• 集群首页
  • 关于我们
  • 期刊群

基于网格化调查的土壤地球化学元素背景时空变化监测方法研究

Monitoring Method of Spatiotemporal Variation of Soil Geochemical Background Elements Based on Grid Surveys

  • 摘要: 土壤地球化学元素背景的时空变化监测是区域生态环境评估、土地资源管理和污染风险防控的重要基础。传统监测方法难以有效兼顾空间异质性、动态变化及经济性,尤其在高度人为干扰的平原农业区,导致监测点布设冗余或不足,难以准确捕捉关键环境过程。本文以江苏省中部典型平原农业区为对象,基于1∶50000土壤地球化学调查数据,整合主成分分析(PCA)、莫兰指数和半方差函数,构建分单元监测策略。结果表明,PCA有效解耦自然背景元素(Cr、Ni、Co、V)与人为活动因素(As、Cd、Hg、Pb及N、P)对元素分布的控制作用;空间自相关分析表明,滨湖圩田区重金属元素(Cu、Cd、As)的变程值(92.85~123.30km),显著大于地质背景元素(4.45~9.12km),其空间结构主要受人类活动驱动。基于主成分分析的双层次空间权重模型,将土壤地球化学元素的空间分布特征与地质、土壤和地貌背景结合,划分了六类监测单元,本研究建立了一种动态监测方法,通过复合加权计算综合变程参数,优化了土壤地球化学元素背景的时空变化监测,解决了传统方法在高异质性区域的布点不足与效率低下的问题,应用于土壤环境质量动态监测与农田管理,为快速城市化地区的长期监测网络设计提供了参数化支撑。

     

    Abstract: Monitoring the spatiotemporal variation of soil geochemical background elements is crucial for regional ecological assessment, land resource management, and pollution risk control. Traditional monitoring methods struggle to balance spatial heterogeneity, dynamic changes, and cost-effectiveness, particularly in highly anthropogenically disturbed plain agricultural areas, leading to redundant or insufficient monitoring points that fail to capture critical environmental processes. This study focuses on a typical plain agricultural area in central Jiangsu Province, utilizing 1∶50000 soil geochemical survey data and integrating principal component analysis (PCA), Moran’s index, and semivariance functions to develop a unit monitoring strategy. The results show that PCA effectively decouples the dominant influences of natural background elements (Cr, Ni, Co, V) and human activity factors (As, Cd, Hg, Pb, N, P) on element distribution. Spatial autocorrelation analysis reveals that the range values of heavy metal elements (Cu, Cd, As) in the lakeside polder area (92.85–123.30km) are significantly larger than those of geological background elements (4.45–9.12km), with their spatial structure primarily driven by human activities. A dual-level spatial weight model based on PCA integrates soil geochemical element distribution with geological, soil, and geomorphological backgrounds, delineating six monitoring units. This study establishes a dynamic monitoring method that optimizes the spatiotemporal monitoring of soil geochemical background elements through composite weighting of comprehensive range parameters, addressing the inefficiencies of traditional methods in highly heterogeneous regions. The approach is applied to dynamic soil environmental quality monitoring and farmland management, providing parametric support for long-term monitoring network design in rapidly urbanizing regions.

     

/

返回文章
返回