doi:10.3969/j.issn.2097-0013.2025.02.015

多元统计分析在广西镇龙山穹窿七星山调查区 土壤地球化学找矿中的应用

梁明建,黄锐,张武饰,陈良,杨珊福

LIANG Ming-Jian, HUANG Rui, ZHANG Wu-Shi, CHEN Liang, YANG Shan-Fu

广西壮族自治区二七三地质队,广西贵港 537101 No.273 Geological Brigade of Guangxi Zhuang Autonomous Region, Guigang 537101, Guangxi, China

摘要:为揭示广西镇龙山穹窿七星山调查区元素组合与富集规律,构建异常判别标志,并为深部隐伏多金属矿床的勘查提供土壤 地球化学依据,本文借助 GeoChem Studio 和 SPSS 25 软件,对 9 种元素土壤地球化学数据进行参数统计和多元统计分析(相关 分析、R型聚类分析和 R型因子分析)。相关分析显示出 Ag-Pb、As-W、Cu-Zn 中度相关, As-Au、Au-W、Cu-Mo、Mo-Zn 低度相 关, Sb 与 Ag、As、Au、Pb 低度相关。聚类分析将元素划分为 3 类, 第 Ⅰ 类为 Ag、Pb、Sb, 第 Ⅱ 类为 As、W、Au, 第 Ⅲ 类为 Cu、 Zn、Mo。根据因子分析结果,绘制3组因子得分(元素组合)异常,并构建元素空间分布模型。3组元素组合形成垂向上的元素 分带, 浅表部为Ag、Pb、Sb, 中深部为As、W、Au, 深部为Cu、Zn、Mo。研究区内从地表到深部, 矿床类型可能从热液型矿床转 变为斑岩型矿床,在垂向空间上形成由不同矿床类型不同矿种组成的成矿系列。 关键词: 土壤地球化学; 多元统计分析; 因子得分异常; 找矿; 镇龙山穹隆; 广西

中图分类号: P632 文献标识码: A 文章编号: 2097-0013(2025)-02-0421-15

Liang M J, Huang R, Zhang W S, Chen L and Yang S F. 2025. Application of Multivariable Statistical Analysis in Soil Geochemical Prospecting in the Oixingshan Survey Area, Zhenlongshan Dome, Guangxi. South China Geology, 41(2): 421-435.

Abstract: To reveal the elemental associations and enrichment patterns in the Zhenlongshan Dome-Qixingshan Survey Area, Guangxi, establish anomaly identification criteria, and provide a soil geochemical basis for the prospecting of deep-seated concealed polymetallic deposits, this study utilized GeoChem Studio and SPSS 25 software to conduct parameter statistics and multivariate statistical analysis (correlation analysis, R-mode cluster analysis, and R-mode factor analysis) on soil geochemical data of nine elements. Correlation analysis demonstrated moderate correlations of Ag-Pb, As-W, Cu-Zn, weak correlations of As-Au, Au-W, Cu-Mo, Mo-Zn, and Sb is also weakly correlated with Ag, As, Au and Pb. Cluster analysis categorized the elements into three groups: Group I (Ag, Pb, Sb), Group II (As, W, Au), and Group III (Cu, Zn, Mo). Based on factor analysis results, three sets of factor score (elements association) anomalies were mapped, and a spatial distribution model of the elements was constructed. These three element assemblages form vertical zoning: Pb-Ag-Sb in the shallow subsurface, As-W-Au in the middle zone, and Cu-Zn-Mo at deeper levels. This vertical spatial pattern suggests a potential transition of deposit types from hydrothermal deposits near the surface to porphyry-type deposits at depth, forming a metallogenic series comprising different deposit

收稿日期: 2025-03-13;修回日期: 2025-04-09

基金项目: 广西壮族自治区地质矿产勘查开发局项目(桂地矿地〔2022〕12号)

第一作者:梁明建(1992—),男,工程师,从事矿产勘查工作,E-mail: 271375440@qq.com

types and mineral species in vertical space within the study area.

Key words: soil geochemistry; multivariable statistical analysis; factor scores anomaly; prospecting; the Zhenlongshan dome; Guangxi

多元统计分析是一种研究客观事物中多个变 量(或多个因素)之间相互依赖的统计规律性的分 析方法(汪炎汝, 2021)。多元统计分析作为统计 学的重要分支,其发展历程与数据科学技术的进 步紧密交织。1928年, Wishart 首次提出协方差矩 阵的概念,标志着多元分析的开端,随后 Fisher、 Hotelling、Roy 及许宝騄等学者完成了奠基性工 作(《数学辞海》编辑委员会, 2002)。20世纪50 年代后,计算机技术的兴起推动了主成分分析、聚 类分析等方法的广泛应用,使其成为处理高维数 据的核心工具。借助计算机技术,大量数据得以 处理,多元统计分析迅速渗透至多个领域,并在地质 领域迅速发展(余烨等, 2014;徐龙生等, 2022)。 近年来,在大数据与人工智能的驱动下,多元统计 分析进一步与机器学习、高维计算融合,这将推动 地学研究的定量化与精细化,这一发展趋势为地 球化学数据挖掘提供了新的契机。

镇龙山地区作为广西重要的贵金属与有色金 属富集区(胡云沪等,2012),历经半个多世纪的地 质勘查工作,虽已发现一些矿产地,但深部找矿仍 面临显著瓶颈。研究区周边已发现多个矿床(点) (图 1),南北向断裂对矿化具有显著控制作用。 研究区成矿条件优越,但工作程度低,仅完成区域 地质调查工作,缺乏矿产勘查、物化探等工作。本 次工作在镇龙山地区七星山一带开展土壤地球化 学测量,通过运用统计学方法对元素含量数据进 行深入分析,挖掘数据蕴含的元素富集特征和分 布规律,构建元素空间分布模型,为下一步在本区 寻找多金属矿床提供元素组合异常判别标志。

1 区域地质背景

研究区大地构造位置位于华南板块南华活动 带桂中-桂东北褶皱系大瑶山隆起带西南端。区 内地层分为基底和盖层两部分,基底为寒武系,盖 层为泥盆系。寒武系主要为一套槽盆相复理石建 造,出露小内冲组(ϵ_x)和黄洞口组(ϵ_h)。下古生 界缺失奥陶系、志留系。泥盆系为一套滨岸碎屑 岩相-局限、半局限台地碳酸盐岩相沉积。镇龙 山穹窿呈一以大站为中心的近等轴圆形,轴长约 30 km,核部为寒武系,围翼为泥盆系,两者呈角度 不整合接触(胡云沪等, 2012)。穹窿区主要发育 NWW 向、近 S-N 向和 NW-NNW 向三组断裂(李 培喜, 1993)。寒武系在加里东期发生强烈褶皱, 褶皱规模较大,波长1~3km,波幅0.5~1km,呈 线状分布,东西走向。研究区岩浆岩出露较少,仅 在穹窿北部小圣-长帽岭一带呈岩脉、岩株零星分 布,岩性为花岗斑岩、石英斑岩,锆石 U-Pb 年龄 为 92~95 Ma(王昱等, 2022)。区内共发现银、 铅、锌、锑、铜等矿床(点)80余个,矿床(点)有明 显的分带特征,从岩体到外围,矿床类型由斑岩 型-高温热液型逐渐过渡到中温-中低温热液型(张 武饰等,2020;陈港等,2023)。

2 研究区地质特征

研究区出露的地层有寒武系小内冲组上段 (€x²)、黄洞口组(€h)和泥盆系莲花山组下段 $(D_1 l^1)$ (图 2)。寒武系小内冲组上段岩性为一套 灰绿色中-厚层状长石石英砂岩、粉砂岩、泥质粉 砂岩和中薄层泥岩组合,局部夹不等粒砂岩。寒 武系黄洞口组岩性为一套灰绿色中-厚层不等粒 长石石英杂砂岩、不等粒长石岩屑杂砂岩、不等 粒岩屑石英杂砂岩、不等粒石英杂砂岩夹薄层泥 岩、页岩,局部夹中层粉砂岩。泥盆系莲花山组下 段以灰黄色、灰白色中-厚层状石英砂岩和紫色 中-厚层状细砂岩为主,夹少量灰绿色薄层状泥质 粉砂岩,少量石英砂岩含泥砾。泥盆系莲花山组 底部以含砾石英砂岩、砾岩呈角度不整合覆盖在 寒武系砂岩、泥岩之上。研究区位于镇龙山穹窿 的北部,基底寒武系褶皱发育,三灶山复式背斜呈 东西向穿过研究区南部。研究区内断裂构造发

第四系; 2. 古近系; 3. 白垩系; 4. 中二叠统; 5. 上石炭统; 6. 下石炭统; 7. 上泥盆统; 8. 中泥盆统;
9. 下泥盆统; 10. 寒武系黄洞口组; 11. 寒武系小内冲组上段; 12. 寒武系小内冲组下段; 13. 燕山晚期石英斑岩; 14. 实测/推测断层;
15. 地质界线; 16. 不整合界线; 17. 研究区; 18. 银矿点; 19. 金矿点; 20. 锑矿床(点); 21. 铅矿点; 22. 铜矿床(点);
23. 砷矿床(点); 24. 金银矿点; 25. 铅锌矿点; 26. 多金属矿点.

据王昱等(2022)和陈港等(2023)修改.

育,主要有 NWW 向压扭性、S-N 向张扭性和 NW 向压扭性三组断裂。NWW 向断裂(F₁)是导 岩导矿构造, 而 S-N 向和 NW 向断裂是主要的容 矿构造(梁明建等, 2021)。

3样品采集和分析方法

在成矿有利位置开展1:1万土壤剖面测量, 剖面方向为 E-W 向,垂直主要构造线方向,测量 网为 200 m×20 m。采样层位为代表基岩风化形 成的残破积碎屑堆积为主的土壤层,采样深度一 般为 30 ~ 50 cm。样品采集依照多点组合原则, 在采样点前后点距的三分之一范围内采集 3 个点 组合成一个样。本次工作共采集土壤样品 1220 件,采样点位见图 2。为检验采样误差,布设 30 件土壤重复样,重复样均匀分布在采样区内,由不 同采样组人员不同时间在确定的重复样点上采取 重复样品,重复样品与基本样品同一批次加工,统 一编号送实验室分析。测试分析由广西壮族自治 区第六地质队实验室承担。

样品加工步骤包括:干燥-揉搓、敲碎-过筛-拌 匀-称重-装袋-装箱。过筛过程,选择-10目和+ 80目不锈钢筛子过筛,选取-10~+80目粒级的 颗粒作为样品。

图 2 研究区地质及采样点位图

Fig. 2 Geological and sampling locations map of the study area

1. 泥盆系莲花山组上段; 2. 泥盆系莲花山组下段; 3. 寒武系黄洞口组; 4. 寒武系小内冲组上段; 5. 地质界线;

6. 不整合界线; 7. 实测/推测断层; 8. 研究区; 9. 剖面线号; 10. 点位及样点号

根据主攻矿种和成矿类型,选择Ag、As、Au、Cu、Mo、Pb、Sb、W、Zn9种元素作为分析项目。其中,Ag、Cu、Pb、Zn、Sb元素采用王水提取-电感耦合等离子体质谱法测定,Au、W、Mo元素采用泡沫塑料富集-电感耦合等离子体质谱法测定,As元素采用氢化物发生原子荧光分析法测定。在满足准确度、精密度和检出限的前提下,各项检查指标均符合规范要求(表1)。

4 数据特征

统计各元素地球化学参数,可以提取研究区

地球化学作用信息,定量研究元素地球化学背景 及元素迁移、富集变化规律(刘娅莎,2012)。如果 某个采样点缺失分析数据,则将该采样点两侧相 邻的两个采样点的数据平均值作为该点的分析数 据。利用 GeoChem Studio 软件统计土壤地球化 学数据的特征参数,统计结果见表 2。

4.1 元素分布特征

利用 SPSS 25 软件绘制 9 种元素含量数据分 布直方图(图 3),并统计各元素的偏度和峰度 (表 3)。

偏度是对数据分布对称性的测度(贾俊平等, 2018)。如果一组数据的分布是对称的,则偏度值

Autor a second sec									
元素	方法检出限 (×10 ⁻⁶)	爆出率(%)	准确度 合格率(%)	精密度 合格率(%)	重复性检验 合格率(%)	重复样 合格率(%)			
Ag	0.03	99.76	100	100	98.40	100			
As	0.5	100	100	100	97.89	93.30			
Au	0.0003	100	100	100	96.13	100			
Cu	1.5	100	100	100	98.21	100			
Mo	0.5	99.36	100	100	96.77	96.70			
Pb	5	100	100	100	97.83	100			
Sb	0.2	100	100	100	97.14	100			
W	0.5	99.84	100	100	97.68	90			
Zn	15	100	100	100	97.92	100			

表1 七星山调查区成矿元素分析质量检查结果

Table 1	O	far		a an al-sata ta Al-a	
гаріе і	OUALITY INSPECTION	results of ore-for	ming element	s anaivsis in the	Ulxingsnan survey are:

表 2 土壤地球化学特征参数统计表

Table 2 Statistical table of soil geochemical characteristic parameters

元素	样品数(N)	最小值 (Min)	最大值 (Max)	标准 偏差 (S ₀)	算术 平均值 (X)	华夏地壳 克拉克值 (X ₀)	富集 系数 (EF)	变异 系数 (CV)
Ag	1 220	0.025	1.410	0.141	0.178	0.05	3.56	0.79
As	1 2 2 0	3.0	898.0	97.7	80.9	1.46	55.39	1.21
Au	1 2 2 0	0.176	36.500	2.389	2.277	1.73	1.32	1.05
Cu	1 2 2 0	1.73	198.00	20.39	26.01	35	0.74	0.78
Mo	1 2 2 0	0.34	11.10	1.42	1.91	1.1	1.73	0.74
Pb	1 2 2 0	13.0	1 540.0	145.6	107.1	5	21.43	1.36
Sb	1 2 2 0	1.43	574.00	29.95	25.56	0.11	232.35	1.17
W	1 2 2 0	0.32	8.92	1.01	2.73	1.3	2.1	0.37
Zn	1 2 2 0	8.9	231.0	30.5	51.8	68	0.76	0.59

注: Au单位为×10⁻⁹, 其它元素单位为×10⁻⁶, 华夏地壳克拉克值引自黎彤等(1999).

Fig. 3 Distribution histogram of elements concentration

华	南	貤	质
	114		

表 3

	A 5 日75家日主双加两次把叶及北竹本									
Table 3 Statistical table of skewness and kurtosis for elements content data										
元素	Ag	As	Au	Cu	Мо	Pb	Sb	W	Zn	
偏度(CS)	2.346	3.407	7.357	1.902	2.502	3.850	6.916	1.517	1.812	
峰度(CK)	8 909	16 953	77 179	8 467	8 2 3 3	20,000	98 656	3 827	4 896	

冬元麦今量数据偏度和修度统计表

等于 0; 如果偏度值明显不等于 0, 表明分布是非 对称的(郑文兵, 2012)。偏度的绝对值越大, 则数 据服从正态分布的程度越低。从图 3 可以得出, 各元素分布均不服从正态分布。除 Cu 元素外, 其 它元素均呈单峰形态分布, 曲线右侧偏长, 左侧偏 短, 呈明显的右偏。各元素偏度均为正数, 且大 于 1, 呈右偏(正偏)高度偏态分布, 偏度值均较 高, 反映构造-热液活动强烈(王伟东, 2017)。

峰度是数据分布与标准正态分布相比较,分 布平峰或尖峰程度的测度(贾俊平等,2018)。如 果一组数据服从标准正态分布,则峰度值等于3; 如果峰度值大于3,数据分布为尖峰分布,数据分 布更集中;如果峰度值小于3,数据分布为扁平分 布,数据分布更分散(孔丹,2008)。从表3中可以 得出,各元素峰度值均大于3,表明各元素分布均 为尖峰分布。

4.2 元素富集特征

富集系数(浓度克拉克值)指的是地质体中某 元素平均含量与该元素克拉克值的比值(罗先熔 等,2012),表示某种元素在矿床、岩体或土壤内浓 集的程度。富集系数可以作为表征土壤中元素富 集或贫化的参数。当富集系数大于1时,说明该 元素在地质体中比在地壳中相对集中,富集系数 小于1时,则意味着分散(杨红亮,2021)。由表2 可以得出,As、Pb、Sb元素强烈富集(富集系数 >4),Ag、W元素显著富集(2<富集系数<4),Au、 Mo元素较富集(1.25<富集系数<2),Cu、Zn元素 较贫化(0.5<富集系数<0.8)。元素富集系数排序 见图 4。

4.3 元素分异特征

元素分异特征可用变异系数来反映。变异系 数是一组数据的标准偏差与其平均数的比值,是 测度数据离散程度的统计量,用于比较不同样本 数据的离散程度(贾俊平等,2018)。元素的变异 系数越大,其在土壤中分布越不均匀。相反,元素

的变异系数越小,其在土壤中分布越均匀。通常 情况下,变异系数越大,表示元素含量的变化程度 越大,越有利于局部聚集成矿(韩鹏,2019)。由 表2可以得出,Pb、As、Sb、Au元素强分异(变异 系数>1),局部富集成矿的可能性较大。Ag、Cu、 Mo元素中等分异(0.7<变异系数<1),分布不均 匀。Zn元素弱分异(0.5<变异系数<0.7),W元素 无明显分异(变异系数<0.5),分布较均匀。元素 变异系数排序见图 5。

综上所述, Pb、Sb、As 元素强烈富集且强分 异, 表明这些元素受地质作用影响后具有显著富 集矿化趋势, 是研究区内主要的目标矿种。Ag 元 素显著富集、中等分异, 具有富集成矿的可能性。 W 元素虽然显著富集,但无明显分异,结合镇龙山 地区侵入岩中 W 元素具有强烈富集的特征,推测 是受岩浆活动影响,导致 W 元素在地表具有高背 景值,而 W 为高温热液成矿元素,可能在深部靠 近岩体部位富集成矿,在地表无明显分异。Au 元 素较富集,但强分异,表明局部富集成矿的可能性 较大。Mo 元素较富集、中等分异,地表成矿的可 能性相对较低。Cu、Zn 元素较贫化,变异系数较 小,地表成矿的可能性最低。

4.4 元素在不同地层中的分布规律

利用 SPSS 25 软件绘制寒武系小内冲组上

段、寒武系黄洞口组、泥盆系莲花山组下段元素 的富集系数和变异系数折线图(图 6),分析元素 富集贫化与地层的关系。Sb、As、Pb元素在三个 地层中均强烈富集,特别是 Sb元素。As元素在 三个地层中均强分异,Au、Pb元素在寒武系黄洞 口组和泥盆系莲花山组下段呈强分异-中等分异, As、Sb元素在寒武系小内冲组上段的分异程度明 显高于其它地层,Au、Pb元素在泥盆系莲花山组 下段的分异程度较明显高于其它地层,Mo、Zn元 素在三个地层中弱分异-无分异,W元素在三个地 层中无明显分异。

Fig. 6 Line chart of element enrichment factor (a) and coefficient of variation (b) in different strata of the Qixingshan survey area

5 数据处理方法

对于具有多变量(多元素、多指标)的地球化 学数据集,可以利用多元统计分析方法研究和分 析多个指标间的数据特征及其相互依赖关系(李 森林,2017)。为了能够将不同量纲的元素数据进 行比较,需要对每个采样点数据进行标准化(Z得 分标准化)处理,将数据转换为无量纲数据,使数 据的范围统一,计算过程为(含量值-平均值)/标准 偏差。通过 SPSS 25 软件对 9 种元素含量数据进 行多元统计分析,包括相关分析、R型聚类分析 和 R 型因子分析,研究各元素之间的亲和性和空 间分布规律,为圈定组合异常、寻找矿化线索提供 依据(肖军军,2020;邱宏蕊,2023)。

5.1 相关分析

相关分析是对两个变量之间线性关系的描述 与度量,相关系数是根据样本数据计算的度量两 个变量之间线性关系强度的统计量(贾俊平等, 2018)。在计算相关系数(r)时,需要对原始数据 进行标准化(Z得分标准化)处理。利用 SPSS 25 软件统计9种元素的相关系数,统计结果见表4。 由表4可以得出,9种元素之间普遍存在正负相 关性。各元素之间没有高度相关的元素组合 (|r|>0.8)。Ag-Pb、As-W、Cu-Zn中度相关(0.5<|r| <0.8)。Ag-Pb、As-W、Cu-Zn中度相关(0.5<|r| <0.8)。As-Au、Au-W、Cu-Mo、Mo-Zn低度相关, Sb 与 Ag、As、Au、Pb 低度相关(0.3<|r|<0.5)。其 它元素组合没有明显的相关关系(|r|<0.3)。

5.2 R 型聚类分析

聚类分析是将个体或对象分类,使得同一类 对象之间的相似性比其它类的对象的相似性更 强,包括Q型聚类分析(对样品的分类)和R型聚 类分析(对变量的分类)(何晓群,2019)。在化探 数据处理中,利用R型聚类分析研究元素间的共 生组合,以达到对元素进行分类的目的(覃宝灵, 2007)。

				表 4 元素相	天糸致矩阵					
Table 4 Element correlation coefficient matrix										
元素	Ag	As	Au	Cu	Мо	Pb	Sb	W	Zn	
Ag	1									
As	0.223**	1								
Au	0.222**	0.440**	1							
Cu	0.141**	-0.158**	0.105**	1						
Mo	0.134**	0.001	0.178**	0.376**	1					
Pb	0.647**	0.282**	0.160**	-0.016	0.000	1				
Sb	0.373**	0.329**	0.335**	0.203**	0.164**	0.366**	1			
W	0.005	0.501**	0.312**	-0.259**	-0.082^{**}	0.079**	0.077^{**}	1		
Zn	0.122**	-0.112**	0.061^{*}	0.514**	0.338**	-0.048	0.217**	-0.151**	1	

注:**为在0.01级别(双尾)相关性显著,*为在0.05级别(双尾)相关性显著.

利用 SPSS 25 软件对标准化(Z 得分标准化) 数据进行系统聚类分析,分析结果见图 7。从 R 型聚类分析谱系图中可以得出,当距离系数为 19时,可以将 9 种元素分为 3 类:第 I 类为 Ag、 Pb、Sb,反映中低温热液成矿作用;第 II 类为 As、 W、Au,反映中高温热液成矿作用;第 II 类为 Cu、 Zn、Mo,反映另一中高温元素组合,可能与岩浆活 动有关。

Fig. 7 Dendrogram of R-mode hierarchical clustering

5.3 R 型因子分析

因子分析是利用主成分分析降维的思路,从 研究原始变量相关矩阵内部的依赖关系出发,把 一些具有错综复杂关系的变量归结为少数几个综 合因子的一种多变量统计分析方法(何晓群, 2019)。在数据分析中通过因子分析,将大量数据 资料进行分类组合,利用变量因子表征地学数据 变化规律,能更加简洁、直观地总结、概括地质事 件的变化规律(阳正熙等, 2008)。 在因子分析之前,首先要对9种元素的原始 数据进行 KMO 检验和 Bartlett 球形检验,了解元 素之间的相关性,以判断数据是否适合做因子分 析。利用 SPSS 25 软件对元素含量原始数据进行 检验,KMO 取样适切性量数为 0.687 (表 5),符合 因子分析的要求。另外,Bartlett 球形检验统计量 为 2736.712,相应的显著性水平(P值)为 0.000, 球形检验拒绝相关矩阵为单位矩阵的原假设,说 明元素含量数据的相关矩阵与单位矩阵存在显著 差异,元素含量数据适合做因子分析。

表 5 KMO 和 Bartlett 球形检验结果 Table 5 Results of the KMO and Bartlett's

test of sphericity

KMO 取样注	0.687	
	近似卡方	2736.712
Bartlet球形检验	自由度	36
	显著性水平(P值)	0.000

利用 SPSS 25 软件对元素含量数据进行因子 分析,基于特征值大于1的原则提取了3个公共 因子,提取方法为主成分分析。由方差解释表 (表6)和碎石图(图8)可以得出,前3个因子的特 征值较大,累计方差贡献率达到65.499%,包含了 9种元素的大多数信息,因此选择3个公共因子 是合适的。

在得到公共因子后,为了解释方便,需要对因 子进行旋转。由 SPSS 25 软件计算得出 3 个公共 因子的成分矩阵和旋转后的成分矩阵。由成分矩 阵表(表 7)可以得出,旋转后因子载荷矩阵发生

	rable o rotai variance explaineu table											
武公		初始特征值			提取载荷平方	和		旋转载荷平方和				
MC/J	总计	方差百分比	累积(%)	总计	方差百分比	累积(%)	总计	方差百分比	累积(%)			
1	2.530	28.106	28.106	2.530	28.106	28.106	2.016	22.403	22.403			
2	2.075	23.059	51.165	2.075	23.059	51.165	1.950	21.665	44.068			
3	1.290	14.334	65.499	1.290	14.334	65.499	1.929	21.431	65.499			
4	0.711	7.901	73.399									
5	0.630	7.005	80.404									
6	0.575	6.386	86.790									
7	0.451	5.015	91.805									
8	0.418	4.646	96.451									
9	0.319	3.549	100.000									

表 6 方差解释表 Table 6 Total variance explained table

注:提取方法为主成分分析.

了变化,旋转后的因子载荷矩阵中的值更倾向于 0或±1,更加突出因子中的成分。旋转后的因子 空间分布见图 9。3个因子代表了研究区 3种元 素组合类型,F1因子为 Cu-Zn-Mo,F2因子为 Pb-Ag-Sb,F3 因子为 As-W-Au。

F1因子: Cu-Zn-Mo组合。由表 6 和表 7 可 知,该因子的方差贡献率为 22.403%, Cu 元素对 F1 因子的影响最大,达 0.804。Cu、Zn 是亲硫元 素,常在富硫的环境中形成硫化物组合(王建设, 2015)。Mo 是过渡性亲铁元素,在内生成矿作用 中,Mo 主要与 S 结合形成辉钼矿(MoS₂)(张合 山,2020)。在斑岩型铜钼矿中,辉钼矿与黄铜矿 紧密共生。

429

F2因子: Pb-Ag-Sb组合。由表6和表7可 知,该因子的方差贡献率为21.665%, Pb和Ag元 素对F2因子的影响相近,分别为0.889和0.869。 Pb、Ag、Sb均为亲硫元素,是中低温热液成矿元 素组合。

F3 因子: As-W-Au 组合。由表 6 和表 7 可 知,该因子的方差贡献率为 21.431%, As 和 W 元 素对 F3 因子的影响相近,分别为 0.796 和 0.778。 Au 是亲铁元素, W 是亲铁/亲石元素, 两者均可在

	成分	矩阵 ^a		旋转后的成分矩阵*				
元素	成分1	成分2	成分3	元素	成分1	成分2	成分3	
Sb	0.713	0.136	-0.035	Cu	0.804	0.083	-0.154	
Ag	0.702	0.093	-0.520	Zn	0.778	0.031	-0.077	
Pb	0.657	-0.130	-0.603	Мо	0.696	0.014	0.110	
Au	0.634	-0.119	0.444	Pb	-0.125	0.889	0.080	
As	0.628	-0.487	0.284	Ag	0.115	0.869	0.051	
Cu	0.223	0.779	0.140	Sb	0.334	0.547	0.343	
Zn	0.224	0.718	0.215	As	-0.121	0.254	0.796	
W	0.332	-0.592	0.460	W	-0.243	-0.084	0.778	
Мо	0.299	0.555	0.315	Au	0.261	0.157	0.722	
提取方法:主成分分析法。a.提取了3个成分			提取方法:	主成分分析法。 旋转方法:凯撒亚	1.旋转在5次迭代 E态化最大方差法	后已收敛。 去		

表 7 成分矩阵表 Table 7 Component matrix

Fig. 9 Spatial distribution plot of rotated factor loadings

中高温热液成矿阶段富集。As 是亲硫元素,除了 与W、Au 元素相关外,还与Sb 元素低度相关,说 明As 元素从高温到低温热液成矿作用中均可出 现,可作为指示元素。

3个因子的方差贡献率相差甚微,难以确定 一个主要成矿元素组合,反映了研究区成矿作用 的复杂性。

5.4 优势及局限性

地球化学数据通常包含多种元素(变量),多 元统计分析能够同时处理多变量间的复杂关系, 揭示元素组合共生规律,高效识别与矿化相关的 异常元素组合。此外,多元统计分析(因子分析) 能够将高维数据降维,提取主要特征,简化数据解 释,突出关键信息。多元统计分析还提供统计显 著性检验(因子载荷显著性),减少人为主观判断 的偏差,增强结论的可信度。

因地质过程的复杂性和空间特征的简化导致 多元统计分析在找矿应用中也存在一些局限。地 质成矿过程常涉及多期次流体叠加、元素分异等 非线性作用,而多元统计分析基于线性模型(如因 子分析的线性组合),刻画的元素共生关系不一定 完全准确。此外,该统计方法未考虑数据的空间 分布特征(如空间自相关性),导致无法区分不同 地质作用形成的异常。

6异常特征

为了更直观地了解元素组合分布规律,在因

子分析的基础上,将元素含量数据经过因子分析 后得出的因子得分数值,采用 85% 累积频率法计 算各因子的异常下限。85% 累积频率法的基本原 理是将一组数据从小到大排序,然后计算每个数 值的频率,从小到大依次累积数值的频率,将累积 频率达到 85% 时的数值作为异常下限(伍翔, 2019)。这种方法利用了所有数据,且计算步骤简 单,对数据没有要求。各因子异常下限计算结果 见表 8,按异常下限的 1、2、4 倍勾绘异常的外、 中、内三个浓度带。

表 8 因子得分异常下限

Table 8 Factor score anomaly lower limit

因子	F1	F2	F3
异常下限	0.9931	0.7063	0.6983

6.1 F1 (Cu-Zn-Mo)因子得分异常

F1 因子得分异常(图 10)主要分布于 NWW 向断裂 F₁ 南侧, 异常绝大部分位于寒武系黄洞口 组。异常长轴为南北向, 呈带状分布, 与南北向断 裂 F₇、F₈ 及其次级断裂套合较好, 异常强度较 弱。F1 因子(Cu-Zn-Mo)反映中高温热液成矿元 素组合。

6.2 F2 (Pb-Ag-Sb) 因子得分异常

F2 因子得分异常(图 11)主要分布于研究区 中部寒武系黄洞口组和泥盆系莲花山组下段不整 合界线两侧,绝大部分位于北西西向断裂 F₁北 侧。异常呈不规则面状或带状分布,部分与南北 向断裂套合较好,异常强度较高。F2 因子(Pb-Ag-Sb)反映中低温热液成矿元素组合,与中低温 热液成矿作用有关。

6.3 F3 (As-W-Au)因子得分异常

F3因子得分异常(图 12)分布较分散,在寒武 系黄洞口组和泥盆系莲花山组下段中均有分布。 异常呈南北向带状分布,与南北向断裂套合较 好。F3因子(As-W-Au)反映中高温热液成矿元 素组合,异常整体规模不大,但个别异常强度较 高,分带清晰,可能与中深部的中高温热液成矿作 用有关。

6.4 元素分布规律

谌大为等(1981)根据航磁异常特征推测镇龙

Fig. 10 F1 factor scores anomaly map of the Qixingshan survey area

1. 泥盆系莲花山组上段; 2. 泥盆系莲花山组下段; 3. 寒武系黄洞口组; 4. 寒武系小内冲组上段; 5. 地质界线;
6. 不整合界线; 7. 实测/推测断层; 8. 研究区

山隐伏岩体沿小圣-长帽岭断裂(F₁)南侧侵入。黄 金明等(2015)利用重磁异常反演出隐伏岩体的形 态,岩体整体东西走向,基本为椭球状,北侧陡, 以 F₁为界,南侧缓,整体埋深 500~1000 m。据 此,建立研究区元素运移方向模型(图 13)。

热液从岩体顶部向上运移,高温热液成矿元 素(F1因子)Cu、Zn、Mo在离岩体不远处先沉淀, 而岩体位于 F₁断裂南侧,因此 Cu、Zn、Mo元素 主要分布于 F₁断裂南侧,且远离地表,造成整体 异常强度较弱。热液进一步上升到中部,因有南 北向断层作为通道,中高温热液成矿元素(F3因 子)As、W、Au通过南北向断层向两侧运移,因此 As、W、Au元素分布于 F₁断裂两侧,异常强度较 Cu、Zn、Mo元素有所提升。热液上升到浅表部, 中低温热液成矿元素(F2因子)Pb、Ag、Sb趋于 远离岩体,通过南北向断层向北运移在浅表部沉 淀,异常强度较高。

综上所述,3组元素组合形成垂向上的元素 分带,浅表部为 Pb、Ag、Sb,中深部为 As、W、 Au,深部为 Cu、Zn、Mo。 华南地质

图 11 七星山调查区 F2 因子得分异常图

Fig. 11 F2 factor scores anomaly map of the Qixingshan survey area

1. 泥盆系莲花山组上段; 2. 泥盆系莲花山组下段; 3. 寒武系黄洞口组; 4. 寒武系小内冲组上段; 5. 地质界线;
6. 不整合界线; 7. 实测/推测断层; 8. 研究区

6.5 异常与地层、构造的关系

本区组合异常在寒武系小内冲组上段、黄洞 口组和泥盆系莲花山组下段中均有发育,异常与 地层或岩性的关系不明显,这3个地层岩性均为 碎屑岩,岩性相近,均可作为赋矿层位,异常验证 结果在这3个地层中均发现矿(化)体(图14)。异 常明显受断裂构造和与隐伏岩体的相对空间位置 控制,隐伏岩体空间位置控制组合异常分布,而断 裂构造控制异常形态。

7 找矿靶区圈定

7.1 异常验证

槽探工程主要用于验证 Pb-Ag-Sb 因子得分

6. 不整合界线; 7. 实测/推测断层; 8. 研究区

异常高值点。本次工作通过槽探工程揭露共发现3个矿体、8个矿化体,其中①号银铅矿(化)体和④号铅锌银锑矿体地表延伸规模较大(图14),沿走向未完全控制。

①号银铅矿(化)体呈脉状产于南北向断裂 F₇中,矿体北段真厚度 0.69 m, Ag 品位 101×10⁻⁶ (米·克/吨值为 69.69), Pb 品位 0.55×10⁻²。矿体南 部为银铅锑矿化体, 控制长度约 600 m, 真厚度 0.42 ~ 0.82 m, Ag 品位 18.4×10⁻⁶ ~ 28.4×10⁻⁶, Pb 品位 0.39×10⁻², Sb 品位 0.34×10⁻²。

④号铅锌银锑矿体呈脉状产于南北向断裂 F₂₃中,地表由4个槽探工程控制,控制矿体长度 约1km,北段为铅矿伴生银,南端为铅锌银锑共 生矿。矿体真厚度0.95~1.22m,平均真厚度 1.08m。Pb品位0.46%~2.10%,平均品位0.99%。 北段Ag品位18.8×10⁻⁶~34.7×10⁻⁶,南端Ag品 位90.2×10⁻⁶, Sb品位0.62%, Zn品位0.85%。矿 体以南为铅矿化体,控制长度约200m,真厚度

0.53 m, Pb 品位 0.43%, Ag 品位 7.8×10⁻⁶。

7.2 靶区圈定

本次工作采用综合信息法圈定一处找矿靶区 (编号 B-1)(图 14),即七星山-小圣山铅银锑矿找 矿靶区。依据成矿地质条件、矿产资源潜力和地 质工作程度将靶区划分为 B 类(中华人民共和国 自然资源部,2023),找矿潜力较大。

8 结论

(1)Pb、Ag、Sb元素是广西镇龙山穹窿七星 山调查区内主要的目标矿种,地表成矿的可能性 较大,与中低温热液成矿作用有关。As、W、Au

图 14 七星山调查区找矿靶区预测图

1. 泥盆系莲花山组上段; 2. 泥盆系莲花山组下段; 3. 寒武系黄洞口组; 4. 寒武系小内冲组上段; 5. 地质界线; 6. 不整合界线;
7. 实测/推测断层; 8. 研究区; 9. 找矿靶区及编号; 10. 矿体及编号; 11. 矿化体及编号

Fig. 14 Mineral prospecting target area prediction map of the Qixingshan survey area

元素在研究区中深部亦具有成矿的可能性,与中高温热液成矿作用有关。Cu、Zn、Mo可能与深部隐伏岩体的成矿作用有关。研究区内从地表到深部,矿床类型可能从热液型矿床转变至斑岩型矿床,在垂向空间上形成由不同矿床类型不同矿种组成的成矿系列。

(2)研究区组合异常(因子得分异常)与地层 或岩性的关系不明显,异常明显受断裂构造和隐 伏岩体的相对空间位置控制,隐伏岩体空间位置 控制组合异常分布,而断裂构造控制异常形态。

(3)靶区矿化异常发育,地表找矿效果较好, 下一步工作建议以 Pb、Ag、Sb 为主攻矿种,运用 槽探和钻探工程控制①号和④号矿体,查明矿体 的规模、形态及空间分布特征,以期发现具有工业 意义的矿体。此外,采用地、物、化、遥多种技术 方法,研究隐伏岩体发育位置、埋深、规模和形态 等产状特征,重点研究隐伏岩体顶界形态与矿床 (点)的对应关系,为开展隐伏岩体验证及寻找与 之有关的矿床提供依据。

参考文献:

- 陈港,葛锐,李杨林,王昱,庞宏海,黄锐,吴启强.2023.广西 镇龙山岩浆热液成矿系统——来自成矿流体、成矿 物质的证据 [J]. 地质通报,42(10):1-26.
- 谌大为,麦广田,徐守伦,张振雄. 1981. 广西来宾—贵县地区 航空磁力和放射性测量成果报告 [R]. 广西航空物探队.
- 韩鹏.2019. 西藏雄村矿集区土壤、岩石地球化学特征及 找矿靶区圈定 [D]. 成都理工大学硕士学位论文.
- 何晓群. 2019. 多元统计分析 (第 5 版)[M]. 北京:中国人民 大学出版社.
- 胡云沪,罗红波,林煜强,曾少尉,臧进前.2012.广西"镇龙山 穹窿"银锑多金属矿成矿地质条件分析和成矿规律研 究[J]. 矿产与地质,26(1):40-44.
- 黄金明,张明华,杨海翔,谢顺胜. 2015. 华南地区深部岩体 圈定 [R]. 中国地质调查局发展研究中心.
- 贾俊平,何晓群,金勇进.2018. 统计学 (第7版)[M]. 北京:中国人民大学出版社.
- 孔 丹. 2008. 投资组合的 VaR 模型及基于 Garch 类模型 的 VaR 计算 [D]. 广州大学硕士学位论文.
- 黎 彤,袁怀雨,吴胜昔,程先富.1999.中国大陆壳体的区域元 素丰度 [J]. 大地构造与成矿学,23(2):2-8.
- 李培喜.1993.广西镇龙山金(银)矿的构造控制特征[J]. 黄

金,(12):1-6.

- 李森林. 2017. 吉林省临江市蚂蚁河地区地质地球化学特 征及成矿预测 [D]. 吉林大学硕士学位论文.
- 梁明建,陈良,杨珊福. 2021. 广西宾阳县七星山锑银矿选 点调查报告 [R]. 广西壮族自治区二七三地质队.
- 刘娅莎.2012. 湖南省溆浦县陶金坪金矿床土壤地球化学 特征及其找矿意义 [D]. 中南大学硕士学位论文.
- 罗先熔,文美兰,欧阳菲,唐甲光. 2012. 勘查地球化学 [M]. 北京:冶金工业出版社.
- 邱宏蕊. 2023. 黑龙江省五道沟土壤地球化学异常特征及 找矿研究 [D]. 桂林理工大学硕士学位论文.
- 《数学辞海》编辑委员会. 2002. 数学辞海 第4卷 [M]. 太原:山西教育出版社.
- 覃宝灵.2007.聚类分析技术及其应用研究 [J]. 广西工学院 学报,18(3):105-108+112.
- 汪炎汝. 2021. 多元统计分析 [M]. 长沙:中南大学出版社.
- 王建设.2015. 广西大厂李家坳铅锌矿区土壤地球化学特 征及找矿预测 [D]. 昆明理工大学硕士学位论文.
- 王伟东. 2017. 河北省康保县北沙城铅锌多金属矿区土壤 地球化学测量及找矿预测 [D]. 河北地质大学硕士学 位论文.
- 王 昱,孔志岗,陈懋弘,陈 港,李杨林.2022.广西镇龙山地区 花岗斑岩岩石地球化学及年代学研究 [J]. 矿床地 质,41(4):789-805.
- 伍 翔. 2019. 土壤地球化学测量在西藏狮泉河电站地区的 找矿应用 [D]. 成都理工大学硕士学位论文.
- 肖军军. 2020. 江西省铜鼓县九峰矿区土壤地球化学异常 与金矿找矿预测 [D]. 南京大学硕士学位论文.
- 徐龙生,路瀚,黄天统,苑东洋.2022.多元统计分析思想在地 球物理与地球化学勘查中的应用 [J]. 中国锰 业,40(4):29-36.

阳正熙,吴堑虹. 2008. 地学数据处理 [M]. 北京:科学出版社.

- 杨红亮.2021. 土壤地球化学及电导率方法在广西隆林金 矿区的找矿应用 [D]. 桂林理工大学硕士学位论文.
- 余 烨,张昌民,李少华,朱锐,杜家元,王 莉.2014.多元统计分 析在地质学中的应用—以惠州凹陷 M 层物源分析为 例 [J]. 地质科学,49(1):191-201.
- 张合山. 2020. 铜钼混合浮选中矿再选流程的优化研究 [D]. 东北大学硕士学位论文.
- 张武饰,黄锐,梁明建.2020.浅谈广西镇龙山穹窿铜矿成矿 地质条件及成矿规律 [J]. 世界有色金属,(22):97-98.
- 郑文兵.2012.正态分布的哲学本质及其社会经济应用意 义[J].统计与决策,(7):23-26.
- 中华人民共和国自然资源部. 2023. 固体矿产地质调查规 范(1:50000)(DZ/T 0426-2023)[S]. 北京:地质出版社.