264 115 264 166 58.7 263 557 263 121 59.5 337 150 208 3.10 9.80 3.10	95.6 37.7 184 43.3 442	78.5 30.3 140 29.4	5.20	6.38	9.82	11.7	6.37	5.88	2.66	12.3	14.5	5.78	7.88	6.54	5.14
Ho 26.9 26.0 55.6 52.1 22.7 37.7 30.3 19.4 33.6 Er 134 130 273 264 115 184 140 85.0 181 Tm 32.7 29.0 62.1 58.7 26.6 43.3 29.4 16.5 43.2 Yb 330 281 598 557 26.6 43.3 29.4 16.5 43.2 Lu 82.2 61.0 133 121 59.5 106 54.3 31.9 103 U 82.2 61.0 133 121 59.5 106 54.3 31.9 103 U 258 255 185 208 124 35.2 467 103 Wb 4.20 4.17 367 33.10 2.56 40.2 369 Th 89.6 1170 367 370 266 103 103 Ta 2.560	 52.1 22.7 264 115 58.7 26.6 58.7 26.3 557 26.3 121 59.5 337 150 337 150 9.80 3.10 9.80 	37.7 184 43.3 442	30.3 140 29.4	54.1	79.1	112	128	73.7	71.4	41.0	128	155	70.6	85.9	69.0	63.1
Er13413027326411518414085.0181Tm32.729.062.158.726.643.329.416.543.2Yb330281598557263442265152447Lu82.261.013312159.510654.331.9103Th89.641736733715047545186.9517U25822518520812432226740.2369Nb4.204.005.609.803.102.504.601.008.50Nb4.201.201.201.002.000.900.801.401.70Hf904110051833994729745117689804821411356Y8518791805170376812739565631178Y8518791805170376812739565631178Th/U0.351.861.931602.002.002.002.062.161.40Th/U0.351.861.931671.211.471.692.161.40Y8518791805170376812739565631178Y1861.931601.602.002.002.002.062.161.40Th	264 115 58.7 26.6 557 263 121 59.5 337 150 208 124 9.80 3.10 7.00 0.90	184 43.3 442 106	140 29.4	19.4	33.6	41.8	48.4	30.0	29.7	20.7	44.7	58.1	29.6	33.0	24.8	25.3
Tin 32.7 29.0 62.1 58.7 26.6 43.3 29.4 16.5 43.2 Yb 330 281 598 557 263 442 265 152 447 Lu 82.2 61.0 133 121 59.5 106 54.3 31.9 103 Th 89.6 417 367 337 150 475 451 86.9 517 U 258 225 185 208 124 322 267 40.2 369 Nb 44.20 5.60 9.80 3.10 2.50 4.02 369 Th 256 1.20 1.00 2.90 0.90 0.80 1.40 1.70 Hf 9041 10051 8339 9472 9745 11768 9804 8214 11356 Y 851 879 1805 160 2.00 2.00 2.10 2.10 2.10 2.10<	58.7 26.6 557 26.3 557 263 121 59.5 337 150 208 124 9.80 3.10 7.00 0.90	43.3 442 106	29.4	85.0	181	193	205	148	155	132	196	259	145	149	104	123
Yb330281598557263442265152447Lu82.261.013312159.510654.331.9103Th89.641736733715047545186.9517U25822518520812432226740.2369Nb4.204.005.609.803.102.504.601.008.50Hf904110051833994729745117689804821411356Y8518791805170376812739565631178Y8518791805170376812739565631178Th/U0.351.861.9316076.002.002.002.005.60118Th/U0.351.861.981.621.211.471.692.161.40Th/U0.351.861.981.621.211.471.692.161.40Th/U0.351.861.981.621.211.471.692.161.40Th/U0.351.861.981.621.211.471.692.161.40Th/U0.351.861.981.621.211.471.692.161.40Th/U0.351.861.981.621.211.471.692.161.40	557 263 121 59.5 337 150 208 124 9.80 3.10 7.00 0.90	442		16.5	43.2	40.1	41.6	33.0	35.8	37.4	40.3	54.4	32.8	30.7	20.9	27.5
Lu 82.2 61.0 133 121 59.5 106 54.3 31.9 103 Th 89.6 417 367 337 150 475 451 86.9 517 U 258 225 185 208 124 322 267 40.2 369 Nb 4.20 4.00 5.60 9.80 3.10 2.50 4.60 1.00 8.50 Hf 9041 10051 8339 9472 9745 11768 9804 8214 11356 Y 851 879 1805 107 5.00 2.703 5.60 1.703 Y 851 879 1805 1703 768 1769 5.60 1.703 Y 851 8105 1805 167 5.60 1.703 1768 Y 851 1073 768 1768 9804 8214 11356 Y 2.90 1.32 <td>121 59.5 337 150 208 124 9.80 3.10</td> <td>106</td> <td>265</td> <td>152</td> <td>447</td> <td>365</td> <td>364</td> <td>310</td> <td>362</td> <td>410</td> <td>365</td> <td>473</td> <td>316</td> <td>280</td> <td>182</td> <td>269</td>	121 59.5 337 150 208 124 9.80 3.10	106	265	152	447	365	364	310	362	410	365	473	316	280	182	269
Th 89.6 417 367 337 150 475 451 86.9 517 U 258 225 185 208 124 322 267 40.2 369 Nb 4.20 4.00 5.60 9.80 3.10 2.50 4.60 1.00 8.50 Hf 9041 10051 8339 9472 9745 11768 9804 8214 1136 Y 851 879 1805 1703 768 1273 956 563 1178 Ti 2.90 6.30 13.2 10.7 6.00 2.00 956 563 1178 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZNU 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZNU 2.46 1.931 604	337 150 208 124 9.80 3.10	1 00	54.3	31.9	103	75.1	74.3	67.7	80.3	102	76.4	96.9	68.8	58.7	36.4	57.8
U 258 225 185 208 124 322 267 40.2 369 Nb 4.20 4.00 5.60 9.80 3.10 2.50 4.60 1.00 8.50 Hf 9041 10051 8339 9472 9745 11768 9804 8214 11356 Y 851 879 1805 1703 768 1273 956 563 1178 Ti 2.90 6.30 13.2 10.7 6.00 2.00 5.60 11.8 4.40 Th/U 0.35 1.86 1.93 1.61 1.47 1.69 2.16 1.40 ZHEE 724 746 1.331 604 1008 7.40 999	208 124 9.80 3.10	475	451	86.9	517	276	401	185	752	478	829	853	135	667	109	255
Nb 4.20 4.00 5.60 9.80 3.10 2.50 4.60 1.00 8.50 Hf 2.50 1.20 1.00 2.00 0.90 0.80 1.40 0.40 1.70 Hf 9041 10051 8339 9472 9745 11768 9804 8214 11356 Y 851 879 1805 1703 768 1273 956 563 1178 Ti 2.90 6.30 13.2 10.7 6.00 2.00 5.60 11.8 4.40 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZNHE 724 746 1434 1331 604 1008 710 449 999	9.80 3.10 2.00 0.90	322	267	40.2	369	170	160	166	429	380	330	474	137	328	54.2	219
Ta 2.50 1.20 1.00 2.00 0.90 0.80 1.40 0.40 1.70 Hf 9041 10051 8339 9472 9745 11768 9804 8214 11356 Y 851 879 1805 1703 768 1273 956 563 1178 Ti 2.90 6.30 13.2 10.7 6.00 2.00 5.60 11.8 4.40 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZREE 724 746 1434 1331 604 1008 710 449 999	0 0 0 0 0 0	2.50	4.60	1.00	8.50	4.20	5.30	5.10	6.80	10.3	6.60	12.5	5.00	4.90	1.70	4.70
Hf 9041 10051 8339 9472 9745 11768 9804 8214 11356 Y 851 879 1805 1703 768 1273 956 563 1178 Ti 2.90 6.30 13.2 10.7 6.00 2.00 5.60 11.8 4.40 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZREE 724 746 1434 1331 604 1008 710 449 999	00	0.80	1.40	0.40	1.70	1.30	1.40	1.60	1.80	1.80	2.30	3.20	1.70	1.70	0.60	1.40
Y 851 879 1805 1703 768 1273 956 563 1178 Ti 2.90 6.30 13.2 10.7 6.00 2.00 5.60 11.8 4.40 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZREE 724 746 1434 1331 604 1008 710 449 999	9472 9745	11768	9804	8214	11356	9519	8252	7777	11035	12929	8704	9264	9551	7066	8294	10267
Ti 2.90 6.30 13.2 10.7 6.00 2.00 5.60 11.8 4.40 Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZREE 724 746 1434 1331 604 1008 710 449 999 Control 202 203 203 203 203 203 203 203	1703 768	1273	956	563	1178	1302	1413	973	1045	861	1359	1760	934	1020	726	833
Th/U 0.35 1.86 1.98 1.62 1.21 1.47 1.69 2.16 1.40 ZREE 724 746 1434 1331 604 1008 710 449 999 Xourth 202 203 203 203 203 203	10.7 6.00	2.00	5.60	11.8	4.40	5.50	12.4	5.30	4.80	4.20	11.9	8.50	6.10	5.70	15.3	4.40
ZREE 724 746 1434 1331 604 1008 710 449 999 2017 <td>1.62 1.21</td> <td>1.47</td> <td>1.69</td> <td>2.16</td> <td>1.40</td> <td>1.62</td> <td>2.50</td> <td>1.12</td> <td>1.76</td> <td>1.26</td> <td>2.51</td> <td>1.80</td> <td>0.98</td> <td>2.04</td> <td>2.02</td> <td>1.16</td>	1.62 1.21	1.47	1.69	2.16	1.40	1.62	2.50	1.12	1.76	1.26	2.51	1.80	0.98	2.04	2.02	1.16
	1331 604	1008	710	449	666	957	1038	751	849	819	1068	1343	739	762	540	650
(SIII/La) 24.5 0.4.5 222 0.5.1 /4.5 481 5.5.1 0.00 5.00	631 74.3	481	35.1	0.00	5.66	450	541	0.00	17.4	22.1	437	2.96	0.00	386	223	306
Ce/Ce* 146 3.08 97.8 169 121 63.1 107 98.5 32.2	169 121	63.1	107	98.5	32.2	110	117	325	72.1	260	111	15.8	162	160	100	203
$T_{z_i}(^{\circ}C)$ 727 777 842 822 774 709 769 831 752	822 774	709	769	831	752	767	836	765	758	750	832	802	776	770	857	752

第40卷第1期

35

华南地质

		10 ⁻⁶	LA-ICP-M	8 zircon U-Pi	D ages of the	F Tangchi com	iplex	左 敷(N	[a]
样品点号	238 I I	232Th	232Th/238U	207 Db /235 I I	四位之	206 DL /238 I I	1.7	206Db /238L I	1a)
10TC16.1 辉绿羽	5世	111		PD/ U	10	PU/ U	10	PU/ U	10
191010-11年級以	J 在 100	128	1.40	0 1205	0.0128	0.0206	0.0005	121.6	2.1
191C10-1-01	292	120	1.49	0.1393	0.0138	0.0200	0.0003	131.0	2.1
191C10-1-02	163	192	0.90	0.1310	0.0022	0.0189	0.0004	120.7	2.5
191010-1-03	1011	101	0.90	0.1365	0.0098	0.0199	0.0004	120.9	1.5
191C16-1-04	515	219	2.47	0.1255	0.0079	0.0191	0.0002	122.2	1.5
191016-1-05	211	318	1.62	0.2393	0.0180	0.0198	0.0004	120.4	2.3
191016-1-06	241	268	0.90	0.1460	0.0086	0.0210	0.0004	133./	2.2
191016-1-07	169	132	1.28	0.2137	0.0172	0.0222	0.0005	141.7	3.2
191C16-1-08	197	162	1.21	0.1368	0.0102	0.0207	0.0004	132.4	2.4
191C16-1-09	587	242	2.43	0.1502	0.0140	0.0213	0.0007	135.8	4.4
191C16-1-10	175	163	1.08	0.1408	0.0102	0.0204	0.0004	129.9	2.4
19TC16-1-11	225	148	1.52	0.1362	0.0102	0.0204	0.0004	129.9	2.4
19TC16-1-12	209	164	1.28	0.1397	0.0134	0.0209	0.0004	133.1	2.7
19TC16-1-13	95.0	102	0.93	0.1299	0.0131	0.0204	0.0005	129.9	3.0
19TC16-1-14	432	308	1.41	0.1388	0.0089	0.0204	0.0003	130.0	1.9
19TC16-1-15	273	214	1.27	0.1277	0.0081	0.0197	0.0004	125.5	2.3
19TC16-1-16	620	337	1.84	0.1834	0.0327	0.0256	0.0038	163.0	23.7
19TC16-1-17	322	216	1.49	0.1539	0.0240	0.0220	0.0005	140.1	3.0
19TC16-1-18	342	519	0.66	0.1399	0.0069	0.0201	0.0002	128.4	1.5
19TC16-1-19	207	141	1.47	0.1401	0.0104	0.0201	0.0004	128.2	2.7
19TC16-1-20	554	286	1.94	0.1504	0.0085	0.0212	0.0003	135.3	2.1
19TC20-1正长花	达岗岩								
19TC20-1-01	1419	740	1.92	0.2336	0.0091	0.0211	0.0003	134.4	1.6
19TC20-1-02	765	366	2.09	0.1369	0.0093	0.0196	0.0003	125.0	2.2
19TC20-1-03	921	657	1.40	0.1385	0.0062	0.0201	0.0003	128.5	1.6
19TC20-1-04	968	261	3.71	0.2522	0.0244	0.0196	0.0004	125.0	2.3
19TC20-1-05	141	137	1.03	0.1428	0.0150	0.0220	0.0006	140.2	3.6
19TC20-1-06	1407	768	1.83	0.1221	0.0052	0.0187	0.0002	119.4	1.3
19TC20-1-07	455	222	2.05	0.1441	0.0133	0.0205	0.0003	131.0	2.1
19TC20-1-08	932	300	3.10	0.4110	0.0230	0.0220	0.0003	140.5	2.2
19TC20-1-09	485	181	2.68	0.2134	0.0143	0.0198	0.0004	126.2	2.3
19TC20-1-10	985	333	2.96	0.1489	0.0091	0.0213	0.0004	135.6	2.2
19TC20-1-11	380	303	1.25	0.1384	0.0080	0.0199	0.0003	127.3	2.0
19TC20-1-12	1076	273	3.94	0.1285	0.0125	0.0192	0.0006	122.5	4.1
19TC20-1-13	328	192	1.71	0.1444	0.0093	0.0206	0.0005	131.7	2.9
19TC20-1-14	439	319	1.38	0.1433	0.0072	0.0203	0.0003	129.8	1.9
19TC20-1-15	763	259	2.95	0.1398	0.0104	0.0201	0.0004	128.6	2.2
19TC20-1-16	414	302	1.37	0.1416	0.0085	0.0204	0.0003	130.5	1.8
19TC20-1-17	738	504	1.46	0.1332	0.0069	0.0191	0.0002	122.0	1.5
19TC20-1-18	657	284	2.31	0.6606	0.0261	0.0250	0.0005	159.5	3.1
19TC20-1-19	190	145	1.31	0.1312	0.0097	0.0193	0.0004	122.9	2.6
19TC20-1-20	461	212	2.17	0.1388	0.0099	0.0203	0.0004	129.3	2.5

表2 汤池岩体 LA-ICP-MS 锆石 U-Pb 同位素分析结果 Table 2 LA-ICP-MS zircon U-Pb ages of the Tangchi comj

续表2

부 다 는 다	$\omega^{/\times}$	<10-6	232 -11 /2381 1		同位詞	素比值		年龄(M	(a)
件面点亏	238U	²³² Th	252 I h/256 U	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	206Pb/238U	1σ
19TC21-1 正长斑	胚岩								
19TC21-1-01	89.6	258	0.35	0.1442	0.0137	0.0208	0.0004	132.6	2.6
19TC21-1-02	417	225	1.86	0.1381	0.0094	0.0198	0.0004	126.6	2.3
19TC21-1-03	367	185	1.98	0.1292	0.0100	0.0186	0.0004	118.6	2.3
19TC21-1-04	337	208	1.62	0.1412	0.0090	0.0203	0.0004	129.5	2.4
19TC21-1-05	150	124	1.21	0.3134	0.0197	0.0202	0.0004	129.0	2.6
19TC21-1-06	475	322	1.47	0.1283	0.0081	0.0198	0.0003	126.4	2.0
19TC21-1-07	451	267	1.69	0.1341	0.0076	0.0196	0.0003	124.9	1.9
19TC21-1-08	86.9	40.2	2.16	0.1376	0.0153	0.0199	0.0007	127.1	4.1
19TC21-1-09	517	369	1.40	0.1332	0.0067	0.0191	0.0003	122.1	1.7
19TC21-1-10	276	170	1.62	0.1225	0.0103	0.0191	0.0004	121.8	2.2
19TC21-1-11	401	160	2.50	0.1392	0.0100	0.0202	0.0004	128.9	2.5
19TC21-1-12	185	166	1.12	0.1320	0.0081	0.0196	0.0003	125.1	2.1
19TC21-1-13	752	429	1.76	0.1299	0.0060	0.0187	0.0003	119.3	1.7
19TC21-1-14	478	380	1.26	0.1366	0.0067	0.0196	0.0003	124.9	1.7
19TC21-1-15	829	330	2.51	0.1308	0.0076	0.0190	0.0003	121.2	1.7
19TC21-1-16	853	474	1.80	0.1269	0.0065	0.0188	0.0002	119.8	1.5
19TC21-1-17	135	137	0.98	0.1275	0.0099	0.0190	0.0004	121.6	2.4
19TC21-1-18	667	328	2.04	0.1300	0.0076	0.0187	0.0003	119.5	1.7
19TC21-1-19	109	54.2	2.02	0.1313	0.0190	0.0189	0.0006	120.4	3.9
19TC21-1-20	255	219	1.16	0.1300	0.0080	0.0188	0.0003	119.8	1.8

长宽比约1:1~2:1。在三者的锆石CL图像中,均能 观察到明显的振荡环带,表明其为岩浆成因(图3)。 所有岩性中的锆石具有较高的Th/U比值(0.35~ 3.94),明显富集轻稀土而亏损重稀土(表1)。在 La-(Sm/La)_N和(Sm/La)_N-Ce/Ce*图解(图4)中,大部分 锆石数据点落入或接近岩浆锆石区域,远离热液锆 石区域。以上特征表明汤池岩体所测锆石颗粒均为 岩浆锆石(吴元保和郑永飞, 2004; Hoskin, 2005)。

辉绿玢岩中的锆石共测定20个数据点,大多落 在谐和线上或附近,其中14个数据点计算得出²⁰⁶Pb/ ²³⁸U加权平均年龄为130.3±1.7 Ma(MSWD=1.6) (图 5a, 5b),代表岩浆结晶年龄。7、9、16、17号锆石 的²⁰⁶Pb/²³⁸U年龄分别为141.7±3.2 Ma、135.8±4.4 Ma、163.0±23.7 Ma和140.1±3.0 Ma,在谐和图上较 为分散,不见继承核,表明其可能为捕获锆石。2、4号 数据点的谐和度较低,未参与加权平均年龄计算。

正长花岗岩锆石共测定20个数据点,其中11 个数据点谐和度较高,计算得出²⁰⁶Pb/²³⁸U加权平均 年龄为128.4±1.7 Ma(MSWD=1.4)(图 5c, 5d)。4、8 和18号数据点的谐和度较低,未参与加权平均年 龄计算;6、12、17、19号数据点的²⁰⁶Pb/²³⁸U年龄分别 为119±1.3 Ma、122.5±4.1 Ma、122.0±1.5 和122.9± 2.6 Ma,低于加权平均年龄,可能与后期热液事件 中Pb丢失有关,故未参与加权平均年龄计算;8、10 号数据点的²⁰⁶Pb/²³⁸U年龄分别为140.5±2.2 Ma 和 126.2±2.3 Ma,不见继承核,可能为捕获锆石。

正长斑岩锆石共测定 20个数据点,大多数落 在谐和线上或附近,其中 17个数据点计算得出 ²⁰⁶Pb/²³⁸U加权平均年龄122.3±1.5 Ma(MSWD=2.2) (图 5e, 5f)。1、5、6号数据点的²⁰⁶Pb/²³⁸U年龄分别为 132.6±2.6 Ma、129.0±2.6和126.4±2.0 Ma,高于加权 平均年龄,不见继承核,可能为捕获锆石。

4.2 岩石地球化学

北淮阳东段汤池辉绿玢岩、正长花岗岩、石英 正长岩及正长斑岩的主、微量元素分析结果见表 3。其中辉绿玢岩的SiO2含量为45.23~56.92 wt.%, 全碱含量中等(Na₂O+K₂O=5.24~8.04 wt.%),富 MgO (MgO=2.92~6.06 wt.%; Mg[#]=41~55)、CaO (4.84~8.24 wt.%)和Al₂O₃(15.06~16.34 wt.%)。

正长花岗岩富硅(SiO₂=73.71~77.25 wt.%)、富 wt.%, FeO^T/MgO=7.20~22.0)。

碱 (Na₂O + K₂O=7.97~9.34 wt.%, K₂O/Na₂O=1.06~ 1.15), 贫 镁 (MgO=0.05~0.20 wt.%) 和 钙 (CaO= 0.15~0.80 wt.%), 全铁含量为 (TFe₂O₃=1.10~1.75 wt.%, FeO^T/MgO=7.20~22.0)。

a 19TC20-1(正长花岗岩)	100 µm
$\underbrace{\bigcirc}_{c_{\rm int}(t)=-22.5} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.7} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.9} \underbrace{\bigcirc}_{c_{\rm int}(t)=-5.0} \underbrace{\bigcirc}_{c_{\rm int}(t)=-22.1} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.4} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.7} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.7} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.7} \underbrace{\bigcirc}_{c_{\rm int}(t)=-21.7} \underbrace{\frown}_{c_{\rm int}(t$	$\bigotimes_{\epsilon_{\rm Hf}(t)=-5.2 \\ 140.5 \pm 2.2 \text{ Ma}}$
$\underbrace{(1)_{c_{11}}(1)=-22.2}_{c_{11}},\underbrace{(1)_{c_{11}}(1)=-3.5}_{c_{11}},\underbrace{(1)_{c_{11}}(1)=-21.0}_{c_{11}},\underbrace{(1)_{c_{11}}(1)=-4.9}_{c_{11}},\underbrace{(1)_{c_{11}}(1)=-20.6}_{c_{11}},\underbrace{(1)_{c_{11}}(1)=-21.6}_{c_{11}},(1)_$	Q(t)=-21.6 28.6±2.2 Ma
b 19TC21-1(正长斑岩)	100 µm
$\varepsilon_{\text{Hr}}(t)$ =-19.7 $\varepsilon_{\text{Hr}}(t)$ =-19.6 $\varepsilon_{\text{Hr}}(t)$ =-22.4 $\varepsilon_{\text{Hr}}(t)$ =-23.3 $\varepsilon_{\text{Hr}}(t)$ =-19.2 $\varepsilon_{\text{Hr}}(t)$ =-20.7 $\varepsilon_{\text{Hr}}(t)$ =-132.6±2.6 Ma 126.6±2.3 Ma 118.6±2.3 Ma 129.5±2.4 Ma 129.0±2.6 Ma 126.4±2.0 Ma 124.9±1	6.6 $\varepsilon_{\text{Hf}}(t)$ =-19.6 9 Ma 127.1±4.1 Ma
0000000000000	
$\varepsilon_{\rm Hr}(t)$ =-19.6 $\varepsilon_{\rm Hr}(t)$ =-19.7 $\varepsilon_{\rm Hr}(t)$ =-19.7 $\varepsilon_{\rm Hr}(t)$ =-19.7 $\varepsilon_{\rm Hr}(t)$ =-19.2 $\varepsilon_{\rm Hr}(t)$ =-20.2 $\varepsilon_{\rm Hr}(t)$ =-122.1 ± 1.7 Ma 121.8 ± 2.2 Ma 128.9 ± 2.5 Ma 125.1 ± 2.1 Ma 119.3 ± 1.7 Ma 124.9 ± 1.7 Ma 121.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 \pm	-19.0 ±1.7 Ma
C 19TC16-1 (辉绿玢岩) $c_{ur}(t)=-2.9$ $c_{ur}(t)=-4.0$ $c_{ur}(t)=-16.4$ $c_{ur}(t)=-20.4$ $c_{ur}(t)=-4.8$ $c_{ur}(t)=-4.5$ $c_{ur}(t)=-4.2$ 131.6±3.1 Ma 120.7±2.5 Ma 126.9±2.2 Ma 122.2±1.5 Ma 141.7±3.2 Ma 126.4±2.3 Ma 133.7±2.2 Ma	$\varepsilon_{\rm iff}(t) = -5.6$ 132.4±2.4 Ma
	0
$\varepsilon_{\rm int}(t) = -4.6$ $\varepsilon_{\rm int}(t) = -5.0$ $\varepsilon_{\rm int}(t) = -5.5$ $\varepsilon_{\rm int}(t) = -4.6$ $\varepsilon_{\rm int}(t) = -4.6$ 135.8 ± 4.4 Ma 129.9 ± 2.4 Ma 129.9 ± 2.4 Ma 133.1 ± 2.7 Ma 129.9 ± 3.0 Ma 130.0 ± 1.9 Ma	S _{Hr} (<i>t</i>)=-4.1 125.5±2.3 Ma 100 μm

图3 汤池岩体锆石阴极发光(CL)图像

Fig. 3 Cathodoluminescence images of zircons from the Tangchi complex 实线白色圈代表锆石测年点位置,虚线白色圈代表Hf同位素测点位置

底图修改自Hoskin(2005); 球粒陨石标准化值据Sun and McDonough (1989)

石英正长岩的 SiO₂含量较高(SiO₂=68.77~ 69.07 wt.%),相对富碱(全碱含量为10.11~10.42 wt.%)和铁(TFe₂O₃=2.35~2.41 wt.%),贫镁和钙 (MgO=0.39~0.42 wt.%,CaO=1.00~1.06 wt.%)。 含量(9.52~10.23 wt.%)略高于正长花岗岩,但 MgO(1.07~1.27 wt.%)和CaO(1.80~2.30 wt.%)含 量较低,相比正长花岗岩和石英正长岩,其TFe₂O₃ 含量(3.43~4.06 wt.%)更高。

正长斑岩 SiO2含量为 62.44~66.24 wt.%, 全碱

在R₁-R₂分类图解(图 6a)中,辉绿玢岩样品被

														-																				
	19TC21-1	正长斑岩	66.24	0.43	15.09	3.43	0.01	0.08	1.27	1.80	4.24	5.28	0.23	<0.01	0.21	0.06	1.10	0.95	1.19	9.52	828	12.5	2.95	5.53	47.1	28.5	6.16	10.1	4.6	35.2	17.1	143	544	24
	19TC19-1	正长斑岩	62.44	0.56	16.85	4.06	<0.01	0.10	1.07	2.30	4.60	5.63	0.31	<0.01	0.23	0.07	1.23	0.94	1.23	10.23	892	9.91	2.94	6.39	45.3	7.08	4.92	3.07	1.77	50.6	18.0	121	553	28.4
	19TC26-1	石英正长岩	69.07	0.31	15.36	2.35	<0.01	0.08	0.42	1.00	4.57	5.78	0.08	<0.01	0.09	0.03	0.63	0.99	1.12	10.35	928	6.52	5.49	4.29	21.4	8.62	1.95	1.98	3.49	37.7	19.2	196	235	32.0
	19TC25-1	石英正长岩	68.77	0.30	15.12	2.41	<0.01	0.08	0.39	1.06	4.40	5.61	0.09	<0.01	0.08	0.03	1.00	0.99	1.14	10.01	903	6.41	4.60	3.76	21.0	8.87	1.94	2.35	2.45	49.9	18.4	175	226	30.5
i complex	19TC22-1	正长花岗岩	74.05	0.18	13.66	1.58	0.01	0.04	0.13	0.44	4.53	4.81	0.02	0.05	0.11	0.02	0.46	1.02	1.08	9.34	854	4.53	4.47	1.88	6.92	15.6	0.70	1.90	1.11	17.2	16.8	183	125	19.9
f the Tangchi	19TC21-3	E 长花岗岩]	74.38	0.16	12.91	1.44	0.03	0.04	0.20	0.69	4.08	4.56	0.03	0.10	0.23	0.02	0.79	1.00	1.11	8.64	820	3.56	3.73	2.25	8.26	13.3	0.82	1.93	2.18	29.8	16.9	152	129	12.00
it contents of	19TC21-2	E长花岗岩 J	76.14	0.07	12.42	1.56	<0.01	0.03	0.17	0.80	3.84	4.13	0.01	0.11	0.26	0.03	0.65	1.01	1.15	7.97	776	2.38	1.00	0.89	4.18	18.1	0.91	1.95	2.32	14.2	12.5	90.8	250	4.37
l trace elemei	19TC20-1	E长花岗岩 J	77.25	0.07	12.31	1.10	<0.01	0.02	0.05	0.15	3.91	4.47	0.01	<0.01	<0.01	0.01	0.54	1.07	1.09	8.38	804	2.41	5.11	2.07	3.05	9.24	0.41	1.78	0.85	16.7	17.5	236	70.8	7.68
ck major and	19TC19-3	正长花岗岩]	77.17	0.09	12.40	1.11	<0.01	0.04	0.07	0.50	3.95	4.53	0.01	<0.01	<0.01	0.01	0.45	1.01	1.09	8.48	677	4.83	4.07	1.54	4.67	11.6	0.49	1.92	0.70	13.7	17.1	198	43.1	6.70
3 Whole ro	19TC18-1	正长花岗岩	73.71	0.17	13.42	1.75	<0.01	0.09	0.17	0.43	3.90	5.07	0.04	<0.01	0.04	0.02	0.63	1.06	1.13	8.97	857	4.69	4.94	2.73	11.2	6.86	0.92	2.48	1.69	43.6	17.8	201	152	15.8
Table	19TC16-3	辉绿玢岩	50.30	1.49	15.06	8.74	0.02	0.17	6.06	4.84	3.50	4.54	1.06	0.14	0.33	0.08	2.98			8.04		34.7	2.76	18.7	169	129	25.5	9.99	31.6	89.2	17.9	123	580	29
	19TC23-1	辉绿玢岩	56.92	0.93	15.50	5.72	0.03	0.11	3.80	5.67	2.69	4.03	0.47	<0.01	0.24	0.12	3.64			6.72		26.9	2.08	11.7	101	134	18.7	74.8	23.9	63.6	18.4	68.7	1000	22.9
	19TC19-2	辉绿玢岩	45.23	1.49	15.17	11.58	0.02	0.18	5.43	8.24	2.32	2.92	0.96	0.85	0.33	0.15	5.23			5.24		35.9	1.33	28.6	287	49.7	33.7	20.0	46.1	106	19.0	91.1	1205	30.8
	19TC16-1	辉绿玢岩	52.28	1.18	16.34	7.38	0.01	0.12	2.92	6.21	2.27	5.11	0.77	0.02	0.37	0.14	4.45			7.38		27.5	1.93	12.8	148	21.4	18.5	20.5	30.0	86.8	20.6	131	1197	28.7
	样号	岩性	SiO_2	TiO_2	Al_2O_3	TFe_2O_3	Cr_2O_3	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	SO_3	BaO	SrO	IOI	A/CNK	A/NK	Na ₂ O+K ₂ O	$(\mathcal{D})_{\mathrm{Zr}}$	Li	Be	Sc	Λ	Cr	Co	Ni	Cu	Zn	Ga	Rb	\mathbf{Sr}	Υ

40

表3 汤池岩体全岩主量(wt.%)和微量元素(x10°)分析结果

华南地质

2024 年

9TC16-1	19TC19-2	19TC23-1	19TC16-3	19TC18-1	19TC19-3	19TC20-1	19TC21-2	19TC21-3	19TC22-1	19TC25-1	19TC26-1	19TC19-1	19TC21-1
分出	辉绿玢岩	辉绿玢岩	辉绿玢岩	正长花岗岩	正长花岗岩	正长花岗岩	正长花岗岩	正长花岗岩	正长花岗岩	石英正长岩	石英正长岩	正长斑岩	正长斑岩
2	188	305	278	181	102	109	107	156	185	363	426	519	268
1	10.5	13.3	23.5	27.5	26.6	29.2	2.69	28.6	40.9	31.6	35.4	28.3	26.5
33	1.34	1.24	1.48	1.70	0.77	1.02	0.25	1.29	2.14	2.01	2.29	1.59	1.49
31	2.58	2.08	0.73	1.28	0.58	1.04	0.63	0.76	0.77	1.89	1.77	0.78	1.48
52	2778	1962	2748	465	79.0	94.7	840	349	166	787	790	1914	1796
Ξ	84.3	65.1	104	66.0	38.9	27.2	24.7	60.7	54.6	121	174	137	84
11	178	126	206	108	55.3	41.7	45.8	93.8	93.9	222	303	252	156
8.7	21.7	14.6	24.0	9.60	4.02	3.38	4.36	7.83	8.1	23.0	29.5	26.2	16.4
8.2	88.2	51.1	90.2	29.1	9.79	9.04	14.3	22.3	22.8	70.2	89.4	89.3	52.8
0.8	15.3	10.0	14.8	4.47	1.3	1.36	1.99	3.31	3.96	11.1	12.5	13.2	9.32
04	3.72	2.20	3.39	0.65	0.18	0.12	0.65	0.52	0.33	1.44	1.45	2.56	1.63
60	10.5	6.84	10.0	2.91	0.92	0.94	1.07	2.21	2.62	6.85	7.21	8.20	5.68
.04	1.19	0.92	1.10	0.43	0.12	0.14	0.13	0.31	0.46	0.94	0.99	1.01	0.79
83	6.46	5.02	6.12	2.51	0.72	0.97	0.74	1.98	3.2	5.42	5.99	5.86	4.72
.01	1.10	0.87	1.00	0.48	0.17	0.21	0.15	0.39	0.63	1.01	1.13	1.02	0.86
8.	2.93	2.11	2.75	1.59	0.70	0.77	0.44	1.17	1.84	2.94	3.16	2.76	2.21
38	0.38	0.32	0.42	0.29	0.14	0.17	0.09	0.22	0.35	0.46	0.50	0.44	0.37
35	0.42	2.07	0.38	2.02	1.31	1.41	0.7	1.76	2.52	3.09	3.37	2.86	2.46
35	0.36	0.3	0.34	0.33	0.25	0.28	0.12	0.31	0.39	0.49	0.54	0.45	0.39
91	4.86	7.8	6.49	6.2	4.81	5.89	3.86	5.86	7.4	9.98	11.8	12.4	7.57
96	0.48	0.78	1.21	1.35	1.17	1.41	0.24	1.42	2.34	1.98	2.21	1.45	1.68
86	0.34	0.38	6.49	1.43	0.94	1.53	0.52	1.03	1.04	1.16	1.21	0.67	0.83
9.3	0.36	22.0	4.86	37.3	25.3	25.5	16.6	38.6	16.5	41	32.2	13.3	18.3
0.7	0.34	9.74	6.49	34.9	38.9	43.7	10	34.2	32.5	51.2	51.2	23.4	22.4
.72	0.36	1.67	4.86	4.01	8.04	4.24	1.54	3.78	3.62	6.54	7.05	3.50	3.67
73	415	287	465	228	114	87.7	95.2	197	196	470	633	543	338
80	0.85	0.77	0.80	0.52	0.48	0.31	1.23	0.55	0.29	0.47	0.43	0.70	0.63
4.	23.9	21.9	26.6	24.5	29.9	17.2	29.5	29.7	16.8	28.3	37.4	33.5	24.4
2.0	21.9	17.1	19.4	20.4	22.7	20.7	11.2	20.1	17.5	16.0	16.0	19.5	15.8
7.4	47.5	18.3	32.1	5.63	5.29	3.85	3.92	6.15	5.83	4.95	4.36	6.47	9.62
19	0.12	0.20	0.23	0.42	0.68	1.07	0.11	0.47	0.75	0.26	0.20	0.21	0.32
1.7	39.1	43.7	20.0	9.62	6.43	9.22	57.2	10.8	6.28	7.41	7.34	19.5	22.7

第40卷第1期

朱志鹏等:大别造山带汤池早白垩世富碱侵入岩成因及地质意义

41

归类为辉长岩类和闪长岩类,其它样品与岩相学 观察结果基本一致。在SiO₂-K₂O图解(图6b)中, 辉绿玢岩、石英正长岩和正长斑岩样品均落在橄 榄粗玄岩系列,而正长花岗岩则落在高钾钙碱性 系列。在A/CNK-A/NK图解(图6c)中,正长花岗 岩、石英正长岩和正长斑岩的铝饱和指数(A/CNK)为0.94~1.07,属于准铝质-弱过铝质系列。 在 K₂O-Na₂O 图解(图 6d)中,除一个辉绿玢岩样 品落在高钾质岩石系列外,其余样品均属于钾质 岩石系列。

Fig. 6 Major elements discrimination diagrams of the Tangchi complex

a. R₁-R₂分类图解(底图据 De la Roche et al., 1980); b. SiO₂-K₂O判别图解(底图据 Peccerillo and Taylor, 1976); c. A/CNK-A/NK判别图解 (底图据 Maniar and Piccoli, 1989); d. K₂O-Na₂O判别图解(底图据 Middlemost, 1975)

辉绿玢岩的稀土元素总量较高(287×10°~473×10°), 富集轻稀土,其稀土分馏相对较为明显(La_N/Yb_N= 21.9~31.4)。球粒陨石标准化REE配分曲线整体呈右 倾模式(图7a),具弱的Eu负异常(δEu=0.77~0.85)。 岩石相对富集大离子亲石元素(如Rb、Ba、Th、U和K 等),亏损高场强元素(如Nb、Ta、Zr和Hf等),具明显 的"Nb-Ta"槽和"Ti、Sr、P谷"特征(图7b)。辉绿玢岩具 有高的Nb/Ta(17.1~22.0)和Ti/Zr比值(17.4~47.5), 以及低的Nb/La比值(0.12~0.23)(表3)。

相较于石英正长岩(470×10°~633×10°)和正长 斑岩(338×10°~543×10°),正长花岗岩具有更低的 稀土元素总量(87.7×10°~228×10°)。这些岩石的球 粒陨石标准化稀土配分曲线均呈右倾模式,轻重稀 土分馏明显(La_N/Yb_N=16.8~37.4),多数样品显示 弱到中等的Eu负异常(*δ*Eu=0.29~0.70),其中部分 正长斑岩样品呈现微弱的Eu正异常(图7c)。在原 始地幔标准化微量元素蛛网图解中(图7d),岩石 相对富集大离子亲石元素(如Rb、K、Th、U等),而 高场强元素(如Nb、Ta、Zr等)表现为明显的亏损, 同时还具Ba、Sr、P和Ti负异常。这些岩石具有变化的Nb/Ta(11.2~22.7)和Sr/Y比值(6.28~57.2),以及低的Ti/Zr比值(3.85~9.62)(表3)。

球粒陨石标准化值和原始地幔标准化值据Sun and McDonough(1989)

4.3 锆石 Lu-Hf 同位素结果

锆石 Lu-Hf 同位素分析结果见表4。所有样品的¹⁷⁶Lu/¹⁷⁷Hf比值均小于0.004,表明岩体形成之后锆石几乎没有积累放射性成因的Hf元素,因此测定得到的¹⁷⁶Hf/¹⁷⁷Hf比值基本可以代表其形成过程中Hf同位素的组成特征。辉绿玢岩大多数锆石的¹⁷⁶Hf/¹⁷⁷Hf比值为0.282513~0.282613,ε_{Hf}(t)值为-6.4~-2.9,具有中元古代二阶段模式年龄(*T*_{DM2}=1214~1409 Ma)。而其中的两颗锆石具有更低的¹⁷⁶Hf/¹⁷⁷Hf比值(分别为

0.282115 和 0.282229) 和 $\varepsilon_{\rm Hf}(t)$ 值(分别为-16.4 和-20.4),以及更高的二阶段模式年龄(分别为 1962 Ma和2181 Ma)。与辉绿玢岩相比,正长花 岗岩和正长斑岩中的大多数锆石具有更低的 ¹⁷⁶Hf/¹⁷⁷Hf 比值(0.282041~0.282228) 和 $\varepsilon_{\rm Hf}(t)$ 值 (-23.3~-16.6) 和更高的二阶段模式年龄($T_{\rm DM2}$ = 1966~2332 Ma)。然而,正长花岗岩中的四颗锆石 却显示出更高的锆石¹⁷⁶Hf/¹⁷⁷Hf 比值(0.282550~ 0.282600)和 $\varepsilon_{\rm Hf}(t)$ 值(-5.2~-3.5)(表4)。

华南地质

表4 汤池岩体锆石Lu-Hf同位素分析结果

Table 4 Zircon Lu-Hf isotopic compositions of the Tangchi complex

样品点号	¹⁷⁶ Yb/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	$\varepsilon_{\text{Hf}}(0)$	$\boldsymbol{arepsilon}_{\mathrm{Hf}}(t)$	t _{DM1} (Ma)	t _{DM2} (Ma)	$f_{\rm Lu/Hf}$
19TC16-1 辉绿	玢岩										
19TC16-1-01	0.059730	0.000347	0.002027	0.000015	0.282613	0.000030	-5.6	-2.9	930	1214	-0.94
19TC16-1-02	0.050218	0.000806	0.002086	0.000042	0.282581	0.000034	-6.7	-4.0	977	1276	-0.94
19TC16-1-03	0.049804	0.000318	0.001699	0.000014	0.282229	0.000024	-19.2	-16.4	1469	1962	-0.95
19TC16-1-04	0.022009	0.000049	0.000857	0.000004	0.282115	0.000019	-23.3	-20.4	1596	2181	-0.97
19TC16-1-05	0.075641	0.001187	0.003006	0.000056	0.282569	0.000026	-7.2	-4.5	1021	1305	-0.91
19TC16-1-06	0.037431	0.000049	0.001274	0.000006	0.282572	0.000019	-7.1	-4.2	969	1290	-0.96
19TC16-1-07	0.029263	0.000109	0.001231	0.000003	0.282556	0.000028	-7.6	-4.8	991	1322	-0.96
19TC16-1-08	0.034828	0.000102	0.001188	0.000000	0.282535	0.000021	-8.4	-5.6	1020	1363	-0.96
19TC16-1-09	0.019717	0.000082	0.000717	0.000001	0.282560	0.000015	-7.5	-4.6	972	1312	-0.98
19TC16-1-10	0.061190	0.000319	0.002102	0.000006	0.282552	0.000023	-7.8	-5.0	1021	1335	-0.94
19TC16-1-11	0.038893	0.000219	0.001397	0.000003	0.282537	0.000020	-8.3	-5.5	1022	1359	-0.96
19TC16-1-12	0.052396	0.000119	0.001849	0.000002	0.282563	0.000023	-7.4	-4.6	997	1311	-0.94
19TC16-1-13	0.025451	0.000147	0.000919	0.000001	0.282562	0.000016	-7.4	-4.6	974	1309	-0.97
19TC16-1-14	0.055940	0.000419	0.001901	0.000006	0.282513	0.000024	-9.2	-6.4	1070	1409	-0.94
19TC16-1-15	0.104362	0.000880	0.003483	0.000037	0.282581	0.000025	-6.8	-4.1	1017	1284	-0.9
19TC20-1 正长	花岗岩										
19TC20-1-01	0.061277	0.000419	0.002137	0.000013	0.282062	0.000024	-25.1	-22.5	1727	2290	-0.94
19TC20-1-02	0.054166	0.000773	0.002076	0.000027	0.282085	0.000023	-24.3	-21.7	1692	2247	-0.94
19TC20-1-03	0.096078	0.000478	0.003252	0.000013	0.282080	0.000027	-24.5	-21.9	1754	2260	-0.9
19TC20-1-04	0.027628	0.000139	0.001032	0.000005	0.282554	0.000019	-7.7	-5.0	988	1326	-0.97
19TC20-1-05	0.037831	0.000228	0.001632	0.000012	0.282071	0.000019	-24.8	-22.1	1691	2271	-0.95
19TC20-1-06	0.051614	0.000375	0.001862	0.000008	0.282093	0.000022	-24	-21.4	1669	2229	-0.94
19TC20-1-07	0.038107	0.000249	0.001337	0.000007	0.282082	0.000022	-24.4	-21.7	1662	2249	-0.96
19TC20-1-08	0.057326	0.000723	0.002242	0.000019	0.282550	0.000015	-7.9	-5.2	1027	1341	-0.93
19TC20-1-09	0.056161	0.000132	0.001724	0.000009	0.282069	0.000018	-24.9	-22.2	1698	2275	-0.95
19TC20-1-10	0.075416	0.000640	0.002647	0.000013	0.282600	0.000030	-6.1	-3.5	965	1244	-0.92
19TC20-1-11	0.112216	0.000685	0.003384	0.000013	0.282107	0.000026	-23.5	-21.0	1721	2209	-0.9
19TC20-1-12	0.079364	0.000338	0.002780	0.000007	0.282561	0.000023	-7.5	-4.9	1027	1322	-0.92
19TC20-1-13	0.051897	0.000991	0.002236	0.000046	0.282116	0.000024	-23.2	-20.6	1654	2186	-0.93
19TC20-1-14	0.048895	0.000601	0.001602	0.000018	0.282086	0.000019	-24.2	-21.6	1667	2241	-0.95
19TC20-1-15	0.050419	0.001326	0.001693	0.000048	0.282085	0.000019	-24.3	-21.6	1673	2243	-0.95
19TC21-1正长	斑岩										
19TC21-1-01	0.040982	0.000085	0.001692	0.000005	0.282141	0.000018	-22.3	-19.7	1594	2136	-0.95
19TC21-1-02	0.028579	0.000111	0.001062	0.000007	0.282144	0.000019	-22.2	-19.6	1564	2130	-0.97
19TC21-1-03	0.061288	0.000886	0.002172	0.000028	0.282068	0.000023	-24.9	-22.4	1720	2281	-0.93
19TC21-1-04	0.053199	0.000241	0.001854	0.000009	0.282041	0.000024	-25.9	-23.3	1743	2332	-0.94
19TC21-1-05	0.035941	0.000370	0.001274	0.000011	0.282155	0.000019	-21.8	-19.2	1558	2109	-0.96
19TC21-1-06	0.034650	0.000240	0.001358	0.000004	0.282114	0.000015	-23.3	-20.7	1618	2188	-0.96
19TC21-1-07	0.028490	0.000215	0.000980	0.000009	0.282228	0.000018	-19.2	-16.6	1443	1966	-0.97
19TC21-1-08	0.029862	0.000285	0.001045	0.000008	0.282143	0.000019	-22.3	-19.6	1565	2131	-0.97
19TC21-1-09	0.045162	0.000537	0.001518	0.000021	0.282145	0.000019	-22.2	-19.6	1582	2129	-0.95
19TC21-1-10	0.029527	0.000274	0.001036	0.000012	0.282142	0.000018	-22.3	-19.7	1566	2133	-0.97
19TC21-1-11	0.034230	0.000543	0.001373	0.000020	0.282142	0.000016	-22.3	-19.7	1580	2135	-0.96
19TC21-1-12	0.054508	0.000950	0.001827	0.000035	0.282218	0.000021	-19.6	-17.0	1491	1989	-0.94
19TC21-1-13	0.028877	0.000081	0.000953	0.000002	0.282155	0.000019	-21.8	-19.2	1543	2106	-0.97
19TC21-1-14	0.020720	0.000188	0.000721	0.000005	0.282126	0.000016	-22.8	-20.2	1574	2162	-0.98
19TC21-1-15	0.020595	0.000179	0.000699	0.000005	0.282159	0.000016	-21.7	-19.0	1528	2098	-0.98

注: 表中锆石 Hf同位素组成的计算参数为(^{\76}Lu/^{\177}Hf)_{CHUR} = 0.0336, (^{\76}Hf/^{\177}Hf)_{CHUR} = 0.282785; (^{\76}Lu/^{\177}Hf)_{DM} = 0.0384; *t* 为样品的形成 时间,λ=1.867 × 10^{-\1} a⁻¹ (Söderlund et al., 2004).

5 讨论

5.1 花岗岩成因类型

判定 A 型花岗岩主要依据其岩石矿物组合和 地球化学特征。在岩相学上,汤池正长花岗岩、石英 正长岩和正长斑岩均具有 A 型花岗岩常见的显微 文象结构、蠕虫结构(图 2e)和条纹长石广泛发育等 特征。这些岩石中暗色矿物多为黑云母,常见榍石、 锆石和萤石等副矿物,与铝质 A 型花岗岩相似 (李良林等,2013)。在汤池地区的花岗岩类中存在 富钍(高达1480×10⁶)锆石,其阴极发光图像呈黑 色,这是 A 型花岗岩的重要标志(Xie L et al., 2005)。

汤池正长花岗岩、石英正长岩和正长斑岩具有 高硅、富碱、高钾和贫镁的特征,属于高钾钙碱性系 列,并呈现准铝质-弱过铝质特征(图 6b, 6c),类似 于典型的铝质 A 型花岗岩 (Whalen et al., 1987; Eby, 1990; 苏玉平等, 2006; Condie et al., 2023)。铝 质A型花岗岩与高分异I型和S型花岗岩在化学特 征上相似度较高,有时难以区分(吴福元等,2007)。 然而,相比于A型花岗岩,高分异I型花岗岩的全铁 含量一般小于1.0 wt.%;而高分异S型花岗岩则具 有较高的P₂O₅含量(平均值为2.81 wt.%)和较低的 Na₂O含量(平均值为0.14 wt.%)(王强等,2000;吴 福元等,2007)。汤池正长花岗岩、石英正长岩和正 长斑岩的全铁含量范围在1.10~4.06 wt.%, P2O5含 量小于0.31 wt.%, 而Na₂O含量介于3.84~4.57 wt.% 之间,这些特征都不符合高分异S和I型花岗岩的 化学特征。此外,这些岩石的TFe2O3/MgO比值在 2.70~22.0之间,平均值为9.50,高于全球典型的I 型花岗岩(平均值为2.27)和S型花岗岩(平均值为 2.38)的TFe₂O₃/MgO比值(Whalen et al., 1987)。

与高分异 I 型和 S 型花岗岩相比, A 型花岗岩 的一个重要特征是形成温度较高 (Miller et al., 2003)。本研究计算获得正长花岗岩和正长斑岩的 锆石 Ti 温度 (Ferry and Watson, 2007)分别为 750~ 894 \mathbb{C} (平均值为 808±37 \mathbb{C})和 709~857 \mathbb{C} (平均值 为 783±39 \mathbb{C})(表 1), 略高于高分异 I 型花岗岩的 形成温度 (平均值为 760 \mathbb{C} ; King et al., 1997)。同时 采用 Boehnke et al. (2013)提出的锆石饱和温度计 算公式,获得正长花岗岩、石英正长岩和正长斑岩的锆石饱和温度分别为776~857 ℃、903~928 ℃和 828~892 ℃(表3),接近A型花岗岩的形成温度 (>830 ℃;Miller et al., 2003)。

汤池正长花岗岩、石英正长岩和正长斑岩的 Ga含量为12.5×10⁻⁶~19.2×10⁻⁶,Yb含量为0.7×10⁻⁶~ 3.37×10⁻⁶, 10000×Ga/Al 值为 1.9~2.69, 且全碱 Na₂O+K₂O含量(7.97~10.35 wt.%)高,Zr+Nb+Ce+Y 值为191×10⁻⁶~828×10⁻⁶(平均值为424×10⁻⁶),基本 符合 Whalen et al. (1987)和 Eby (1990) 厘定的 A 型花岗岩范畴,有别于北淮阳西段高分异I型花岗 岩(陈伟等,2013)。在10000×Ga/Al-Ce、Nb和Zr及 (Na₂O+K₂O)/CaO-(Zr+Nb+Ce+Y)判别图解(图8)中, 大多数样品落入A型花岗岩区域,与高分异的I型 花岗岩及未分异的I型和S型相区别。稀土配分模 式图(图7)中汤池花岗岩类大多呈轻稀土倾斜、重 稀土较平坦,以明显的负铕异常为特点的海鸥型展 布,具有铝质A型花岗岩的特征(周红升等,2009a, 2009b; 谢玉玲等, 2015; 杨义忠等, 2018; 尤静静等, 2019)。这些岩石富集高场强元素、REE和Rb以及 贫 Al、Sr、Ba、Ti和P,与高分异I型和S型花岗岩有 明显区别(Whalen et al., 1987; Eby, 1990, 1992)。

根据构造环境和化学成分,A型花岗岩分为两 种类型:A₁型和A₂型(Eby, 1992)。其中,A₁型花岗 岩形成于板内非造山环境,其Y/Nb比值小于1.2; A₂型花岗岩形成于后碰撞伸展环境,其Y/Nb比值 大于1.2。汤池正长花岗岩、石英正长岩和正长斑岩 的Y/Nb比值在0.25~1.00之间,表明这些岩石可能 属于A₁型花岗岩(Eby, 1992)。在Nb-Y-Ce和 Nb-Y-Ga分类图解(图9a, 9b)中,正长花岗岩、石英 正长岩和正长斑岩投点大多落在A₁型花岗岩区 内,与前人研究的北淮阳东段白垩纪花岗岩投点基 本一致(王强等, 2000;谢智等, 2004; 王爱枝, 2009; 周红升等, 2009a, 2009b;谢玉玲等, 2015;陈芳等, 2016; 吴齐等, 2016; 鹿献章等, 2017; 万俊等, 2017;杨义忠等, 2018; 尤静静等, 2019; 吴皓然等, 2020)。

5.2 岩浆来源及演化过程

辉绿玢岩具有较低的 SiO₂含量(45.23wt.%~ 56.92 wt.%)和较高的 MgO 含量(2.92wt.%~6.06

46

wt.%; Mg[#]=41~55)(下地壳熔体 Mg[#] < 40, Rapp and Watson, 1995),且该岩石的 Nb/Ta 和 Ti/Zr 比值 分别为17.1~22.0和17.4~47.5(表3),接近地幔比值 (Nb/Ta=17.5; Ti/Zr>20; Tischendorf and Palchen, 1985; Green, 1995),表明其与地幔部分熔融的岩浆 相似。汤池辉绿玢岩中大多数锆石的 Enf(t)值 为-6.4~-2.9,显著高于北淮阳东段花岗岩的ε_m(t)值 (-10~-30)(图 10)。这一差异表明汤池辉绿玢岩不 太可能直接源自地壳物质的部分熔融(周红升等, 2008, 2009b; 商力, 2012; 刘晓强等, 2018)。值得注 意的是,汤池辉绿玢岩 $\varepsilon_{\rm H}(t)$ 值与大别山早白垩世碰 撞后基性岩和响洪甸碱性岩的 $\varepsilon_{\rm H}(t)$ 值存在一定程 度的重叠(分别为-20.9~-2.3、-16.6~-10.4、周伟伟 等,2014; Dai F Q et al., 2016, 2017), 这暗示辉绿玢 岩可能由富集地幔部分熔融产生。Chen JF et al. (2001)对长江中下游中生代基性岩Nd同位素的研 究结果表明:扬子陆块下伏岩石圈地幔具有类似于 EM I 端元的特征,其 $\varepsilon_{Nd}(t)$ 值为-5.2~-7.7,呈现一定 程度的富集特征,与汤池辉绿玢岩相似。因此,汤池 辉绿玢岩可能是中生代扬子陆块下伏富集岩石圈 地幔部分熔融的产物。

汤池辉绿玢岩显示出富集大离子亲石元素和 轻稀土元素以及亏损高场强元素的特征(图 7a, 7b), 其具有较低的Nb/La比值(0.12~0.23)(地壳Nb/La≈ 0.7; Taylor and Mclennan, 1995), 暗示其地幔源区

可能有陆壳物质的加入。进一步支持这一观点的是 辉绿玢岩中的两颗锆石,它们的 $\varepsilon_{\rm H}(t)$ 值分别 为-20.4和-16.4,与具有弧型微量元素和富集放 射性成因 Nd-Hf 同位素特征的大别山早白垩世 碰撞后镁铁-超镁铁质侵入体和富钾火山岩[End (t) < -12; $\varepsilon_{\rm Hf}(t) < -10$; Jahn et al., 1999; Wang Y J et al., 2005]以及北淮阳东段中生代花岗岩的ε_н(t)值接近 (图 10),暗示汤池辉绿玢岩的岩石圈地幔源区先 前受到了陆壳物质的交代作用(王世明等, 2010; Dai F Q et al., 2017; 刘晓强等, 2018)。

在野外,我们发现辉绿玢岩脉切割正长花岗岩 和石英正长岩,或者以小团块的形式与其相互包 裹。同时,正长斑岩常常以透镜体或岩脉的形式被 包裹在正长花岗岩和石英正长岩中(图1)。这些地 质现象暗示汤池地区A型花岗岩的形成可能与辉 绿玢岩存在一定联系。汤池正长花岗岩和正长斑岩 大多数锆石的εн(t)值(-23.3~-16.6)明显低于辉绿 玢岩的 $\varepsilon_{\rm H}(t)$ 值(图 10),表明汤池A型花岗岩可能是 基性岩浆在侵位到下地壳过程中同化围岩或者是 古老下地壳部分熔融的产物。

根据现有研究资料,大别造山带TTG片麻岩 及由其重熔形成的早白垩世碰撞后花岗岩的锆石 εm(t)值是-30~-12(图 10,周红升等, 2008, 2009b; 商 力, 2012; Dai F Q et al., 2017; 刘晓强等, 2018), 全 岩 $\varepsilon_{Nd}(t)$ 值 为 -23~-14 (Chen J F and Jahn, 1998;

Fig. 10 Zircon $\varepsilon_{\rm Hf}(t)$ values vs. age diagram of the Tangchi complex

北淮阳东段花岗岩数据来源于DaiFO et al.(2017)、周红升等(2008, 2009b)、商力(2012)、刘晓强等(2018)

Wang Q et al., 2007)。而代表古老扬子下地壳物质的崆岭群片麻岩所显示出的同位素组成具有极端富集的特征,其锆石ε_{Hf}(t)值和全岩ε_{Na}(t)值约为-40(所有数据均已对130 Ma 重新计算)(Ma C Q et al., 2000; Zhang S B et al., 2006)。汤池A型花岗岩 锆石ε_{Hf}(t)值为-23.3~-16.6,高于崆岭群片麻岩,与大别造山带TTG片麻岩和北淮阳早白垩世碰撞后花岗岩的ε_{Hf}(t)值相似(图10)。因此,推测类似于大别造山带早白垩世花岗岩,汤池A型花岗岩可能是下地壳部分熔融的产物。

汤池A型花岗岩中的四颗锆石的 $\varepsilon_{\rm H}(t)$ 值 为-5.2~-3.5, 与辉绿玢岩锆石的 $\varepsilon_{\rm H}(t)$ 值(主要 为-6.4~-2.9)接近(图10),暗示这些花岗岩的形成可 能是壳幔相互作用的结果(董传万等,2007)。此外, 汤池A型花岗岩Nb/Ta比值为11.2~22.7,大多数样 品接近地壳比值(8~14; Stepanov and Hermann, 2013),但部分样品Nb/Ta比值高于球粒陨石(19.6; Münker et al., 2003),表明其岩浆源区可能有地幔物 质的参与。在δEu-(La/Yb)_N图解(图11)中,汤池A型 花岗岩投点主要位于壳型区域,而少数正长花岗和 正长斑岩样品落入壳幔混合型区域,暗示其原始岩 浆主要来自下地壳,并受到了地幔物质的影响(王玉 玺等,2017)。由于A型花岗岩与辉绿玢岩在地球化 学特征上具有一定的相似性(图7),我们推测汤池A 型花岗岩可能是由富集岩石圈地幔部分熔融形成的 幔源玄武质岩浆底侵所导致上覆下地壳岩石发生 部分熔融的产物,是壳幔相互作用的结果。

Fig. 11 Diagram of δ Eu- (La/Yb)_N of the Tangchi complex

底图据王玉玺等(2017)

正长花岗岩比石英正长岩和正长斑岩具有更 高的SiO₂含量和更低的Al₂O₃、CaO、TFe₂O₃和MgO 含量(表3),呈现出一定的结晶分异趋势。在微量 元素蛛网图和稀土配分模式图解中(图7),正长花 岗岩表现出更强烈的Ba、P、Sr、Ti、Eu负异常,以及 更高的REE含量,这些元素的亏损或富集可能与 钾长石、斜长石、磷灰石、铁钛氧化物(如榍石和钛 铁矿)等矿物的分离结晶作用有关。考虑到汤池正 长花岗岩和正长斑岩具有相近的时代和类似的Hf 同位素组成,上述特征表明相比于石英正长岩和正 长斑岩,正长花岗岩的形成可能经历了更为强烈的 结晶分异作用。

综上所述,汤池辉绿玢岩可能由富集岩石圈地 幔部分熔融形成,而A型花岗岩可能是由幔源岩浆 底侵导致下地壳岩石发生部分熔融,形成的碱性岩 浆在地壳深部岩浆房经历不同程度的结晶分异作 用的产物。

5.3 大地构造意义

汤池辉绿玢岩、正长花岗岩和正长斑岩的成岩 年龄分别为130.3±1.7 Ma、128.4±1.7 Ma和122.3± 1.5 Ma(图5),表明其形成于燕山晚期,是早白垩世 晚期岩浆活动的产物。根据Pearce and Cann (1973) 和 Pearce and Norry (1979)的研究,岩浆作用过程 对 Zr、Y、Nb、Ti等不相容元素的影响较小。通过分 析这些元素特征,可以鉴别玄武质岩浆形成的构造 环境。在Y/Nb-TiO₂、Zr-Zr/Y、Zr-Ti、Nb-Zr-Y 图解 (图12)中,辉绿玢岩主要位于板内玄武岩区域,部 分有火山弧玄武岩特征,表明汤池辉绿玢岩的形成 与岩石圈伸展作用有关。结合辉绿玢岩具大陆边缘 弧的地球化学特征,其源区可能受到俯冲流体交代 的影响(Pearce and Cann, 1973)。

汤池石英正长岩、正长斑岩和正长花岗岩富 碱、贫钙以及具有较高的Ga/Al和TFe₂O₃/MgO值, 显示出铝质A型花岗岩的地球化学特征(图8)。在 Eby(1992)提出的A型花岗岩属性判别图(图9) 中,汤池A型花岗岩大部分落入A₁型区域内,个别 正长花岗岩落入A₂区域,指示其可能形成于板内 非造山环境。在构造环境判别图解中,汤池A型花 岗岩大部分投点于非造山碱性花岗岩区内(图13a)

A₁+A₂:板内碱性玄武岩; A₂+C:板内拉斑玄武岩; B:P型洋中脊玄武岩; D:N型洋中脊玄武岩; C+D:火山弧玄武岩

图a底图据Batchelor and Bowden(1985);图b底图据Pearce(1996)

图 a: 1-地幔斜长花岗岩;2-破坏性活动板块边缘花岗岩;3-碰撞后隆起期花岗岩;4-晚造山期花岗岩;5-非造山区碱性花岗岩;6-同碰撞深

熔型花岗岩;7-造山期后A型花岗岩;图b: WPG-板内花岗岩;ORG-洋中脊花岗岩;VAG-岛弧花岗岩;

syn-COLG-同碰撞花岗岩;post-COLG-后碰撞花岗岩

和后碰撞花岗岩区内(图 13b),表明汤池A型花岗 岩的形成与强烈的伸展作用有关。

时空分布上,大别造山带早白垩世岩浆岩分为 两个阶段:早阶段(143~130 Ma),岩石以高钾钙碱 性花岗闪长岩-二长花岗岩为主,多呈岩基产出,广 泛分布于大别造山带西部和南部,多呈现出埃达克 质岩高 Sr 低 Y 的地球化学特征,为加厚/拆沉下地 壳部分熔融的产物(Xu H J et al., 2012; 刘晓强等, 2018);晚阶段(130~112 Ma),岩石以A型花岗岩为 主,常以岩株或岩脉形式出现在大别造山带中东 部,并伴有富碱火山岩和幔源基性岩脉,常表现出 海鸥型稀土元素配分模式,不具有高 Sr 低 Y 特征, 被认为是后碰撞环境下陆壳强烈伸展作用的结果 (马昌前等, 1999; 王强等, 2000; 王世明等, 2010; 商 力, 2012; Dai F Q et al., 2016, 2017; 杨春 玥等, 2020)。

大别造山带于~130 Ma发生岩石圈减薄并进 入持续伸展时期,埃达克质岩类被伸展环境下的晚

中生代A型花岗岩或碱性岩浆岩所取代(谢智等, 2004; Xu H J et al., 2007; 周红升等, 2009a; 谢玉玲 等,2015;陈芳等,2016;吴皓然等,2020),标志着碰 撞造山作用的结束。大别造山带晚中生代A型花岗 岩带可以划分为A₁型和A₂型两个分带(杨春玥等, 2020)。相较于A2型,A1型花岗岩较为年轻,集中分 布在北淮阳构造带东段地区(图14)。大别造山带 晚中生代经历了岩石圈减薄、下地壳拆沉和大陆岩 石圈重熔过程(王强等, 2000; 鹿献章等, 2017; 杨义 忠等, 2018; 尤静静等, 2019)。汤池岩体的形成时代 (130~122 Ma)与大别造山带A₁型花岗岩的年龄 (130~112 Ma)相吻合,表明其形成于后碰撞伸展环 境。汤池A型花岗岩的Sr/Y比值为6.28~57.2,其地 球化学特征与早阶段加厚下地壳重熔产生的岩浆 岩不同,而与晚期伸展环境下的A,型花岗岩相似。 结合区域地质背景和年代学数据,笔者认为汤池辉 绿玢岩和A型花岗岩形成于大别造山带加厚下地 壳减薄、强烈伸展阶段初期。在造山作用末期(130~

图14 大别造山带A型花岗岩分布简图

Fig. 14 Distribution diagram of the A type granites in the Dabie orogenic belt

成因类型和年龄数据来源:望家山和崇山咀(王强等,2000);沙村(谢智等,2004);黄山和祖师顶(周红升等,2008);白鸭山(Chen L et al., 2009);汤家坪(杨泽强,2007);灵山(周红升等,2009a);研子岗(周红升,2009b);沙坪沟(任志等,2014);西冲(谢玉玲等,2015); 长岗(吴齐等,2016);金寨(陈芳等,2016);河棚(鹿献章等,2017);夏店(万俊等,2017);西汤池(杨义忠等,2018); 娘娘顶(尤静静等,2019);银水寺(吴皓然等,2020);汤池(本文);底图修改自杨春玥等(2020) 112 Ma),由于伸展塌陷导致岩石圈拆沉,提供足够的热能触发富集岩石圈地幔部分熔融形成辉绿玢岩。与此同时,幔源岩浆底侵活动强烈,岩石圈发生减薄,上覆下地壳岩石部分熔融产生长英质岩浆并经历结晶分异形成A型花岗岩,最终构成汤池A型花岗岩-辉绿玢岩复合岩体。

在中国东南部,晚中生代复合火成岩的形成与 多个地质过程紧密相连,包括岩石圈消减和熔融、 玄武岩浆底侵、下地壳深熔以及岩浆混合等(徐夕 生等,1999;周新民和李武显,2000; Zhou X M et al., 2006)。因此,复合火成岩可以被视为壳幔相互 作用的宏观地质表现(董传万等,2007; Yan Q S et al., 2014; 王对兴等, 2019)。大别造山带是研究晚中 生代壳幔相互作用的理想地区。该地区发育数量可 观的基性侵入岩、火山岩以及规模更大的花岗岩, 它们具有相似的同位素年龄,并且在地球化学特征 上显示出源区强烈富集的特征。这表明大别造山带 在晚中生代发生了一期明显的壳幔置换事件,其中 岩浆事件始于地幔部分熔融,随后迅速扩展,引起 大规模地壳部分熔融(周红升等, 2008, 2009b; 王世 明等,2010; 商力, 2012; Dai F Q et al., 2017; 刘晓强 等, 2018; 杨春玥等, 2020)。对汤池A型花岗岩-辉 绿玢岩复合岩体的研究,丰富了大别造山带早白垩 世碱性杂岩的研究内容,为深入探讨中国东部地区 晚中生代壳-幔相互作用和构造-岩浆作用提供了 一个新的实例。

6 结论

(1)大别造山带北淮阳汤池A型花岗岩组合主要为正长花岗岩(128.4±1.7 Ma)、石英正长岩和正长斑岩(122.3±1.5 Ma),伴有辉绿玢岩发育(130.3±1.7 Ma),它们均为早白垩世岩浆活动的产物。

(2)汤池辉绿玢岩可能由俯冲交代作用形成的 富集地幔部分熔融形成。石英正长岩、正长斑岩和 正长花岗岩可能为幔源基性岩浆底侵诱发下地壳 岩石发生部分熔融,形成的碱性岩浆在地壳深部岩 浆房经历结晶分异作用的产物。

(3)汤池A型花岗岩-辉绿玢岩共生组合形成 于大别造山带早白垩世构造体制转换后的强烈伸 展阶段初期,标志着造山作用的结束,其形成与伸 展塌陷造成的岩石圈减薄和下地壳拆沉有关。

致谢:感谢徐晓波、巨凯亮、付政豪、张晨等同 志在野外采样工作中给予的支持;感谢实验室有关 工作人员在测试过程中给予的指导和帮助。

参考文献:

- 安徽省地矿局 313 地质队.1995.河棚幅 H-50-30-B 大关幅 H-50-31-A 桐城幅 H-50-30-D 孔城幅 H-50-31-C1/5 万区 域地质调查报告[R].
- 安徽省地质调查院.2011.六安市幅(150C001002)1:250000 区域地质调查报告[R].
- 陈芳,彭智,邱军强,董婷婷,柳丙全.2016.安徽金寨岩体地质 和地球化学特征及LA-ICP-MS锆石U-Pb年龄[J].地质 学报,90(5):879-895.
- 陈 玲,马昌前,张金阳,刘园园,佘振兵,张 超.2012.首编大别 造山带侵入岩地质图(1:50万)及其说明[J].地质通报,31 (1):13-20.
- 陈伟,徐兆文,李红超,杨小男,陈进全,王浩,王少华.2013.河 南新县花岗岩岩基的岩石成因、来源及对西大别构造 演化的启示[J].地质学报,87(10):1510-1524.
- 董传万,徐夕生,闫强,林秀斌,竺国强.2007.浙东晚中生代壳 幔相互作用的新例证—新昌儒岙辉绿岩-花岗岩复合 岩体的年代学与地球化学[J]. 岩石学报,23(6): 1303-1312.
- 贾小辉,王强,唐功建.2009.A型花岗岩的研究进展及意 义[J].大地构造与成矿学,33(3):465-480.
- 李良林,周汉文,陈植华,王锦荣,陈正华,肖依.2013.福建太姥 山地区和鼓山地区A型花岗岩对比及其地球动力学意 义[J].现代地质,27(3):509-524.
- 刘晓强,闫峻,王爱国.2018.北淮阳汞洞冲铅锌矿区石英正 长斑岩成因[J].地质学报,92(1):41-64.
- 鹿献章,周博文,彭智,邱军强,陈芳,董婷婷,柳丙全,陈志洪.2017.北淮阳东段河棚岩体地球化学特征、LA-ICP-MS锆石U-Pb年龄及地质意义[J].华东地质,38(2):81-90.
- 马昌前,杨坤光,许长海,李志昌.1999.大别山中生代钾质岩 浆作用与超高压变质地体的剥露机理[J].岩石学报,15 (3):379-395.
- 任志,周涛发,袁峰,张达玉,范裕,范羽.2014.安徽沙坪沟钼 矿区中酸性侵入岩期次研究——年代学及岩石化学约 束[J].岩石学报,30(4):1097-1116.

- 商力.2012.安徽北淮阳地区燕山晚期岩浆岩成因及其大地 许保良,阎国翰,张臣.1998.A型花岗岩的岩石学亚类及其物 构造背景[D].南京大学硕士学位论文.
- 苏玉平,唐红峰,侯广顺,刘从强.2006.新疆西准噶尔达拉布 特构造带铝质A型花岗岩的地球化学研究[J].地球化 学.35(1):55-67.
- 万 俊,吴 波,郭 盼,刘万亮,刘成新.2017.西大别造山带夏店 岩体锆石 U-Pb 年代学、地球化学特征及其A型花岗岩 的厘定[J].岩石矿物学杂志,36(5):633-645.
- 王爱枝.2009.河南商城汤家坪铝质A型花岗岩的地球化学 特征及其构造指示意义[J].华南地质与矿产,25(4): 10-16.
- 王德滋,赵广涛,邱检生.1995.中国东部晚中生代A型花岗岩 的构造制约[J].高校地质学报,1(2):13-21.
- 王对兴,管琪,高万里,李春麟,张聚全,赵凯华.2019.浙东天台 地区早白垩世花岗岩及暗色包体锆石 U-Pb 年龄,地球 化学及其成因[J].中国地质,46(6):1512-1529.
- 王强,赵振华,熊小林.2000.桐柏-大别造山带燕山晚期A型 花岗岩的厘定[J].岩石矿物学杂志,19(4):297-306.
- 王世明,马昌前,王琳燕,张金阳,杨颖.2010.大别山早白垩世 基性脉岩 SHRIMP 锆石 U-Pb 定年、地球化学特征及成 因[J].地球科学,35(4):572-584.
- 王玉玺,王金荣,周小玲,王怀涛,第鹏飞,王晓伟,陈万峰.2017. Columbia 超大陆裂解:来自塔里木克拉通东南缘大红 山A型花岗岩的证据[J].地质学报,91(11):2369-2386.
- 吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若 干问题[J].岩石学报,23(6):1217-1238.
- 吴皓然,谢玉玲,钟日晨,王莹.2020.大别造山带银水寺铅锌 矿区正长花岗斑岩脉锆石U-Pb年代学、地球化学特征 和地质意义[J].地球科学,45(3):910-929.
- 吴齐,牛漫兰,朱光,王婷,费玲玲.2016.郯庐断裂带庐江段 长岗A型花岗岩锆石U-Pb定年、岩石成因及其意义[J]. 岩石学报,32(4):1031-1048.
- 吴元保、郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄 解释的制约[J].科学通报,49(16):1589-1604.
- 谢智,郑永飞,闫峻,钱卉.2004.大别山沙村中生代A型花岗 岩和基性岩的源区演化关系[J].岩石学报,20(5): 1175-1184.
- 谢玉玲,李腊梅,郭翔,张健,姚羽,王爱国.2015.安徽西冲钼 矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关 系研究[J].岩石学报,31(7):1929-1942.
- 徐树桐,江来利,刘贻灿,张勇.1992.大别山(安徽部分)的构造 格局和演化过程[J].地质学报,66(1):1-14.
- 徐夕生,周新民,王德滋.1999.壳幔作用与花岗岩成因——以 中国东南沿海为例[J].高校地质学报,5(3):241-250.

- 质来源[J].地学前缘,5:113-125.
- 杨春玥,何俊,杨一增,陈福坤.2020.大别山造山带新县二长 花岗岩体地球化学与岩石成因[J].高校地质学报,26(2): 132-146.
- 杨义忠,王徽,蔡杨,李明辉,柳丙全.2018.北淮阳东段西汤池 岩体地球化学特征、锆石 U-Pb 定年及成因[J].地质学 刊,42(2):188-196.
- 杨泽强.2007.河南省商城县汤家坪钼矿成矿模式研究[D].中 国地质大学(北京)硕士学位论文.
- 尤静静,吴昌雄,蒋之飞,屠江海,陈松,肖霞,李随云,叶建 华.2019.湖北大悟娘娘顶花岗岩地球化学特征及其地 质意义[J].资源环境与工程,33(1):14-21.
- 张徐,张达玉,蒋华,李光惠,付翔,詹建华.2019.安徽霍山陈 家湾岩体地球化学特征、年代学及其地质意义[J].合肥 工业大学学报(自然科学版),42(7):988-998.
- 张怀东,王波华,郝越进,程松,项斌.2012.安徽沙坪沟斑岩型 钼矿床地质特征及综合找矿信息[J].矿床地质,31(1): 41-51.
- 郑永飞.2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁 造山带为例[J].科学通报,53(18):2129-2152.
- 周红升,马昌前,张超.2008.华北克拉通南缘泌阳春水燕山 期铝质A型花岗岩类年代学、地球化学及其启示[J].岩 石学报,24(1):49-64.
- 周红升,苏华,马昌前.2009a.灵山岩体的形成时代、构造背景 及其A型花岗岩的厘定[J].信阳师范学院学报(自然科 学版),22(2):222-226.
- 周红升,马昌前,陈玲.2009b.大别造山带研子岗碱性岩体成 因及其构造意义:锆石U-Pb年龄和地球化学制约[J].岩 石学报,25(5):1079-1091.
- 周泰禧,陈江峰,张巽,李学明.1995.北淮阳花岗岩-正长岩带 地球化学特征及其大地构造意义[J].地质论评,41(2): 144-151
- 周伟伟,蔡剑辉,阎国翰,王亚莹,闫星光,闫志娇.2014.安徽金 寨响洪甸碱性侵入岩年代学、岩石地球化学及其意 义[J].矿床地质,33(1):104-122.
- 周新民,李武显.2000.中国东南部晚中生代火成岩成因岩石 圈消减和玄武岩底侵相结合的模式关系[J].自然科学 进展,1:240-247.
- Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1): 43-55.
- Boehnke P, Watson E B, Trail D, Harrison T M, Schmitt A. 2013. Zircon saturation re-revisited[J]. Chemical Geolo-

gy, 351: 324-334.

- Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133.
- Chen J F, Yan J, Xie Z, Xu X, Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 719-731.
- Chen L, Ma C Q, She Z B, Mason R, Zhang J Y, Zhang C. 2009. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China: geochronological and geochemical constraints[J]. Geological Magazine, 146(5): 638-651.
- Condie K C, Pisarevsky S A, Puetz S J, Roberts N M W, Spencer C J. 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events[J]. Earth and Planetary Science Letters, 610: 118125.
- Cong B L, Wang Q C, Zhai M G, Zhang R Y, Zhao Z H, Ye K. 1994. Ultrahigh pressure metamorphic rocks in the Dabie-Su Lu region, China: Their formation and exhumation[J]. The Island Are, 3(13): 135-150.
- Dai F Q, Zhao Z F, Dai L Q, Zheng Y F. 2016. Slab-mantle interaction in the petrogenesis of andesitic magmas: geochemical evidence from postcollisional intermediate volcanic rocks in the Dabie Orogen, China[J]. Journal of Petrology, 57(6): 1109-1134.
- Dai F Q, Zhao Z F, Zheng, Y F. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen[J]. Chemical Geology, 454: 25-43.
- De la Roche H D, Leterrier J T, Grandclaude P, Marchal M. 1980. A classification of volcanic and plutonic rocks using R₁R₂-diagram and major-element analyses—its relationships with current nomenclature[J]. Chemical Geology, 29(1-4): 183-210.
- Dong Y P, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, Central China[J]. Gondwana Research, 29(1): 1-40.
- Duchesne J C, Wilmart E. 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite[J]. Journal of Petrolo-

gy, 38(3): 337-369.

- Eby G N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26: 115-134.
- Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644.
- Ferry J M, Waston E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 154(4): 429-437.
- Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements[J]. Earth and Planetary Science Letters, 27(2): 211-218.
- Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3-4): 347-359.
- Hoskin P W O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 69(3): 637-648.
- Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.
- Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1-2): 119-146.
- Jiang X Y, Ling M X, Wu K. 2018. Insights into the origin of coexisting A₁- and A₂-type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, Eastern China[J]. Lithos, 318: 230-243.
- Kamaunji V D, Wang L X, Ahmed H A, Zhu Y X, Vincent V I, Girei M B. 2020. Coexisting A₁ and A₂ granites of Kudaru Complex: implications for genetic and tectonic diversity of A-type granite in the Younger Granite province, north-central Nigeria[J]. International Journal of

Earth Sciences, 109: 511-535.

- King P L, White A J R, Chappell B W. 1997. Characterization and origin of aluminous A type granites of the Lachalan Fold Belt, southeastern Australia[J]. Journal of Petrology, 36: 371-391.
- Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In Situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43.
- Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[A]. Geological Society of America, Abstracts with Programs, 11: 468.
- Ma C Q, Ehlers C, Xu C H, Li Z C, Yang K G. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics[J]. Precambrian Research, 102(3-4): 279-301.
- Ma Q, Zheng J P, Griffin W L, Zhang M, Tang H Y, Su Y P, Ping X Q. 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust[J]. Lithos, 149:159-173.
- Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635-643.
- Martin R F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 91(1-4): 125-136.
- Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3-4): 207-218.
- Middlemost E A. 1975. The basalt clan[J]. Earth-Science Reviews, 11(4): 337-364.
- Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 31(6): 529-532.
- Munker C, Pfander J A, Weyer S, Buchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics[J]. Science, 301(5629): 84-87.
- Nardi L V S, Bonin B. 1991. Post-orogenic and non-orogenic alkaline granites associations: The Saibro intrusive suite,

southern Brazil-A case study[J]. Chemical Geology, 92: 197-211.

- Pearce J A, Cann J R. 1973. Tectonoic setting of basic volcanic rocks determined using trace element analyse[J]. Earth and Planetary Science Letters, 19(2): 290-300.
- Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33-47.
- Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[A].//Thrope R S. Andesites: Orogenic Andesites and Related rocks. John Wiley and Sons, Chichester: 528-548.
- Pearce J A. 1996. Source and settings of granitic rocks[J]. Episodes, 19(4): 120-125.
- Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.
- Rapp R P, Watson, E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931.
- Shellnutt J G, Zhou M F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 243 (3-4): 286-316.
- Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3-4): 311-324.
- Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox"[J]. Geology, 41(3): 303-306.
- Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.
- Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33: 241-165.
- Tischendorf G, Palchen W. 1985. Composition of the continental crust[J]. Zeitschrift Fuer Geologische Wissenschaften, 13(5): 615-627.

- Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.
- Wang Y J, Fan W M, Pen T P, Zhang H F, Guo F. 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: evidence from ⁴⁰Ar/³⁹Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks[J]. Chemical Geology, 220(3-4): 165-189.
- Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419.
- Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187 (1-2): 143-173.
- Xie L, Wang R C, Chen X M, Qiu J S, Wang D Z. 2005. Th-rich zircon from peralkaline A-type granite: Mineralogical features and petrological implications[J]. Chinese Science Bulletin, 50(8): 809-817.
- Xu H J, Ma C Q, Song Y R, Zhang J Y. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction[J]. Lithos, 154: 83-99.

- Xu H J, Ma C Q, Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry[J]. Chemical Geology, 240(3-4): 238-259.
- Yan Q S, Shi X F, Castill P R. 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective[J]. Journal of Asian Earth Sciences, 85: 178-201.
- Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006. Zircon isotope evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146(1-2): 16-34.
- Zheng Y F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 53: 3081-3104.
- Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33.
- Zhu Y X, Wang L X, Ma C Q, He Z X, Deng X, Tian Y. 2022. Petrogenesis and tectonic implication of the Late Triassic A₁-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412: 106595.
- Zhu Y X, Wang L X, Xiong Q H, Ma C Q, Zhang X, Zhang C, Ahmed H A. 2020. Origin and evolution of ultrapotassic intermediate magma: The Songxian syenite massif, Central China[J]. Lithos, 366: 105554.