www.cagsbulletin.com www.地球学报.com

广西富贺钟钨锡多金属矿集区稀有气体 同位素特征及其地质意义

蔡明海¹⁾, 彭振安¹⁾, 长尾敬介²⁾, 王显彬¹⁾, 郭腾飞¹⁾, 刘 虎¹⁾

1)广西大学资源与冶金学院, 广西南宁 530004; 2)东京大学大学院理学系研究科地壳化学实验室, 日本东京 113-0033

摘 要: 桂东北富贺钟地区是广西重要的有色金属基地之一,在姑婆山复式岩体的西南缘产出有新路、水岩 切和珊瑚3个主要钨锡多金属矿田。本文对不同矿田典型矿床分别开展了稀有气体同位素研究,根据黄铁矿 流体包裹体 He、Ar、Ne 同位素组成,进一步讨论了区内钨锡成矿流体来源和壳-幔成矿作用过程。结果表 明,黄铁矿流体包裹体 ³He/⁴He=0.53~4.53 Ra、⁴⁰Ar/³⁶Ar=315.58~600.55、³⁸Ar/³⁶Ar=0.18688~0.19102、 ²⁰Ne/²²Ne=9.737~9.848、²¹Ne/²²Ne=0.0291~0.0304,显示成矿流体为地壳流体、幔源流体和饱和大气水的混 合物,成矿过程中有地幔物质的加入,地幔 He 约占 8.7%~75.7%。结合区内成岩、成矿的测年资料及岩石成 因等综合分析认为,区内中生代发生了多期次壳-幔相互作用,且作用强度经历了强 弱 强的演化过程, 分别导致了姑婆山岩体主体岩性(165~160 Ma)和晚期细粒花岗岩(154~151 Ma)的侵位,以及钨锡多金属成 矿作用(136~100 Ma),成矿与晚期的细粒花岗岩同位但不同时。 关键词:成矿流体;稀有气体同位素;钨锡矿床;广西富贺钟地区

中图分类号: P595; P597 文献标志码: A doi: 10.3975/cagsb.2013.03.04

Isotopic Characteristics of Noble Gases of the Fuchuan-Hezhou-Zhongshan W-Sn-polymetallic Ore Concentration Area in Northeastern Guangxi and Their Geological Significance

CAI Ming-hai¹⁾, PENG Zhen-an¹⁾, NAGAO Keisuke²⁾, WANG Xian-bin¹⁾, GUO Teng-fei¹⁾, LIU Hu¹⁾

College of Resources and Metallurgy, Guangxi University, Nanning, Guangxi 530004;
 Laboratory for Earthquake Chemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan 113-0033

Abstract: Located at the conjunction of Fuchuan County, Hezhong City and Zhongshan County in northeastern Guangxi, the Fuchuan-Hezhou-Zhongshan W-Sn-polymetallic ore concentration area is one of the important nonferrous metal producing areas in Guangxi. It consists of three W-Sn-polymetallic orefields (Xinlu, Shuiyanba and Sanhu) lying on the southwestern margin of the Guposhan composite granite mass. In order to study the material sources and metallogenic mechanism of W-Sn-polymetallic deposits in the Fuchuan-Hezhou-Zhongshan ore concentration area, the authors analyzed the noble gases isotopic components of fluid inclusions in pyrite from the Baimianshan Sn-Zn deposit, the Shuiyanba W-Sn deposit and the Changyingling W-Sn deposit. The results indicate that ³He/⁴He ratios are 0.53~4.53 Ra, ⁴⁰Ar/³⁶Ar ratios are 315.58~600.55, ³⁸Ar/³⁶Ar ratios are 0.18688~0.19102, ²⁰Ne/²²Ne ratios are 9.737~9.848, and ²¹Ne/²²Ne ratios are 0.0291~0.0304. The data obtained

本文由广西科技厅自然基金项目"广西富贺钟钨锡矿集区壳幔成矿作用研究"(编号:桂科自 0728024)资助。 收稿日期: 2012-06-08; 改回日期: 2012-12-28。责任编辑:张改侠。

第一作者简介: 蔡明海, 男, 1965 年生。博士, 研究员。主要从事矿床学教学和科研工作。通讯地址: 530004, 广西南宁市大学东路 100 号。E-mail: gxdxcmh@163.com。

suggests that the ore-forming fluid was mixed with meteoric water, mantle fluid and crustal fluid, and the proportion of He derived from the mantle was 8.7%~75.7%. A synthetic analysis of the dating results of the Guposhan granites and mineralization as well as the genesis of granites shows that the Fuchuan-Hezhou-Zhongshan ore concentration area experienced poly-phase crust-mantle interaction in Mesozoic, and the crust-mantle interaction underwent the evolution from high intensity through low intensity to high intensity, resulting in the magmatic emplacement of Guposhan granites (165~160 Ma) and late fine-grained granite (154~151 Ma) as well as mineralization of the W-Sn-polymetallic deposit (136~100 Ma) respectively. The metallogenic epoch was later than that of late fine-grained granite, whereas the W-Sn-polymetallic ore bodies occurred in the same place as the late fine-grained granite.

Key words: ore-forming fluid; noble gases isotope; W-Sn deposit; Fuchuan-Hezhou-Zhongshan area of Guangxi

桂东北富川、贺州和钟山三县(市)交界处(习称 富贺钟地区)是一个钨锡多金属矿集区,在姑婆山 复式岩体西南缘产出有新路、水岩坝、珊瑚等钨锡 矿田。前人在该区进行了大量研究工作, 欧忠远 (1989)、欧阳成甫等(1993)和谢国源等(1994)分别以 "地质力学"和"地洼理论"为指导,对区内控岩、 控矿构造进行了研究;张德全等(1985)、朱金初等 (2006a, b)和顾晟彦等(2006)对区内花岗质岩石的岩 石学、地球化学、年代学及成因进行了探讨;邓庆 平(1985)、章雨旭(1987)、宋慈安(1990)、邱亮斌等 (1992)、胡火炎等(1992)、李华芹等(1993)、顾晟彦 等(2007)和李晓峰等(2011)对区内矿床特征、成矿物 质来源、成矿物理化学条件、成矿分带及成矿时代 等进行了研究。近年来研究表明、区内姑婆山岩体 的成岩过程中有幔源物质的参与(朱金初等, 2006a; 顾晟彦等, 2006; 赵葵东等, 2009), 但对于成矿过程 中是否也同样存在壳-幔相互作用缺乏研究。为此, 本文开展了区内的典型矿床稀有气体同位素研究, 进一步讨论了区内钨锡多金属矿床的流体来源和 売-幔作用过程。

富贺钟钨锡多金属矿集区位于华南一条特殊的 NE 向低 t_{DM} 、高 ε_{Nd} 花岗岩带(十—杭带)(Gilder et al., 1996)内,北东与柿竹园、骑田岭、香花岭等所在的 "湘南钨锡多金属矿集区"毗邻(图 1)。

区内出露的基底岩系为震旦系—寒武系一套厚 约 6000 m 的复理石建造,盖层则由泥盆系、石炭系 和侏罗系地层组成。其中,泥盆系为主要赋矿层位, 自下而上依次为:下泥盆统莲花山组(D₁/)砂页岩, 那高岭组(D₁n)灰岩、砂页岩;中泥盆统郁江组(D₂y) 砂页岩,东岗岭组(D₂d)灰岩夹白云质灰岩;上泥盆 统桂林组(D₃g)白云质灰岩及融县组(D₃r)灰岩夹白 云岩。

区内基底构造以近 EW 向隆褶带为主, 盖层构 造则以断裂为主。总体构造特征是在近 EW 向 花山—姑婆山和将军岭—葫芦岭隆褶带上叠加有近 SN 向、NE 向和 NW 向等方向的断裂构造。中泥盆 统郁江组砂页岩与东岗岭组灰岩夹白云质灰岩界面 附近的顺层破碎带, 以及不同方向的断裂、裂隙为 区内主要容矿构造。

区内的姑婆山复式岩体出露面积约 622 km², 呈浑圆形产出(图 1)。主体岩性由早期的角闪黑云二 长花岗岩(里松岩体)、中粗粒斑状黑云母花岗岩(东 岩体)和中细粒斑状黑云母花岗岩(西岩体)组成,三 者之间无明显的侵入接触关系,里松岩体中发育有 含闪长质暗色包体。晚期细粒花岗岩主要出露于新 路一带,在水岩坝矿田的烂头山矿区工程揭露有隐 伏的晚期细粒花岗岩。

图 1 畠贡钾玛扬多金属负集区地质略图 Fig. 1 Simplified geological map of the Fuchuan-Hezhou-Zhongshan W-Sn-polymetallic ore concentration area

1 主要钨锡矿床特征

研究区内具有一定规模的钨锡多金属矿床主要 分布在新路、水岩坝及珊瑚 3 个矿田中(图 1)。关于 区内矿床特征已有较多文献报道(邓庆平, 1985; 宋 慈安, 1990; 邱亮斌等, 1992; 胡火炎等, 1992; 顾晟 彦等, 2007), 以下仅作扼要叙述。

1.1 新路矿田白面山锡锌矿床

新路矿田位于姑婆山岩体南缘接触带的内凹部 位,以锡锌成矿为主,钨不具工业价值。白面山锡石 硫化物型锡锌矿床是矿田内最具代表性矿床。

白面山矿床产在晚期细粒花岗岩外接触带的中 泥盆统地层中,锡锌矿体呈似层状和脉状产出,以 前者为主。似层状矿体主要赋存于中泥盆统郁江组 砂页岩与东岗岭组灰岩界面附近的层间破碎带中; 脉状矿体则产在 SN 向断裂和东岗岭组灰岩中的 NE 向裂隙内。层状矿体和脉状矿体具有相同的矿化特 征,矿石类型主要为稀疏-稠密浸染状硫化物矿石, 矿物组成为磁黄铁矿、铁闪锌矿、黄铁矿、毒砂、 锡石、脆硫锑铅矿、方铅矿、黄铜矿以及石英、方 解石等。近矿围岩发生了较强烈的硅化、透闪石化、 绢云母化、黄铁矿化、萤石化等蚀变。

1.2 水岩坝矿田烂头山钨锡矿床

水岩坝矿田产在姑婆山岩体西南缘,以钨锡成 矿为主,烂头山石英脉型钨锡矿床是矿田内规模最 大的矿床。烂头山钨锡矿床北东约 0.5 km 为早期中 细粒斑状黑云母花岗岩(姑婆山西岩体),在深约 300 m 处钻孔揭露到隐伏的晚期细粒花岗岩。钨锡 矿化产在隐伏细粒花岗岩顶部的中泥盆统东岗岭组 大理岩化灰岩中,由 NW 向钨锡石英脉和近地表产 出的近 EW 向含锡细脉密集带组成,以前者为主体。 矿石的矿物组成为黄铁矿、黑钨矿、白钨矿、锡石、 磁黄铁矿、石英、萤石、黄玉等,近矿围岩发生了 云英岩化、硅化、萤石化、电气石化等蚀变。

1.3 珊瑚矿田长营岭钨锡矿床

珊瑚矿田位于研究区西南侧,以钨锡成矿为主, 成矿分带以长营岭隐伏岩体为中心,由内向外为 W、Sn W、Sb,更外侧出现 Pb、Zn 和 Hg 矿化。 长营岭钨锡石英脉矿是矿田内规模最大的矿床。

长营岭钨锡矿床赋矿围岩为下泥盆统莲花山 组、那高岭组以及中泥盆统郁江组一套碎屑岩, NE 向含矿石英脉陡倾斜穿层产出。在长约 2.5 km、宽 0.6~1 km 的范围内共发现有钨锡石英脉 700 多条, 其中工业矿脉 200 余条,构成一 NE 向展布的钨锡矿 带。工业矿脉一般长 500~700 m、厚 0.1~0.8 m、延 深 300~500 m,受 NE 向张扭性裂隙控制。由地表向 下,脉体形态依次为线脉带 细脉带 中脉带 大 脉带。矿物组合分带自上而下为萤石、黄玉、云母、 锡石 黑钨矿、锡石 黑钨矿、硫化物、碳酸盐, 黄 铁矿为贯通矿物。

2 样品采集及分析方法

测试样品分别采自新路矿田的白面山矿床、水 岩坝矿田的烂头山矿床和珊瑚矿田的长营岭矿床坑 道内,具体采样位置及样品特征见表 1。

本次测试用样品均采自坑道内,然后从所采矿 石样品中挑纯黄铁矿进行测试。黄铁矿单矿物挑选 在广西大学矿物加工实验室完成。稀有气体组分测 试在日本东京大学大学院理学系研究科地壳化学实 验室进行,采用压碎样品精制装置抽取气体,冷却 分离稀有气体,在改进的 VG5400 稀有气体静态质 谱仪上精确检测完成,具体分析方法和流程详见 Sumino 等(2001)。实验测试误差小于 10%(1 σ)。其 中,⁴He、²⁰Ne、⁴⁰Ar、⁸⁴Kr 和 ¹³²Xe 的实验 空 白 本 底 分 别 为 (1.5~4.5)×10⁻¹¹ ccSTP、 (0.8~1.9)×10⁻¹² ccSTP、(3.8~8.4)×10⁻¹⁰ ccSTP、(1.7~5.3)×10⁻¹⁴ ccSTP 和(2.2~9.6)×10⁻¹⁵ ccSTP; He 同位素标样的 ³He/⁴He 为(28.88±0.14)×10⁻⁵(HESJ)。

3 分析结果及讨论

黄铁矿单矿物流体包裹体稀有气体同位素测试 结果见表 2。

本次测试用样品均为封闭程度高、He 扩散系数 低的黄铁矿单矿物, He、Ar、Ne、Kr、Xe 等同位素

Table 1 Characteristics and location of samples for noble gas analysis										
样品编号	采样位置									
BMS001	白面山 112 m 由段 2 号层状矿体	稠密浸染状锡锌矿石,主要金属矿物为黄铁矿、磁黄铁矿、锡石、铁闪锌矿、毒砂等								
BMS003										
LTS001	烂头山 161 m 标高	含钨石英脉矿石,石英脉内见黄铁矿、黑钨矿,偶见黄铜矿、锡石								
LTS002	烂头山 253 m 标高	含钨石英脉矿石,石英脉内见有黄铁矿、黑钨矿、孔雀石、锡石								
CYL004	长营岭 52 号脉 75 m 中段	含黄铁矿、黑钨石英矿脉矿石,黄铁矿呈团块状,黑钨矿呈板状								
CYL005	长营岭 15 号脉 35 m 中段	含黄铁矿、黑钨矿石英脉矿石,黄铁矿呈团块状,黑钨矿呈板状								

表1 稀有气体测试样品采集位置及样品特征

含量具有谐和分配特征(表 2、图 2), 说明本次测试 精度是可靠的。

3.1 流体包裹体稀有气体同位素特征

(1)He-Ar 同位素

He、Ar 为稀有气体中研究与应用最多的同位素, 且以 He 同位素研究程度最高。研究表明(Simmons et al., 1987; Stuart et al., 1995; Burnard et al., 1999), 热 液流体中 He、Ar 同位素主要有大气饱和水、地幔流 体和地壳流体 3 种来源,且不同来源的 He、Ar 同位 素组成及其特征比值具有明显差别: (1)大气饱和水 ³He/⁴He = 1 Ra (Ra=1.4×10⁻⁶), ⁴⁰Ar/³⁶Ar = 295.5, ³⁸Ar/³⁶Ar = 0.1880; (2)深源地幔流体,以高 ³He 为特 征, ³He/⁴He 一般为 6~9 Ra, Ar 以放射性 ⁴⁰Ar 为主, ⁴⁰Ar/³⁶Ar > 40,000; (3)地壳流体(包括建造水或盆地 热卤水), ³He/⁴He 介于 0.01~0.05 Ra 之间, ⁴⁰Ar/³⁶Ar > 295.5。

从表 2 可以看出,研究区 6 个样品的 ⁴He 和 ⁴⁰Ar 的浓度变化范围较窄。⁴He 为 (137~463) ×10⁻⁹ cm³STP/g,其中,白面山锡石硫化物型矿石中 含量较高((361~463)×10⁻⁹ ccSTP/g),烂头山钨锡石 英脉中含量居中((206~299)×10⁻⁹ ccSTP/g),长营岭 钨锡石英脉中含量最低((137~171)×10⁻⁹ ccSTP/g), ⁴He 含量与 ³He/⁴He 比值图上(图 3),成分点均落在 含量较高的 cut-off 线右侧(Gautheron et al., 2005), 显示矿物流体包裹体中普遍含有较高的放射性成因 ⁴He。

³He/⁴He 比值介于 0.53~4.53 Ra 之间, 明显低于 地幔特征值, 但大大高于地壳流体的比值, 表明成 矿流体中有地幔 He 混入。 ⁴⁰Ar 含量在(61~210)×10⁻⁹ ccSTP/g 之间,
³⁸Ar/³⁶Ar比值为0.18688~0.19102,平均0.18876,与
饱和大气水成分基本相同;⁴⁰Ar/³⁶Ar 比值
315.58~600.55,平均435.83,接近或高于大气饱和水的特征值,但远低于地幔流体比值。

在³He/⁴He-⁴⁰Ar/³⁶Ar 图 解(图 4)中,和 ³He/⁴He-⁴⁰Ar^{*/4}He 图解(图 5)中,成矿流体 He-Ar 同 位素组成大致具有正相关关系,其投影点均位于大 气饱和水、地幔和地壳所限定的区间内,表明成矿 流体为大气饱和水、地壳流体和地幔流体的混合物。

由于 He 在大气中的含量极低,不足以对流体 中 He 的丰度和同位素组成产生明显影响(Stuart et al., 1995),因此,成矿流体中的 He 主要有地幔和地 壳两个可能的来源。根据简单二元混合模式,应用 下面公式计算成矿流体中幔源 He 所占比例。

地幔 He=(R-Rc)/(Rm-Rc)

图 2 流体包裹体稀有气体同位素含量分布图 Fig. 2 Compositions of noble gases isotopes in fluid inclusions of Fuchuan-Hezhou-Zhongshan area

	Table 2 Isotopic components of noble gases of W-Sn ore in Fuchuan-Hezhou-Zhongshan area								
样号	⁴ He	²⁰ Ne	³⁶ Ar	⁴⁰ Ar	⁸⁴ Kr	¹³² Xe	³ He/ ⁴ He	²⁰ N ₁₀ / ²² N ₁₀	
		/(10 ⁻⁹ ccSTP/g)					/10-6	ine/ ine	
LTS001	206	0.166	0.471	184	0.0134	0.00125	4.857 ± 0.054	9.742 ± 0.093	
LTS002	299	0.103	0.327	178	0.0099	0.00087	6.342 ± 0.059	9.787 ± 0.066	
CYL004	137	0.069	0.171	61	0.0051	0.00055	3.689 ± 0.088	9.739 ± 0.068	
CYL005	171	0.259	0.665	210	0.0186	0.000235	2.859 ± 0.062	9.773 ± 0.084	
BMS001	361	0.13	0.35	210	0.0105	0.00097	1.388 ± 0.036	9.848 ± 0.055	
BMS003	463	0.124	0.27	110	0.0080	0.00084	0.732 ± 0.023	9.737 ± 0.077	
样号	²¹ Ne/ ²² Ne		³⁸ Ar/ ³⁶ Ar		40 Ar/ 36 Ar	R/Ra	$^{40}\mathrm{Ar}^{*}/10^{-9}$	${}^{40}\text{Ar}^{*}/{}^{4}\text{He}$	
LTS001	0.0297 ± 0.0011		0.19102 ±	0.00051	389.77 ± 0.56	3.47	44.430	0.22	
LTS002	0.0304 ± 0.0015		0.18897 ±	± 0.00080	543.50 ± 1.10	4.53	81.178	0.27	
CYL004	0.0297 ±	0.0017	0.18686 ±	: 0.00046	356.25 ± 0.60	2.64	10.371	0.08	
CYL005	0.0291 ±	0.0011	0.18859 ±	: 0.00056	315.58 ± 0.39	2.04	13.348	0.08	
BMS001	0.0304 ±	0.0012	0.18859 ±	: 0.00046	600.55 ± 1.10	0.99	106.911	0.30	
BMS003	0.0297 ±	0.0013	0.18853 ±	± 0.00034	409.35 ± 0.79	0.53	30.694	0.07	

表 2 富贺钟地区钨锡矿石黄铁矿稀有气体同位素组成 le 2 Isotopic components of noble gases of W-Sn ore in Fuchuan-Hezhou-Zhongshan are:

注: ⁴⁰Ar*为经过大气校正的放射成因 ⁴⁰Ar, ⁴⁰Ar*=³⁶Ar×(⁴⁰Ar/³⁶Ar-295.5)。

其中 Rm、Rc、R 分别代表地幔流体、地壳流体 以及样品的³He/⁴He 值, Rm、Rc 分别取 6 Ra 和 0.01 Ra, 求得流体包裹体中地幔 He 的比例为 8.7%~75.5%。 其 中, 新 路 白 面 山 矿 床 为 8.7%~16.4%、珊瑚长营岭矿床为 33.9%~43.6%、水 岩坝烂头山矿床为 57.8%~75.5%。

(2)Ne 同位素

不同来源 Ne 具有不同的同位素组成:大气中 ²⁰Ne/²²Ne 为 9.80、²¹Ne/²²Ne 为 0.029; 原始(太阳 风)²⁰Ne/²²Ne 和 ²¹Ne/²²Ne 分别为 13.5~14.0 和 0.0305~0.034, 地幔 Ne 的同位素组成与原始 Ne 相似; 地幔流体的 ²⁰Ne/²²Ne 和 ²¹Ne/²²Ne 分别为 9.80~13.2 和 0.058~0.068; 地壳中 ²⁰Ne/²²Ne 和 ²¹Ne/²²Ne 分别 为 0~0.3 和 0.1~0.47(Hilton et al., 2002)。

研究区 6 个样品的 ²⁰Ne 含量在(0.069~0.259) × 10⁻⁹ ccSTP/g之间, ²⁰Ne/²²Ne 和 ²¹Ne/²²Ne 值变化不大, 分别介于 9.737~9.848 和 0.0291~0.0304 之间, 平均 值分别为 9.77 和 0.030, 与相应的大气值 9.80 和 0.029 基本一致, 低于地幔流体端元同位素组成, 具 有 饱 和 大 气 水 的 Ne 同 位 素 比 值 特 征 。 在 ²⁰Ne/²²Ne-²¹Ne/²²Ne 图解上, 所有样品均落在大气附 近, 但略偏向于地幔 Ne 的演化曲线(图 6)。

(4)Kr 和 Xe 同位素

本次仅测定了⁸⁴Kr 和¹³²Xe 含量,其含量 变化分别为(0.0051~0.0186)×10⁻⁹ ccSTP/g 和 (0.00055~0.00235)×10⁻⁹ ccSTP/g,变化规律与⁴He、 ²⁰Ne、⁴⁰Ar 谐和一致。

(modified after Hilton et al., 2002)

3.2 成矿流体来源及壳-幔作用过程

3.2.1 成矿流体来源

新路矿田六合坳、白面山、石门矿床氧同位素 (游建胜等, 1993),水岩坝矿田烂头山矿床氢氧同位 素(刘文龙等, 1989),以及珊瑚长营岭矿床氧硫同位 素(杨正文, 1986)研究均表明,富贺钟地区钨锡成矿 流体主要来自岩浆热液。顾晟彦等(2007)对六合坳和 烂头山成矿流体包裹体成分进行了研究,发现气相 成分中 H₂O、CO₂和 CH₄占绝对优势,认为成矿流 体可能来源于地幔。本次稀有气体示踪结果则表明, 区内钨锡多金属矿的成矿流体为壳-幔-大气饱和水 的混合流体,地幔 He 所占比例为 8.7%~75.7%。

3.2.2 成岩过程中壳幔相互作用

Sr-Nd 同位素研究表明(朱金初等, 2006a; 顾晟 彦等, 2006), 姑婆山岩体主体岩性, 包括里松岩体、 东 岩 体 和 西 岩 体 及 里 松 岩 体 中 暗 色 包 体 的 (87 Sr/ 86 Sr)_i为 0.7056~0.7066, $\epsilon_{Nd}(t)$ 为-1.72~-3.57, 反映它们的源区有较多地幔物质参与; 晚期细粒花 岗岩的(87 Sr/ 86 Sr)_i为 0.7173, $\epsilon_{Nd}(t)$ 为-4.13~-5.30, 具强烈 Eu 亏损, 表明源区物质以壳源为主, 幔源物 质混入相对较少。近年来, 赵葵东等(2009)获得里松 花岗岩中锆石的 $\epsilon_{Hf}(t)$ 值为-2.3~+0.3, 其中的闪长 质暗色包体锆石的 $\epsilon_{Hf}(t)$ 值为+2.6~+7.4, 表明暗色 包体和寄主花岗岩形成于不同来源的岩浆, 为岩浆 混合作用提供了直接证据。朱金初等(2006a)进行二 端元壳-幔混合的模拟计算, 得出姑婆山主体花岗岩 中幔源组分约占 50%, 里松岩体中暗色包体中的幔 源组分约占 65%~75%。

3.2.3 壳-幔作用过程

(1)成岩与成矿时间关系

近年来测年资料表明, 姑婆山复式岩体的主体 岩性(里松岩体、东岩体和西岩体), 以及里松岩体中 暗色包体的锆石 LA-ICP-MS U-Pb 及 SHRIMP U-Pb 年龄为(165~160) Ma(朱金初等, 2006b; 顾晟彦等, 2006), 四者在误差范围内基本一致; 新路晚期细粒 花岗岩的锆石 LA-ICP-MS U-Pb 年龄为 151 Ma(朱金 初等, 2006b), 水岩坝晚期细粒花岗岩 Rb-Sr 等时线 年龄为 154 Ma(吕其发等, 1989)。测年资料显示姑婆 山复式岩体形成于侏罗纪, 且主体岩性与晚期细粒 花岗岩之间存在约 10 Ma 时差。

区内成矿可分为早期锡-磁铁矿矽卡岩成矿期 和晚期钨锡多金属成矿期,后者是区内成矿主体。 通过成矿年代学研究,李晓峰等(2011)获得水岩坝 矿床和可达锡矿白云母 Ar-Ar 年龄分别为 (162.5±1.2) Ma和(160.6±1.5) Ma,与姑婆山岩体主 体岩性成岩时代一致,代表了早期锡-磁铁矿矽卡岩 成矿期形成时代。顾晟彦等(2007)获得烂头山含矿石 英脉石英流体包裹体 Rb-Sr 等时线年龄为 (136±2) Ma。李华芹等(1993)获得长营岭含矿石英脉 石英流体包裹体的 Rb-Sr 等时线年龄为 (113.2±4.7) Ma,李晓峰等(2011)测得长营岭两个热 液蚀变白云母 Ar-Ar 年龄为(100.8±0.2) Ma 和 (102.7±1.7) Ma,不同方法得到的成矿年龄数据比较 接近,表明区内钨锡多金属主体成矿时代为白垩 纪。

从上述测年资料看, 区内钨锡多金属成矿的主 要时代与成岩之间均存在明显时差, 成岩主要发生 于侏罗纪, 成矿主要发生在白垩纪, 这一成矿特点 有别于北东侧的湘南矿集区(雷泽恒等, 2009; 蔡明 海等, 2008)。区内控矿断裂及其内的矿化(如新路矿 田F₂中的路花锡矿)穿切了晚期细粒花岗岩, 也表明 区内成矿作用要晚于成岩作用。此外, 新路矿田内 见到晚期细粒花岗岩穿过和捕虏闪长玢岩脉, 六合 坳及白面山矿区也见到含锡硫化物细脉穿过闪长玢 岩, 因此, 闪长玢岩要较细粒花岗岩和成矿早。地质 现象和测年资料均表明, 区内成矿作用滞后于成岩 作用, 但在时间上与晚期细粒花岗岩更接近。

(2)成岩与成矿空间关系

空间分布上, 姑婆山复式岩体不同岩性的接触 带部位均发育有矽卡岩, 但主体岩性接触带部位发 育的是早期含锡磁铁矿型矿化, 该期锡主要进入磁 铁矿及石榴石等矽卡岩矿物晶格, 不具工业价值, 如新路和柯达地区的含锡矽卡岩。钨锡多金属矿主 要分布在晚期细粒花岗岩的外接触带部位, 与主体 岩性则有一定距离, 如新路矿田的白面山、六合坳、 石门等矿床均紧邻细粒花岗岩, 水岩坝矿田烂头山 钨锡矿脉深部钻孔揭露到细粒花岗岩, 矿化中心与 岩凸部位对应。因此, 从空间分布特征来看, 区内钨 锡多金属成矿与晚期细粒花岗岩同位。

(3)壳-幔作用过程

依据野外观察结合测年资料,区内成岩、成矿 过程可表述为:早期形成姑婆山复式岩体主体岩性, 伴随锡-磁铁矿、矽卡岩成矿(165~160 Ma) 晚期细 粒花岗岩(154~151 Ma) 钨锡多金属成矿(136~ 100 Ma)。在早期成岩过程中,幔源组分约占 50%~75%。晚期细粒花岗岩成岩过程中,幔源物质 较少参与,在白垩纪成矿过程中,又有较多的幔源 物质加入,地幔 He 所占比例为 8.7%~75.7%。

由上可知,区内成岩与成矿属壳-幔物质多期次 作用的产物,早先形成壳-幔混合岩浆,后期幔源流 体通过断裂构造上升参与成矿,早先成岩过程中, 壳-幔作用经历了由强到弱的变化过程,其后壳-幔 作用进一步增强, 形成钨锡多金属矿床, 钨锡多金 属矿床在空间上与晚期细粒花岗岩同位但不同时。

4 结论

稀有气体同位素研究表明,富贺钟地区钨锡矿 床中黄铁矿流体包裹体³He/⁴He=0.53~4.53 Ra、 ⁴⁰Ar/³⁶Ar=315.58~600.55、³⁸Ar/³⁶Ar=0.18688~0.19102、 ²⁰Ne/²²Ne=9.737~9.848 、²¹Ne/²²Ne=0.0291~0.0304, 显示区内成矿流体为地壳流体、地幔流体和饱和大 气水的混合物,成矿过程中有地幔流体的显著加 入。

区内壳-幔相互作用强度经历了强 弱 强的 演化过程,分别形成了姑婆山岩体的主体岩性 (165~160 Ma,有较多的幔源物质混入)、晚期细粒花 岗岩(154~151 Ma,以壳源物质为主)和最晚期的钨 锡多金属矿床(136~100 Ma,有较多的幔源物质混 入),成矿与晚期的细粒花岗岩同位但不同时。

参考文献:

- 蔡明海,韩凤彬,何龙清,刘国庆,陈开旭,付建明. 2008. 湘南 新田岭白钨矿床 He、Ar 同位素特征及 Rb-Sr 测年[J]. 地球 学报,29(2):167-173.
- 邓庆平. 1985. 白面山锡石硫化物矿床成因机理初探[J]. 桂林冶 金地质学院学报, 5(3): 239-250.
- 顾晟彦,华仁民,戚华文. 2006. 广西姑婆山花岗岩单颗粒锆石 LA-ICP-MS U-Pb 定年及全岩 Sr-Nd 同位素研究[J]. 地质学 报, 80(4): 543-553.
- 顾晟彦,华仁民,戚华文. 2007. 广西新路-水岩坝钨锡矿田的成 因探讨[J]. 矿床地质, 26(3): 265-276.
- 胡火炎, 邱亮斌, 谢国源, 游建胜. 1992. 广西新路锡矿田成矿 规律研究与隐伏矿床预测[J]. 大地构造与成矿学, 16(3): 221-238.
- 雷泽恒,许以明,王登红,乔玉生,黎传标,陈郑辉.2009. 湖南 桂东-汝城地区钨多金属矿床成矿地质条件及找矿前景[J]. 地球学报,30(6): 812-820.
- 李华芹,刘家齐,魏林. 1993. 热液矿床流体包裹体年代学研究 及其地质应用[M]. 北京:地质出版社:10-27.
- 李晓峰, 肖荣, 冯佐海. 2011. 桂东北地区金属矿床主要类型、成 矿时代及其地质意义[J]. 矿物学报, (S1): 610-611.
- 刘文龙,袁奎荣.1989. 广西新路-水岩坝锡矿床的矿质来源与锡 的萃取机制[J]. 桂林冶金地质学院学报,9(3):283-291.
- 吕其发,熊成云,刘国庆. 1989. 花山-姑婆山一带构造特征及控 岩控矿构造的研究[M]. 武汉:中国地质大学出版社: 80-132.
- 欧阳成莆,陈大克,钱建平. 1993. 广西新路和水岩坝钨锡矿田 的控矿构造[J]. 桂林冶金地质学院学报,13(4):350-356.
- 欧忠远. 1989. 广西新路锡矿田构造控矿分析及成矿预测[J]. 桂 林冶金地质学院学报, 9(4): 387-397.

邱亮斌, 胡火炎. 1992. 白面山锡石硫化物矿床成矿物质来源探

讨[J]. 大地构造与成矿学, 16(1): 109-110.

- 宋慈安. 1990. 广西长营岭钨锡矿床的成矿物理化学条件[J]. 桂 林冶金地质学院学报, 10(1): 57-65.
- 谢国源, 胡火炎. 1994. 广西水岩坝矿田成矿构造演化及脉型矿 床的构造控矿机制研究[J]. 大地构造与成矿学, 18(1): 75-83.
- 杨正文. 1986. 富贺钟地区钨锡矿床控矿条件及找矿方向[J]. 桂 林冶金地质学院学报, 6(2): 119-130.
- 游建胜, 胡火炎. 1993. 广西新路锡矿田某些成矿特征的探讨[J]. 广西地质, 6(2): 53-61.
- 张德全,王雪英,孙桂英. 1985. 关于广西姑婆山-里松岩体的定(侵)位年龄和冷凝历史的探讨[J]. 地质论评,31(3):232-239.
- 章雨旭. 1987. 长营岭钨锡矿床中黑钨矿锡石石英脉成因探讨[J]. 中国地质科学院地质研究所文集, 17(1): 75-83.
- 赵葵东,蒋少涌,朱金初,李亮,戴宝章,姜耀辉,凌洪飞.2009. 桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区 Hf 同位素组成及其成岩指示意义[J].科学通报,54(23): 3716-3725.
- 朱金初,张佩华,谢才富,张辉,杨策. 2006a. 南岭西段花山-姑 婆山 A 型花岗质杂岩带:岩石学、地球化学和岩石成因[J]. 地质学报,80(4): 529-542.
- 朱金初, 张佩华, 谢才富, 张辉, 杨策. 2006b. 南岭西段花山-姑 婆山侵入岩带锆石 U-Pb 年龄格架及其地质意义[J]. 岩石学 报, 22(9): 2270-2278.

References:

- BURNARD P G, HU R Z, TURNER G, BI X W. 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China[J]. Geochimica et Cosmochimica Acta, 63(10): 1595-1604.
- CAI Ming-hai, HAN Feng-bin, HE Long-qing, LIU Guo-qing, CHENG Kai-xu, FU Jian-ming. 2008. He, Ar Isotope Characteristics and Rb-Sr Dating of the Xintianling Skarn Scheelite Deposit in Southern Hunan, China[J]. Acta Geoscientica Sinica, 29(2): 167-173(in Chinese with English abstract).
- DENG Qing-ping. 1985. On the ore-forming mechanism of cassiterite-sulfide deposit in Beimianshan, Guangxi[J]. Journal of Guilin College of Geology, 5(3): 239-250(in Chinese with English abstract).
- GAUTHERON C, MOREIRA M, ALLEGRE C. 2005. He, Ne and Ar composition of the European lithospheric mantle[J]. Chemical Geology, 217(1-2): 97-112.
- GILDER S A, GILL J, COE R S, ZHAO X X, LIU Z W, WANG G X, LIU W L, KUANG G D, WU H R. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China[J]. Journal of Geophysics Research, 101(B7): 16137-16154.
- GU Sheng-yan, HUA Ren-min, QI Hua-wen. 2006. Study on Zircon LA-ICP-MS U-Pb Dating and Sr-Nd Isotope of the Guposhan Granite in Guangxi[J]. Acta Geologica Sinica, 80(4): 543-553(in Chinese with English abstract).

- GU Sheng-yan, HUA Ren-min, QI Hua-wen. 2007. A genetic study of Xinlu-Shuiyanba W-Sn orefield, northeast Guangxi[J]. Mineral Deposits, 26(3): 265-276(in Chinese with English abstract).
- HILTON D R, FISCHER T P, MARTY B. 2002. Noble gases and volatile recycling at subduction zones[J]. Reviews in Mineralogy & Geochemistry, 47(1): 319-370.
- HU Huo-yan, QIU Liang-bin, XIE Guo-yuan, YOU Jian-sheng. 1992. Metallogenetic regularities and prediction of concealed deposits in the Xinlu tin orefield, Guangxi, China[J]. Geotectonica et Metallogenia, 16(3): 221-238(in Chinese with English abstract).
- LEI Ze-heng, XU Yi-ming, WANG Deng-hong, QIAO Yu-sheng, LI Chuang-biao, CHEN Zheng-hui. 2009. Metallogenic Geological Conditions and Tungsten-polymetallic Ore Prospecting in Guidong-Rucheng Area, Hunan Province[J]. Acta Geoscientica Sinica, 30(6): 812-820(in Chinese with English abstract).
- LI Hua-qin, LIU Jia-qi, WEI Lin. 1993. Hydrothermal deposits of fluid inclusions in chronological study of its geological applications[M]. Beijing: Geological Publishing House: 10-27(in Chinese).
- LI Xiao-feng, XIAO Rong, FENG Zuo-hai. 2011. Main types, minerogenetic epoch and its geological significance of metal ore deposits in northeastern of Guangxi[J]. Acta Mineralogical Sinica, (S1): 610-611(in Chinese).
- LIU Wen-long, YUAN Kui-rong. 1989. On the source of ore-forming materials and tin enrichment mechanism of Xinlu-Shuiyanba tin deposits, Guangxi[J]. Journal of Guilin College of Geology, 9(3): 283-291(in Chinese with English abstract).
- LÜ Qi-fa, XIONG Cheng-yun, LIU Guo-qing. 1989. Structure features of Huashan-Guposhan belt and the study of rock and ore controlling structures. Wuhan[M]. Wuhan: China University of Geosciences Press: 80-132(in Chinese).
- OU Zhong-yuan. 1989. Analysis of structural control on mineralization and metallogenic prognosis in Xinlu Sn ore field, Guangxi[J]. Journal of Guilin College of Geology, 9(4): 387-397(in Chinese with English abstract).
- OUYANG Cheng-pu, CHEN Da-ke, QIAN Jian-ping. 1993. The ore-control structure of the W-Sn ore field in Xinlu and Shuiyanba, Guangxi[J]. Journal of Guilin College of Geology, 13(4): 350-356(in Chinese with English abstract).
- QIU Liang-bin, HU Huo-yan. 1992. Study on metallogenic material sources in baimianshan cassIterite-sulfide deposit[J]. Geotectonica et Metallogenia, 16(1): 109-110(in Chinese with English abstract).
- SIMMONS S F, SAWKINS F J, SCHULUTTER D J. 1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits[J]. Nature, 329(6138): 429-432.

- SONG Ci-an. 1990. Study on physicochemical conditions of the formation of the W-Sn quartz vein deposit, Changyingling, Guangxi[J]. Journal of Guilin College of Geology, 10(1): 57-65(in Chinese with English abstract).
- STUART F M, BURNARD P, TAYLOR R P, TURNER G. 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluid: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea[J]. Geochimica et Cosmochimica Acta, 59(22): 4663-4673.
- SUMINO H, NAGAO K, NOTSU K. 2001. Highly sensitive and precise measurement of helium isotopes using a mass spectrometer with double collector system[J]. The Mass Spectrometry Society of Japan, 49(2): 61-68.
- XIE Guo-yuan, HU Huo-yan. 1994. On evolution of metallotectonics and the mechanism of structures controlling vein deposit at the Shuiyanba ore field, Guangxi[J]. Geotectonica et Metallogenia, 18(1): 75-83(in Chinese with English abstract).
- YANG Zheng-wen. 1986. Ore-controlling factors and prospecting guideline of the wolfram-tin deposits in Fu-He-Zhong area of Guangxi[J]. Journal of Guilin College of Geology, 6(2): 119-130(in Chinese with English abstract).
- YOU Jian-sheng, HU Huo-yan. 1993. Discussion on some characteristics of mineralization in Xinlu tin orefield, Guangxi[J]. Geology of Guangxi, 6(2): 53-61(in Chinese with English abstract).
- ZHANG De-quan, WANG Xue-ying, SUN Gui-ying. 1985. Cooling history and emplacement ages of the Guposhan-Lisong granite masses, Guangxi[J]. Geological Review, 31(3): 232-239(in Chinese with English abstract).
- ZHANG Yu-xu. 1987. A study on the genesis of the wolframite cassiterite quartz veins in Changyingling deposit, Guangxi[J]. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 17(1): 75-83(in Chinese with English abstract).
- ZHAO Kui-dong, JIANG Shao-yong, ZHU Jin-chu, LI Liang, DAI Bao-zhang, JIANG Yao-hui, LING Hong-fei. 2009. Hf isotopic composition of zircons from the Huashan-Guposhan intrusive complex and their mafic enclaves in northeastern Guangxi: Implication for petrogenesis[J]. Chinese Science Bulletin, 54(23): 3716-3725.
- ZHU Jin-chu, ZHANG Pei-hua, XIE Cai-fu, ZHANG Hui, YANG Ce. 2006a. The Huashan-Guposhan A-type Granitoid Belt in the Western Part of the Nanling Mountains: Petrology, Geochemistry and Genetic Interpretations[J]. Acta Geologica Sinica, 80(4): 529-542(in Chinese with English abstract).
- ZHU Jin-chu, ZHANG Pei-hua, XIE Cai-fu, ZHANG Hui, YANG Ce. 2006b. Ziucon U-Pb age framework of Huashan-Guposhan intrusive belt, western part of Nanling Range, and its geological significance[J]. Acta Petrologica Sinica, 22(9): 2270-2278(in Chinese with English abstract).