www.cagsbulletin.com www.地球学报.com

土壤覆盖区划分地质单元的化探方法探讨

——以云南易门地区为例

刘洪滔¹⁾,陈百友²⁾,李融雪¹⁾,张豫华¹⁾,张兴林¹⁾

1)云南省有色地质局地质地球物理化学勘查院,云南昆明 650216;
 2)云南省有色地质局,云南昆明 650051

摘 要:选择云南易门地区作为研究试验区,采用微量元素主成分因子-泛克里格模型对地球化学弱信息进 行增强,建立了判识隐伏断裂或地质单元界线的地球化学标志,对在土壤覆盖区划分不同地质单元的地球 化学依据进行了初步探讨。经与地质填图结果对比,证明该方法在实践工作中是可行的,对指导土壤覆盖率 高、地表地质工作难度较大的地区的地质工作具有重要的指导意义。

关键词:土壤覆盖区;地质单元划分;化探方法;易门地区;云南

中图分类号: P632 文献标志码: A doi: 10.3975/cagsb.2013.s1.33

A Tentative Discussion on the Division of Geological Units in the Soil-covered Area: A Case Study of Yimen Area in Yunnan Province

LIU Hong-tao¹, CHEN Bai-you², LI Rong-xue¹, ZHANG Yu-hua¹, ZHANG Xing-lin¹

 Institute of Geological, Geophysical and Geochemical Exploration, Yunnan Nonferrous Metals Geological Bureau, Kunming, Yunnan 650216;
 Yunnan Nonferrous Metals Geological Bureau, Kunming, Yunnan 650051

Abstract: With Yimen area in Yunnan Province as the study area, the authors employed the principal component factor of trace elements with Pan-Kriging model to enhance weak geochemical information, established geochemical criteria for judging and recognizing concealed faults or boundaries of geological units, and made a tentative discussion on the geochemical grounds for dividing geological units in the soil covered area. A comparison with the geological mapping shows that this method is feasible in practice. The results obtained by the authors are of important guiding significance for geological work in soil-covered areas where surface geological work is likely to meet with great difficulties.

Key words: soil-covered area; geological units division; geochemical techniques; Yimen area; Yunnan

长期以来,在土壤覆盖区开展地质工作,要依 靠大量的槽探或浅井工程来确定地质单元的界线, 成本高,效率低。本文结合笔者在多个项目中取得 的研究成果,以云南易门地区为例,通过对地球化 学弱信息进行增强,建立了隐伏断裂或地质单元界 线的地球化学标志,进一步探讨了在土壤覆盖区划 分不同地质单元的地球化学依据。

1 地质概况

按照裂谷构造的观点,云南易门地区属扬子古 大陆西南边缘元古宙昆阳裂谷之武定—易门—元江 裂陷槽中段的易门裂陷盆地南西侧(龚琳等,1996; 杨昌华等,2013),东、西受近南北走向的汤郎—易门 断裂和元谋—绿汁江断裂夹持,南北两端则被北西

本文由中国地质调查局战略性矿产远景调查项目"云南易门地区矿产远景调查"(编号:1212010511502;1212010611801)资助。 收稿日期:2013-04-24;改回日期:2013-05-07。责任编辑:闫立娟。

第一作者简介:刘洪滔, 男, 1969 生。硕士, 高级工程师。主要从事地质化探找矿及研究工作。通讯地址: 650216, 云南昆明市盘龙区昙 小路地安巷 232 号云南省有色地质研究所。电话: 0871-63811744。E-mail: lym0813@tom.com。

一南东向的断裂控制。区内风化壳发育,植被茂密。
 本文选择易门地区具有代表性的新家村—钟山工作
 区作为方法试验区(图 1)。

1.1 地层

区内出露地层主要有中元古界昆阳群绿汁江组

Pudu river fault; - Xiaojiang fault; - Zhaotong–Qujing fault;
Shizong–Mile fault; - Honghe fault; - Ailaoshan fault;
-Dongchuan fault basin; -Bijiaoshan fault basin; -Luwu fault basin; -Yimen fault basin; - Yuanjiang fault basin

(Pt₂lz)、鹅头厂组(Pt₂e)、落雪组(Pt₂l)、因民组(Pt₂y)、
 美党组(Pt₂m)、大龙口组(Pt₂d),以及少量中生界上
 三叠统普家村组(T₃p)和新生界第四系(Q)(表 1)。

1.2 构造

试验区位于南北向的元谋—绿汁江断裂与北西 一南东向的脚家店—峨山断裂的"入"字型交汇部 位的南部,北北西向的富良棚复式背斜的北西翼。 区内褶皱构造总体不发育,断裂构造主要有早期的 近南北向组和北东向组,晚期断裂主要为北西向组 和近东西向组。

(1)褶皱构造

区内出露地层总体上呈单斜构造,地层总体走 向北北西-南南东,倾向北东或南西,局部挠曲发育, 地层倾角在鹅头厂组地层分布区内稍缓,为 10°~50°左右,在落雪组或绿汁江组地层分布区倾角 较陡,一般在50°~65°;部分地层在一定标高段出现 倒转或顺层掩卧褶皱,倾向变为北西或南东,倾角 在5°~48°之间。沿新家村—大黑山一线的绿汁江组 地层中,靠断裂附近局部出现次级背、向斜构造。

(2)断裂构造

区内断裂构造发育。根据断裂展布方向,可分为:近南北向组、北东向组、北西向组和近东西向 组,部分为弧形断裂。

1.3 岩浆岩

区内岩浆岩以(辉长)辉绿岩(βμ)为主,主要发育 在试验区南西角大黑山和棠梨树坡一带。

2 研究方法

对土壤覆盖区的三大岩类(沉积岩、变质岩、岩 浆岩)来说,用化探方法判识隐伏的岩浆岩相对容易 实现(刘洪滔等,2012),而沉积岩、变质岩的判识一 直以来都是地质工作的难点。以碳酸盐岩为例,由 于长期侵蚀和溶蚀作用,碳酸盐岩中的基本造岩元 素 Ca、Mg 绝大部分被淋失转入水溶液后呈 Ca(HCO₃)₂和 Mg(HCO₃)₂搬运,仅有极少量转变为 次生碳酸盐矿物进入粘土,造成碳酸盐岩地区土壤 中 CaO 含量极低,平均值为 0.75%左右,为基岩中 CaO 含量的 1%左右(任天祥等,1998;向运川等, 2010)。因此,即使基岩中主要造岩元素的含量差异 显著,但在土壤中也往往不明显,造成直接用地球 化学图判识困难。

笔者对多个矿区中化探资料的研究表明,如果 不同地质单元之间,存在较稳定的含量差异明显的 微量元素时,运用微量元素的主成分因子-泛克里格 模型(刘洪滔等,2011),能够用化探方法实现对地质

表 1 试验区主要地层特征简表 Table 1 Geological features of major strata in the test area

地层单元					同 庄/m	士 亜 岩 石 米 刑 (改 元 主 1006)	
界	系	统	组	代号	译皮/III	工安石石关至(张远心,1990)	
新	第						
生	四			Q	0~40	砂砾层、砂质粘土及粘土质砂	
界	糸						
中 生 界	三叠系	上 统	普家村组	T ₃ p	135	上部绿灰色云母质砂岩夹砂质泥岩; 下部为灰白色中厚层硅化含砾石 英砂岩	
中元古界	前 震 旦 系	昆阳群	绿汁江组	Pt_2l_Z	>360	灰色泥晶白云岩、白云岩夹白色硅质条带细晶白云岩、泥晶条纹状白 云质灰岩	
			鹅头厂组	Pt ₂ e	935	上部灰色绢云板岩夹砂质板岩、变质石英细砂岩、灰岩及白云岩透镜 体; 下部黑色板岩、炭质板岩夹白云岩	
			落雪组	Pt ₂ l	168	顶部炭泥质薄层白云岩;中上部为青灰色中厚层状泥晶白云岩;下部 为灰白色中厚层状含柱状叠层石硅化白云岩,底部为灰色薄层细晶白 云岩与绿灰色夹紫色钙质板岩互层。中下部白云岩中多有铜矿相伴	
			因民组	Pt ₂ y	307	上部紫色板岩夹肉色砂泥质白云岩、石英砂岩、(角)砾岩;中下部紫色 板岩夹灰色-浅肉色条纹状灰岩、白云岩、白云质石英砂岩、凝灰质(角) 砾岩。白云岩中有铜矿发育	
			美党组	Pt ₂ m	870	上部为砂质板岩与粉砂岩、硅化石英砂岩互层;中下部为灰绿色条带 状板岩夹块状变质泥岩和灰岩及白云岩透镜体;下部为灰色薄层带状 粉砂质板岩、钙质板岩夹薄层(砾状)灰岩	
			大龙口组	Pt ₂ d	684	顶部薄层灰岩、叠层石白云岩;中部蠕条灰岩;下部砂屑灰岩夹钙质石 英砂岩、塌积岩。下部及中上部为含铁层位	

体的初步判识,大幅提高地质工作效率。

2.1 指示元素的选择

由于土壤是基岩遭受物理风化、化学风化和生 物风化的综合改造作用形成的产物(黄薰德等, 1996),研究土壤中元素的地球化学特征离不开对其 母岩的研究。通过对地层(岩石)中微量元素特征的 研究,寻找用于判识地质单元及其界线的"指纹"元 素。以云南省易门地区新家村—钟山工作区为例, 首先较系统采集了不同时代地层(岩石)样品, 统计 结果表明, 微量元素在不同时代地层及岩性的时序 演化与富集规律不同,如 Cu 在同时代的板岩中较 其它岩性富集,Mn(部分文献将 Mn 列入常量元素 (黄薰德等, 1996))在碳酸盐岩中较其它岩性明显富 集等。经过比较,本文初步选择 Mn 作为判识地质 单元及其界线的"指纹"元素,但由于在风化壳中 Mn 的含量受多种因素影响,使其在同一岩性的风 化土中的含量极不均匀(图 2),如果直接将其用于对 地质体进行示踪,效果显然差强人意,需要和与之 有相关性的其他微量元素"叠加"来增强其示踪性 能。

2.2 元素地球化学的主成分因子-泛克里格模型

笔者在易门地区的隐伏深大断裂、区域地球化 学分区研究中,提出主成分因子-泛克里格模型,取 得了较好的地质效果(刘洪滔等,2011)。实现了减少 空间数据相关性、离散空间数据结构性,寻找空间 目标受控条件多元性差异(赵鹏大等,1995)的目的。 并通过坐标变换实现了各主成分在变换后的坐标方 向上方差极大化,将元素的地球化学信息集中分布 到某几个主成分因子分量中。基于这一原理,再次 构建如下的主成分因子-泛克里格模型。

将 F3 因子得分数据点表达成规则网格(栅格)点 阵形式,设在某区域获取网格数据 *X*,表示为数据 集

$$X = \left(x_{ij} \right)_{n \times m},$$

n 为样品数, m 为地球化学元素变量数 (x₁,x₂,L,x_m),按因子分析原始模型:

$$x_j = \sum_{k=1}^p a_{kj} f_k + \mu_j \varepsilon_j, \ j = 1, 2, L m;$$

其中: $f_1, f_2, L, f_p \pp a_{\epsilon_1}, \epsilon_2, L, \epsilon_m$ 都是理论上的 待求新变量(因子), f_1, f_2, L, f_p 叫做公因子,反映 各变量间的相关信息; $\epsilon_1, \epsilon_2, L, \epsilon_m$ 因子仅出现于一 个变量的表达式中,因此称单因子,反映相应变量 的特征信息。正整数 p 是公因子个数,意思是把原 来的 m 个变量简化成少数的因子, 即 p << m;系数 a_{kj} 和 μ_j (j = 1, 2, L, m; k = 1, 2, L, p) 叫做因子载荷, a_{kj} 是公因子负载, μ_j 是单因子负载,由于本文关 心的只是公因子,通常所说的因子载荷仅指 a_{kj} 。

图 2 试验区土壤锰元素平面剖面图

Fig. 2 Geochemical anomaly plan-profile of manganese content of soils in the test area

求其旋转变换解(方差极大旋转或四次幂极小 旋转):

$$B = \begin{cases} x_1 & x_2 & L L & x_m \\ f_1 & b_{11} & b_{12} & L & b_{1m} \\ b_{21} & b_{22} & L & b_{2m} \\ M & M & M & M \\ f_p & M & M & M \\ b_{p1} & b_{p2} & K & b_{pm} \\ \end{cases}_{p \times m}$$

令 $F = (f_1, f_2, L, f_p), \quad \mathcal{M} F = XR^{-1}B(R^{-1})$ 为 X 之相关阵逆阵)

即 $F = (f_{kj})_{n \times p}, F$ 为因子计量阵。

然后对原始网格数据 *X* 重新构造,目的在于对 变量进行必要的线性组合,即构造所谓主成分,于 是有:

$$\sum_{j=1}^{m} x_{ij} b_{kj} = x_{ik}^{(1)} \ \text{IV} \ XB^{T} = X^{(1)} \ \text{o}$$

将 $X^{(1)}$ 中的元素 $x_{ik}^{(1)}$ 乘以相应因子计量,得:

$$X^{*} = \begin{cases} \sum_{j=1}^{m} x_{1j}^{(1)} b_{1j} f_{11} & \mathrm{K} & \sum_{j=1}^{m} x_{1}^{(1)} b_{pj} f_{1p} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} \\ \sum_{j=1}^{m} x_{nj}^{(1)} b_{nj} f_{n1} & \mathrm{L} & \sum_{j=1}^{m} x_{1nj}^{(1)} b_{pj} f_{np} \\ \end{bmatrix}_{n \times p}$$

其中, *X**中第*j*列可解释为以主因子*f*_j为主的空间组合加权新变量, 共 *p* 个。将 *X**中元素列按原始样品坐标顺序排列, 构成 *p* 个点阵数据, 每一点阵都相当于新的网格数据, 于是可依空间分布的顺序进行求异。关于求异方法, 将上述点阵数据理解成具有漂移的区域化变量 *Z*(*x*), 则有:

$$Z(x) = m(x) + R(x)$$

通过求数学期望 m(x) 可得 R(x), 即为区域异 常。在这里假定 R(x)存在变异函数, 其增量具有一 阶矩与二阶矩, 在无偏性与最优性条件下通过解克 里格方程组可求出 m(x), 这里的 R(x) 分布形态进 一步可由类似于 DEM 数字高程模型以图像形式表 达出来。

3 应用实例

试验区地处云贵高原西部,绿汁江东岸。海拔 最高点 2105.1 m,最低点 1113 m,相对高差 992 m, 地势总体上东高西低,沟谷纵横,属中山中等切割 地貌。除局部地段偶有基岩出露外,地表绝大部分 为土壤覆盖区。棵松等针叶林及灌木、杂草等植被 覆盖达地表面积的 60%以上,地质工作难度较大(图 3)。

2010年, 云南省有色地质局地质地球物理化学 勘查院在区内开展了 1:1万 100 m×40 m 网度土壤地 球化学测量 10 km², 采样合计 2610 件, 采样密度 261 点/km², 测试 Cu、Pb、Ni、Mn、Ag、Zn、Co、 As、Sb、Bi 共 10 个元素, 数据网格化方法采用泛克 里格法, 从地球化学元素的因子分析之正交因子解 (表 2)中可见, 工作区内不同元素分布特征具明显规 律性。其中:F1为 Cu、Co、As 的组合, 反映区内土 壤中 Cu 与亲基性元素 Co 及构造示踪元素 As 密切 相关。F2 为 Pb、Zn、(Ag)的组合, 反映了区内土壤 中 Pb、Zn、(Ag)具相似的地球化学特征。F3 为 Mn、 Ag、Sb、Bi 组合, 反映海相沉积环境与断裂构造特

图 3 试验区地理景观图 Fig. 3 Geographic landscape map of the test area

表 2	元素因	子荷载矩阵(正规方差极大法)
•	Table 2	Load matrix of elements factor
	(norm	alized varimax method)

			-	
元素	F1	F2	F3	F4
Cu	0.7711	0.0123	0.3295	-0.2632
Pb	-0.0288	0.9107	0.0543	-0.0019
Ni	0.1948	0.0868	0.1110	0.7884
Mn	0.0881	-0.0582	0.8012	0.0266
Ag	0.2740	0.5115	0.6422	-0.0356
Zn	0.0172	0.8870	-0.0085	0.1190
Co	0.9043	-0.0087	-0.0651	0.1737
As	0.7556	0.0482	0.1732	0.4607
Sb	0.0698	0.1799	0.5455	0.4787
Bi	0.0704	-0.0265	0.6923	0.4204

征。F4 为 Ni、(As、Sb、Bi)组合,反映岩浆活动与 断裂构造特征。

3.1 隐伏断裂或地质单元界线的地球化学标志

根据 Mn 在碳酸盐岩中较其它岩性明显富集(表 3)以及 Mn 在碳酸盐岩中的丰度比其在砂岩中的丰 度高得多的特性(黄薰德等, 1996), 故认为 F3 因子 得分可用于初步判断土壤母岩是碳酸盐岩还是砂岩 或板岩。

根据数据分布检验结果,采用对数直方图法, 求出算术平均值 \overline{X} 和标准离差s。 \overline{X} -0.5S~ \overline{X} +0.5S为背景区(0.08~0.03), \overline{X} -1.5S~ \overline{X} -0.5S 为低背景区 (0.03~0.01), \overline{X} -2.5S~ \overline{X} -1.5S 为低值区(0.01~ 0.004),小于 \overline{X} -2.5S 为极低值区(<0.004), \overline{X} +0.5S~ \overline{X} +1.5S 为高背景区(0.08~0.2),大于 \overline{X} +1.5S 为异 常区(>0.2)。按此分级方案制作 F3 因子得分等值线 图(图 4B)。类比遥感地质学的线性构造理论(方洪宾 等,2002;李文昌等,2009)及滇西北地区区域化探 资料的综合研究成果(刘洪滔等,2012),建立据 F3 因子得分等值线特征推断隐伏断裂或地质单元界线 的识别标志(部分地段应考虑地形坡度对土壤运移 的影响)。

根据表 4 确定的原则, 在易门地区新家村—钟 山工作区判别断裂或地质单元界线 131 条(图 4B)。

图 4 实测地质界线与化探推断地质单元对比图

 Fig. 4
 Comparison between measured geological boundaries and geological units inferred by geochemical exploration

 A-峨山县大黑山—新家村工作区地质简图; B-土壤测量 F3 因子(Mn、Ag、Bi 、Sb 组合)得分等值线图

A-Simplified geological map of Daheshan–Xinjiacun work area of Eshan County; B-Contour map of F3 factor (Mn, Ag, Bi, Sb combination) score of soil survey 表 3 元素在不同时代地层(岩石)中的分配特征

碳酸盐岩 自己自己者 页岩 shale nate rock arbo

注: (1)据 Rudnick and Gao, 2003(迟清华等, 2007); (2)据 F.R.Siegel, 1974(黄薰德等, 1996); (3)据鄢明才和迟清华, 1997(迟清华等, 2007); 单位: W_B/10⁻⁶。

表 4 隐伏断裂和地质单元界线的地球化学标志 Table 4 Geochemical criteria for concealed faults and boundaries of geological units

序号	地球化学标志	推断解释	
1	F3 因子得分等值线被直线状错断(等值线产生线状错位或在线状体两侧形	线状体推测为断裂	
	成若干异常碎块)		
2	F3 因子得分等值线呈串珠状的异常区或低值区形态出现	异常区或低值区的中轴线推测为断裂	
3	F3 因子得分突变带(高背景区与低背景区界线)	高背景区与低背景区界线推测为岩性界线	
4	F3 因子得分高背景区与背景区界线	高背景区与背景区界线推测为岩性界线	
5	F3 因子得分背景区与低背景区界线	高背景区与背景区界线推测为岩性界线	
6	F3 因子得分等值线快速渐变带	推测为断裂引起	

3.2 地质单元划分

在经过上述断裂或地质单元界线判识后,还需 要建立地层(岩性)标志来区分地质单元的类型。

由表 3 及前述分析可知, F3 因子得分等值线的 高背景区-异常区为以碳酸盐岩为主的地层,包括绿 **汁江组(Pt**₂*l*₂)、落雪组(Pt₂*l*)、大龙口组(Pt₂*d*); F3 因 子得分等值线的低背景区-低值区为以板岩、砂质岩 为主的地层,包括鹅头厂组(Pt₂e)、美党组(Pt₅m);F3 因子得分等值线的背景区主要为以碳酸盐岩为主的 地层,但成分较复杂的因民组(Pt₂y)也应属这一区 间。

由于区内从绿汁江组—大龙口组,碳酸盐岩与 碎屑岩相间分布特点,结合前一阶段 1:5 万地质填 图成果,可对识别出的地质单元进一步细分。

经 1:1 万地质填图及槽探等工程揭露(图 4A), 判别出的 131 条断裂或地质单元界线中,有 42 条与 实测断裂或地质界线基本一致,其他属隐伏的断裂 或地质界线计 89条。据地球化学信息推断的以碳酸 盐岩为主的地层, 与地质圈定的绿汁江组(Pt2lz)、落

雪组(Pt₂l)、因民组(Pt₂y)、大龙口组(Pt₂d)范围吻合 较好;推断的以板岩、砂质岩为主的地层,与地质圈 定的鹅头厂组(Pt2e)、美党组(Pt2m)范围吻合较好。 证明该方法在实践工作中是可行的。

4 结论与讨论

(1)土壤地球化学找矿应重视对形成土壤的基 岩的地球化学特征的研究,元素在不同时代地层(岩 石)中的分配特征是划分不同地质单元的地球化学 基础,也是建立判识隐伏断裂或地质单元界线的地 球化学标志的依据之一。

(2)综合指标的地球化学因子能够增强地球化 学弱信息, 表达其整体性, 利用改进的主成分因子-泛克里格模型成功提取识别不同地质单元的地球化 学综合指标是划分不同地质单元的关键。

(3)在土壤覆盖率高、地表地质工作难度较大的 地区, 化探方法能够较好地推断隐伏断裂及部分界 线、为土壤覆盖下的地质体判识提供依据、大幅提 高地质工作效率。

(4)在面临地表矿产基本调查清楚,找矿难度愈 趋艰难的情况下,寻找隐伏矿床将是今后地质工作 的重点,化探作为地质工作中的一种重要手段日显 重要,对地球化学信息的充分挖掘具有重要的现实 意义。

参考文献:

- 迟清华, 鄢明才.2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 26-102.
- 杨昌华,戴岗,李飞,俞国东,韦克锦.2013. 滇中易门县狮子 山铜矿及近外围成矿因素及找矿方向[J]. 地球学报,34(s1): 41-48.
- 方洪宾,赵福岳. 2002. 1:25 万遥感地质填图方法和技术[M]. 北 京:地质出版社: 38-89.
- 龚琳,何毅特,陈天佑,赵玉山. 1996. 云南东川元古宙裂谷型 铜矿[M]. 北京:冶金工业出版社:4-9.
- 黄薰德,吴郁彦. 1996. 地球化学找矿[M]. 北京:地质出版社: 1-186.
- 李文昌,赵志芳,卢映祥,连长云.2009.云南省遥感地质 应用[M].北京:地质出版社:138-139.
- 刘洪滔, 陈三明, 朱家群. 2011. 地球化学信息挖掘在云南易门 铜矿区找矿预测中的应用[J]. 桂林理工大学学报, 31(3): 328-338.
- 刘洪滔,黄荣祥,莫向云,和浪涛.2012. 滇西北地球化学特征 及金铜铅锌银成矿[M]. 昆明:云南科技出版社:35-61.
- 任天祥,伍宗华,羌荣生.1998.区域化探异常筛选与查证的方 法技术[M].北京:地质出版社:1-134.
- 向运川,任天祥, 牟绪赞. 2010. 化探资料应用技术要求[M]. 北 京: 地质出版社: 1-79.
- 张远志. 1996. 云南省岩石地层[M]. 武汉: 中国地质大学出版 社: 24-275.
- 赵鹏大,王京贵,饶明辉,李浩昌.1995.中国地质异常[J].地 球科学(中国地质大学学报),20(2):117-127.

References:

CHI Qing-hua, YAN Ming-cai. 2007. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological

Publishing House: 26-102(in Chinese).

- FANG Hong-bin, ZHAO Fu-yue. 2002. Remote sensing geological mapping method and Technology at the scale of 1:250,000[M]. Beijing: Geological Publishing House: 38-89(in Chinese).
- GONG Lin, HE Yi-te, CHEN Tian-you, ZHAO Yu-shan. 1996. Proterozoic rift copper deposits in Dongchuan, Yunnan province[M]. Beijing: Metallurgical Industry Press: 4-9(in Chinese).
- YANG Chang-hua, DAI Gang, LI Fei, YU Guo-dong, WEI Ke-jin. 2013. Metallogenic Factors and Prospecting Directions in the Shizishan Copper Deposit and Its Adjacent Areas in Yimei County of Central Yunnan Province[J]. Acta Geoscientica Sinica, 34(s1): 41-48 (in Chinese with English abstract).
- HUANG Xun-de, WU Yu-yan. 1996. Geochemical prospecting[M]. Beijing: Geological Publishing House: 1-186(in Chinese).
- LI Wen-chang, ZHAO Zhi-fang, LU Ying-xiang, LIAN Chang-yun. 2009. Application of remote-sensing to geology[M]. Beijing: Geological Publishing House: 138-139(in Chinese).
- LIU Hong-tao, CHEN San-ming, ZHU Jia-qun. 2011. Prospecting Prediction by Geochemical Information Miningin Yimen Copper Area, Yunnan[J]. Journal of Guilin University of Technology, 31(3): 328-338(in Chinese with English abstract).
- LIU Hong-tao, HUANG Rong-xiang, MO Xiang-yun, HE Lang-tao. 2012. Geochemistry and metallogeny of gold,copper,lead,zinc and silver ores in the northwest of yunnan,china[M]. Kunming: Yunnan Science and Technology Press: 35-61(in Chinese).
- REN Tian-xiang, WU Zong-hua, JIANG Rong-sheng. 1998. Techniques and methods for the regional geochemical anomaly screening and verifying[M]. Beijing: Geological Publishing House: 1-134(in Chinese).
- XIANG Yun-chuan, REN Tian-xiang, MOU Xu-zan. 2010. Technical requirement for use of geochemical data[M]. Beijing: Geological Publishing House: 1-79(in Chinese).
- ZHANG Yuan-zhi. 1996. Rock and stratigraphic in Yunnan province[M]. Wuhan: China University of Geosciences Press: 24-275(in Chinese).
- ZHAO Peng-da, WANG Jing-gui, RAO Ming-hui, LI Hao-chang. 1995. Geologic anomaly of china[J]. Earth Science(Journal of China University of Geosciences), 20(2): 117-127(in Chinese with English abstract).