• 集群首页
  • 关于我们
  • 期刊群

中国燃煤电厂与沉积盆地咸水层CO2封存的源汇匹配研究

Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China

  • 摘要:
    研究目的 燃煤电厂是中国CO2排放的一个主要集中源,为了完成碳减排的目标,需对其进行碳捕获和封存(CCUS)改造,利用咸水层进行封存是有效手段,两者的源汇匹配评价是推动改造工程的重要一环。但当前缺乏详细和系统地针对全国燃煤电厂CO2排放和沉积盆地咸水层封存的源汇匹配研究。
    研究方法 本文从盆地一级构造尺度出发,基于全国燃煤电厂CO2排放特征,建立一套考虑全流程的源汇匹配优化模型。
    研究结果 99%的电厂均可在唯一的封存地进行封存,陆域盆地作为封存地仍是大多数电厂的首选,海域盆地在沿海地区的匹配中体现出优越性。针对10~40年改造目标年限,2021—2030年电厂到封存地的最大运输距离达到539.28 km,2031—2040年、2041—2050年和2051—2060年的最大运输距离均为660.58 km。
    结论 从CO2年捕集量和运输距离来看,在华北、华东、华中和西北地区建立大规模的CO2运输管网进行封存的潜力大于东北和南方。CCUS改造技术成本和运输距离是影响源汇匹配结果的最重要因素,随着改造技术的提高,平均改造成本从500元/t CO2下降到300元/t CO2以内。本研究结果为燃煤电厂的CCUS改造提供了政策决定依据。

     

    Abstract:
    This paper is the result of geological survey engineering.
    Objective Coal−fired power plants are a major source of CO2 emissions in China. To achieve carbon reduction targets, retrofitting these facilities with Carbon Capture, Utilization, and Storage (CCUS) technology and using saline aquifers for CO2 storage is a viable solution. Currently, there is a lack of detailed and systematic research on the source-sink matching of CO2 emissions from coal-fired power plants and the storage of saline aquifers in sedimentary basins across the country.
    Methods This study focuses on the first-order structure of the basin level and an optimization model is developed for matching CO2 sources with potential storage sites. The model considers the entire process and is based on the emission profiles of coal-fired power plants across China.
    Results The results show that 99% of these power plants can be matched with a unique storage site. Onshore basins are the preferred option for most power stations, while distinct advantages for offshore basins are shown by coastal match. Over a 10–40 year transformation timeline, the maximal transit distance from power plants to storage sites is projected to be 539.28 km for the decade of 2021–2030, extending to 660.58 km for the subsequent intervals ending in 2040, 2050, and 2060, respectively.
    Conclusions Establishing expansive CO2 transportation networks for sequestration appears more feasible in the regions of North, East, Central, and Northwest China compared to the Northeast and South, when considering annual CO2 capture volumes and transportation distances. The economic implications of CCUS technology retrofitting and the associated transportation distances have significant impacts on the source-to-sink matching outcomes. Technological advancements have led to a reduction in the average retrofitting costs from 500 CNY per ton CO2 to below 300 CNY per ton CO2. The findings of this investigation provide a basis for policy formulation regarding the retrofitting of coal−fired power plants with CCUS technology.

     

/

返回文章
返回